Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T08:57:10.337Z Has data issue: false hasContentIssue false

Developmental mechanisms in the prodrome to psychosis

Published online by Cambridge University Press:  17 December 2013

Elaine F. Walker*
Affiliation:
Emory University
Hanan D. Trotman
Affiliation:
Emory University
Sandra M. Goulding
Affiliation:
Emory University
Carrie W. Holtzman
Affiliation:
Emory University
Arthur T. Ryan
Affiliation:
Emory University
Allison McDonald
Affiliation:
Emory University
Daniel I. Shapiro
Affiliation:
Emory University
Joy L. Brasfield
Affiliation:
Emory University
*
Address correspondence and reprint requests to: Elaine Walker, Department of Psychology, 36 Eagle Row, Emory University, Atlanta, GA 30322; E-mail: psyefw@emory.edu.

Abstract

Psychotic disorders continue to be among the most disabling and scientifically challenging of all mental illnesses. Accumulating research findings suggest that the etiologic processes underlying the development of these disorders are more complex than had previously been assumed. At the same time, this complexity has revealed a wider range of potential options for preventive intervention, both psychosocial and biological. In part, these opportunities result from our increased understanding of the dynamic and multifaceted nature of the neurodevelopmental mechanisms involved in the disease process, as well as the evidence that many of these entail processes that are malleable. In this article, we review the burgeoning research literature on the prodrome to psychosis, based on studies of individuals who meet clinical high risk criteria. This literature has examined a range of factors, including cognitive, genetic, psychosocial, and neurobiological. We then turn to a discussion of some contemporary models of the etiology of psychosis that emphasize the prodromal period. These models encompass the origins of vulnerability in fetal development, as well as postnatal stress, the immune response, and neuromaturational processes in adolescent brain development that appear to go awry during the prodrome to psychosis. Then, informed by these neurodevelopmental models of etiology, we turn to the application of new research paradigms that will address critical issues in future investigations. It is expected that these studies will play a major role in setting the stage for clinical trials aimed at preventive intervention.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addington, A. M., & Rapoport, J. L. (2012). Annual research review: Impact of advances in genetics in understanding developmental psychopathology. Journal of Child Psychology and Psychiatry and Allied Disciplines, 53, 510518.Google Scholar
Addington, J., Cadenhead, K., Cannon, T., Cornblatt, B., McGlashan, T., Perkins, D., et al. (2007). North American Prodrome Longitudinal Study: A collaborative multisite approach to prodromal schizophrenia research. Schizophrenia Bulletin, 33, 665672.Google Scholar
Addington, J., & Heinssen, R. (2012). Prediction and prevention of psychosis in youth at clinical high risk. Annual Review of Clinical Psychology, 8, 269289.Google Scholar
Addington, J., Stowkowy, J., Cadenhead, K. S., Cornblatt, B. A., McGlashan, T. H., Perkins, D. O., et al. (2013). Early traumatic experiences in those at clinical high risk for psychosis. Early Intervention in Psychiatry, 7, 300330.Google Scholar
Adriano, F., Caltagirone, C., & Spalletta, G. (2012). Hippocampal volume reduction in first-episode and chronic schizophrenia: A review and meta-analysis. Neuroscientist, 18, 180200.CrossRefGoogle ScholarPubMed
