Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T17:43:18.398Z Has data issue: false hasContentIssue false

V - III ratio effect on Cubic GaN Grown by RF Plasma Assisted Gas Source MBE

Published online by Cambridge University Press:  21 March 2011

Li-Wei Sung
Affiliation:
Department of Electronics Engineering, National Taiwan University Taipei, Taiwan, R. O. C.
Hao-Hsiung Lin
Affiliation:
Department of Electronics Engineering, National Taiwan University Taipei, Taiwan, R. O. C.
Chih-Ta Chia
Affiliation:
Department of Physics, Taipei, National Taiwan Normal University, Taiwan, R.O.C.
Get access

Abstract

We report the investigation on the growth conditions and optical properties of cubic GaN films grown on (001) GaAs substrate by using RF plasma assisted gas source MBE. The cubic GaN films were deposited at different Ga to N flux ratios that were determined by deposition rates directly. Three growth regimes, namely, Ga droplet, intermediate Ga stable, and N stable regime, are defined in the growth diagram. Optical quality of these films was determined by using photoluminescence (PL). Micro-Raman scattering were performed to analyze the crystallinity of the films. Optimal growth condition of cubic GaN is on the boundary of intermediate Ga stable regime and Ga droplet regime at a growth temperature of Ts = 720°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Funato, M., Ogawa, M., Ishido, T., Fujita, Sz., and Fujita, Sg., Phys. State. Sol. A 176 (1999) 509.Google Scholar
[2] Martinez-Guerrero, E., Chabuel, F., Jalabert, D., Daudin, B., Feuillet, G., Mariette, H., Aboughe-nze, P., and Monteil, Y., Phys. State. Sol. A 176 (1999) 479.Google Scholar
[3] Feuillet, G., Hamaguchi, H., Ohta, K., Hacke, P., Okumura, H., and Yoshida, S., Appl. Phys. Lett. 70 (1997) 1025.Google Scholar
[4] Limal, A.P., Frey, T., Kohler, U., Wang, C., As, D.J., Schottker, B., Lischka, K., Schikora, D., J. Crystal Growth 197 (1999) 31.Google Scholar
[5] Ploog, K. H., Brandt, O., Yang, H., Yang, B., and Trampert, A., J. Vac. Sci. Technol. B 16 (1998) 2229.Google Scholar
[6] Heying, B., Averbeck, R., Chen, L. F., Haus, E., Riechert, H., and Speck, J. S., J. Appl. Phys. 88 (2000) 1855.Google Scholar
[7] Yaguchi, H., Wu, J., Zhang, B., Segawa, Y., Nagasawa, H, Onabe, K., and Shiraki, Y., J. Crystal Growth 195 (1998) 323.Google Scholar
[8] Yoshikawa, M., Mori, Y., M.Maegawa, Katagiri, G., Ishida, H., and Ishitani, A., Appl. Phys. Lett. 62 (1993) 3114.Google Scholar
[9] Bentoumi, G., Deneuville, A., Bdaudin, E., Feuillet, G., Martinez, E., Aboughe, P., and Monteil, Y., Thin Solid Films 364 (2000) 107.Google Scholar
[10] Fauchet, P. M. and Campbell, I. H., Crit. Rev. Solid State Commun. 39, (1981)625.Google Scholar
[11] Tutuncu, H. M., and Srivastava, G. P., Phys. Rev. B, 62,(2000)5028.Google Scholar
[12] Elsass, C. R., Poblenz, C., Heying, B., Fini, P., Petro, P. M., DenBaars, S. P., Mishra, U. K., and Speck, J. S., J. Crystal Growth 233 (2001)709.Google Scholar
[13] Liu, M. S., Prawer, S. and Bursill, L. A., As, D. J., and Brenn, R., Appl. Phys. Lett. 78 (2001)2658.Google Scholar