Alexander, N., Osinsky, R., Schmitz, A., Mueller, E., Kuepper, Y., & Hennig, J. (2010). The BDNF Val66Met polymorphism affects HPA-axis reactivity to acute stress. Psychoneuroendocrinology, 35, 949953.Google Scholar
Allen, P., Luigjes, J., Howes, O. D., Egerton, A., Hirao, K., Valli, I., et al. (2012). Transition to psychosis associated with prefrontal and subcortical dysfunction in ultra high-risk individuals. Schizophrenia Bulletin, 38, 12681276.Google Scholar
American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (4th ed., text revision). Arlington, VA: Author.Google Scholar
Amminger, G. P., Schafer, M. R., Papageorgiou, K., Klier, C. M., Cotton, S. M., Harrigan, S. M., et al. (2010). Long-chain omega–3 fatty acids for indicated prevention of psychotic disorders: A randomized, placebo-controlled trial. Archives of General Psychiatry, 67, 146154.CrossRefGoogle ScholarPubMed
Antoni, M. H., Lechner, S., Diaz, A., Vargas, S., Holley, H., Phillips, K., et al. (2009). Cognitive behavioral stress management effects on psychosocial and physiological adaptation in women undergoing treatment for breast cancer. Brain, Behavior, and Immunity, 23, 580591.Google Scholar
Arnone, D., Cavanagh, J., Gerber, D., Lawrie, S. M., Ebmeier, K. P., & McIntosh, A. M. (2009). Magnetic resonance imaging studies in bipolar disorder and schizophrenia: Meta-analysis. British Journal of Psychiatry, 195, 194201.Google Scholar
Asarnow, J. R. (2005). Childhood-onset schizotypal disorder: A follow-up study and comparison with childhood-onset schizophrenia. Journal of Child and Adolescent Psychopharmacology, 15, 395402.Google Scholar
Atkinson, R. J., Michie, P. T., & Schall, U. (2012). Duration mismatch negativity and P3a in first-episode psychosis and individuals at ultra-high risk of psychosis. Biological Psychiatry, 71, 98104.Google Scholar
Barik, J., Marti, F., Morel, C., Fernandez, S. P., Lanteri, C., Godeheu, G., et al. (2013). Chronic stress triggers social aversion via glucocorticoid receptor in dopaminoceptive neurons. Science, 339, 332335.Google Scholar
Bassett, A. S., & Chow, E. W. (2008). Schizophrenia and 22q11.2 deletion syndrome. Current Psychiatry Reports, 10, 148157.Google Scholar
Bauer, M., Praschak-Rieder, N., Kasper, S., & Willeit, M. (2012). Is dopamine neurotransmission altered in prodromal schizophrenia? A review of the evidence. Current Pharmaceutical Design, 18, 15681579.Google Scholar
Bebbington, P., Jonas, S., Kuipers, E., King, M., Cooper, C., Brugha, T., et al. (2011). Childhood sexual abuse and psychosis: Data from a cross-sectional national psychiatric survey in England. British Journal of Psychiatry, 199, 2937.Google Scholar
Bechdolf, A., Thompson, A., Nelson, B., Cotton, S., Simmons, M. B., Amminger, G. P., et al. (2010). Experience of trauma and conversion to psychosis in an ultra-high-risk (prodromal) group. Acta Psychiatrica Scandinavica, 121, 377384.CrossRefGoogle Scholar
Bodatsch, M., Ruhrmann, S., Wagner, M., Muller, R., Schultze-Lutter, F., Frommann, I., et al. (2011). Prediction of psychosis by mismatch negativity. Biological Psychiatry, 69, 959966.Google Scholar
Bora, E., Yucel, M., & Pantelis, C. (2010). Cognitive impairment in affective psychoses: A meta-analysis. Schizophrenia Bulletin, 36, 112125.Google Scholar
Borgwardt, S. J., Picchioni, M. M., Ettinger, U., Toulopoulou, T., Murray, R., & McGuire, P. K. (2010). Regional gray matter volume in monozygotic twins concordant and discordant for schizophrenia. Biological Psychiatry, 67, 956964.CrossRefGoogle ScholarPubMed
Bramen, J. E., Hranilovich, J. A., Dahl, R. E., Forbes, E. E., Chen, J., Toga, A. W., et al. (2011). Puberty influences medial temporal lobe and cortical gray matter maturation differently in boys than girls matched for sexual maturity. Cerebral Cortex, 21, 636646.Google Scholar
Bramon, E., Shaikh, M., Broome, M., Lappin, J., Berge, D., Day, F., et al. (2008). Abnormal P300 in people with high risk of developing psychosis. NeuroImage, 41, 553660.Google Scholar
Brockhaus-Dumke, A., Schultze-Lutter, F., Mueller, R., Tendolkar, I., Bechdolf, A., Pukrop, R., et al. (2008). Sensory gating in schizophrenia: P50 and N100 gating in antipsychotic-free subjects at risk, first-episode, and chronic patients. Biological Psychiatry, 64, 376384.Google Scholar
Brockhaus-Dumke, A., Tendolkar, I., Pukrop, R., Schultze-Lutter, F., Klosterkotter, J., & Ruhrmann, S. (2005). Impaired mismatch negativity generation in prodromal subjects and patients with schizophrenia. Schizophrenia Research, 73, 297310.Google Scholar
Cadenhead, K. S. (2002). Vulnerability markers in the schizophrenia spectrum: Implications for phenomenology, genetics, and the identification of the schizophrenia prodrome. Psychiatric Clinics of North America, 25, 837–53.Google Scholar
Cadenhead, K. S., Light, G. A., Shafer, K. M., & Braff, D. L. (2005). P50 suppression in individuals at risk for schizophrenia: The convergence of clinical, familial, and vulnerability marker risk assessment. Biological Psychiatry, 57, 15041509.Google Scholar
Cannon, T. D., Cadenhead, K., Cornblatt, B., Woods, S. W., Addington, J., Walker, E., et al. (2008). Prediction of psychosis in youth at high clinical risk: A multisite longitudinal study in North America. Archives of General Psychiatry, 65, 2837.Google Scholar
Carrion, V. G., & Wong, S. S. (2012). Can traumatic stress alter the brain? Understanding the implications of early trauma on brain development and learning. Journal of Adolescent Health, 51, S23S28.CrossRefGoogle ScholarPubMed
Castro-Fornieles, J., Bargallo, N., Lazaro, L., Andres, S., Falcon, C., Plana, M. T., et al. (2009). A cross-sectional and follow-up voxel-based morphometric MRI study in adolescent anorexia nervosa. Journal of Psychiatric Research, 43, 331340.Google Scholar
Catena-Dell'Osso, M., Bellantuono, C., Consoli, G., Baroni, S., Rotella, F., & Marazziti, D. (2011). Inflammatory and neurodegenerative pathways in depression: A new avenue for antidepressant development? Current Medicinal Chemistry, 18, 245255.Google Scholar
Charmandari, E., Kino, T., Souvatzoglou, E., & Chrousos, G. P. (2003). Pediatric stress: Hormonal mediators and human development. Hormone Research, 59, 161179.Google Scholar
Correll, C. U., Hauser, M., Auther, A. M., & Cornblatt, B. A. (2010). Research in people with psychosis risk syndrome: A review of the current evidence and future directions. Journal of Child Psychology and Psychiatry and Allied Disciplines, 51, 390431.Google Scholar
Coyle, J. T., Tsai, G., & Goff, D. C. (2002). Ionotropic glutamate receptors as therapeutic targets in schizophrenia. Current Drug Targets: CNS and Neurological Disorders, 1, 183189.Google Scholar
Davidson, L., & Heinrichs, R. (2003). Quantification of frontal and temporal lobe brain-imaging findings in schizophrenia: A meta-analysis. Psychiatry Research, 122, 6987.Google Scholar
Davidson, R. J., & McEwen, B. S. (2012). Social influences on neuroplasticity: Stress and interventions to promote well-being. Nature Neuroscience, 15, 689695.Google Scholar
de la Fuente-Sandoval, C., Leon-Ortiz, P., Favila, R., Stephano, S., Mamo, D., Ramirez-Bermudez, J., et al. (2011). Higher levels of glutamate in the associative-striatum of subjects with prodromal symptoms of schizophrenia and patients with first-episode psychosis. Neuropsychopharmacology, 36, 17811791.Google Scholar
Dempster, E. L., Pidsley, R., Schalkwyk, L. C., Owens, S., Georgiades, A., Kane, F., et al. (2011). Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder. Human Molecular Genetics 20, 47864796.Google Scholar
Douaud, G., Mackay, C., Andersson, J., James, S., Quested, D., Ray, M. K., et al. (2009). Schizophrenia delays and alters maturation of the brain in adolescence. Brain, 132, 24372448.Google Scholar
D'Souza, D. C., Abi-Saab, W. M., Madonick, S., Forselius-Bielen, K., Doersch, A., Braley, G., et al. (2005). Delta–9-tetrahydrocannabinol effects in schizophrenia: Implications for cognition, psychosis, and addiction. Biological Psychiatry, 57, 594608.Google Scholar
D'Souza, D. C., Perry, E., MacDougall, L., Ammerman, Y., Cooper, T., Wu, Y. T., et al. (2004). The psychotomimetic effects of intravenous delta-9-tetrahydrocannabinol in healthy individuals: Implications for psychosis. Neuropsychopharmacology, 29, 15581572.CrossRefGoogle ScholarPubMed
D'Souza, D. C., Ranganathan, M., Braley, G., Gueorguieva, R., Zimolo, Z., Cooper, T., et al. (2008). Blunted psychotomimetic and amnestic effects of delta–9-tetrahydrocannabinol in frequent users of cannabis. Neuropsychopharmacology, 33, 25052516.Google Scholar
Frank, M. G., Miguel, Z. D., Watkins, L. R., & Maier, S. F. (2010). Prior exposure to glucocorticoids sensitizes the neuroinflammatory and peripheral inflammatory responses to E. coli lipopolysaccharide. Brain, Behavior, and Immunity, 24, 1930.Google Scholar
Frommann, I., Brinkmeyer, J., Ruhrmann, S., Hack, E., Brockhaus-Dumke, A., Bechdolf, A., et al. (2008). Auditory P300 in individuals clinically at risk for psychosis. International Journal of Psychophysiology, 70, 192205.Google Scholar
Furrow, R. E., Christiansen, F. B., & Feldman, M. W. (2011). Environment-sensitive epigenetics and the heritability of complex diseases. Genetics, 189, 13771387.Google Scholar
Fusar-Poli, P., Borgwardt, S., Crescini, A., Deste, G., Kempton, M. J., Lawrie, S., et al. (2011). Neuroanatomy of vulnerability to psychosis: A voxel-based meta-analysis. Neuroscience & Biobehavioral Reviews, 35, 11751185.Google Scholar
Fusar-Poli, P., Crossley, N., Woolley, J., Carletti, F., Perez-Iglesias, R., Broome, M., et al. (2011). Gray matter alterations related to P300 abnormalities in subjects at high risk for psychosis: Longitudinal MRI-EEG study. NeuroImage, 55, 320328.CrossRefGoogle ScholarPubMed
Galletly, C., Van Hooff, M., & McFarlane, A. (2011). Psychotic symptoms in young adults exposed to childhood trauma—20 year follow-up study. Schizophrenia Research, 127, 7682.Google Scholar
Garner, B., Pariante, C., Wood, S., Velakoulis, D., Phillips, L., Soulsby, B., et al. (2005). Pituitary volume predicts future transition to psychosis in individuals at ultra-high risk of developing psychosis. Biological Psychiatry, 58, 417423.Google Scholar
Giuliano, A. J., Li, H., Mesholam-Gately, R. I., Sorenson, S. M., Woodberry, K. A., & Seidman, L. J. (2012). Neurocognition in the psychosis risk syndrome: A quantitative and qualitative review. Current Pharmaceutical Design, 18, 399415.Google Scholar
Green, M. F., Bearden, C. E., Cannon, T. D., Fiske, A. P., Hellemann, G. S., Horan, W. P., et al. (2012). Social cognition in schizophrenia, Part 1: Performance across phase of illness. Schizophrenia Bulletin, 38, 854864.Google Scholar
Green, M. F., Penn, D. L., Bentall, R., Carpenter, W. T., Gaebel, W., Gur, R. C., et al. (2008). Social cognition in schizophrenia: An NIMH workshop on definitions, assessment, and research opportunities. Schizophrenia Bulletin, 34, 12111220.CrossRefGoogle ScholarPubMed
Habets, P., Collip, D., Myin-Germeys, I., Gronenschild, E., van Bronswijk, S., Hofman, P., et al. (2012). Pituitary volume, stress reactivity and genetic risk for psychotic disorder. Psychological Medicine, 42, 15231533.CrossRefGoogle ScholarPubMed
Heins, M., Simons, C., Lataster, T., Pfeifer, S., Versmissen, D., Lardinois, M., et al. (2011). Childhood trauma and psychosis: A case-control and case-sibling comparison across different levels of genetic liability, psychopathology, and type of trauma. American Journal of Psychiatry, 168, 12861294.CrossRefGoogle ScholarPubMed
Hill, S. K., Schuepbach, D., Herbener, E. S., Keshavan, M. S., & Sweeney, J. A. (2004). Pretreatment and longitudinal studies of neuropsychological deficits in antipsychotic-naive patients with schizophrenia. Schizophrenia Research, 68, 4963.Google Scholar
Hoftman, G. D., & Lewis, D. A. (2011). Postnatal developmental trajectories of neural circuits in the primate prefrontal cortex: Identifying sensitive periods for vulnerability to schizophrenia. Schizophrenia Bulletin, 37, 493503.Google Scholar
Holtzman, C. W., Walker, E. F., Addington, J., Cadenhead, K., Cannon, T. D., & Cornblatt, B. A. (2011, September 22). Associations between child abuse and symptom severity in participants at clinical high risk for psychosis. Poster presented at the Society for Research in Psychopathology, Boston.Google Scholar
Hook, J. N., Giordani, B., Schteingart, D. E., Guire, K., Giles, J., Ryan, K., et al. (2007). Patterns of cognitive change over time and relationship to age following successful treatment of Cushing's disease. Journal of the International Neuropsychological Society, 13, 2129.Google Scholar
Horan, W. P., Ventura, J., Nuechterlein, K. H., Subotnik, K. L., Hwang, S. S., & Mintz, J. (2005). Stressful life events in recent-onset schizophrenia: Reduced frequencies and altered subjective appraisals. Schizophrenia Research, 75, 363374.Google Scholar
Howes, O., & Kapur, S. (2009). The dopamine hypothesis of schizophrenia: Version III—The final common pathway. Schizophrenia Bulletin, 35, 549562.Google Scholar
Howes, O., Montgomery, A., Asselin, M., Murray, R., Valli, I., Tabraham, P., et al. (2009). Elevated striatal dopamine function linked to prodromal signs of schizophrenia. Archives of General Psychiatry, 66, 1320.Google Scholar
Hulshoff Pol, H. E., & Kahn, R. S. (2008). What happens after the first episode? A review of progressive brain changes in chronically ill patients with schizophrenia. Schizophrenia Bulletin, 34, 354366.Google Scholar
Hunter, R. G. (2012). Epigenetic effects of stress and corticosteroids in the brain. Frontiers in Cellular Neuroscience, 6, 18.Google Scholar
Janssen, I., Krabbendam, L., Bak, M., Hanssen, M., Vollebergh, W., de Graaf, R., et al. (2004). Childhood abuse as a risk factor for psychotic experiences. Acta Psychiatrica Scandinavica, 109, 3845.Google Scholar
Jeon, Y. W., & Polich, J. (2003). Meta-analysis of P300 and schizophrenia: Patients, paradigms, and practical implications. Psychophysiology, 40, 684701.Google Scholar
Karlsgodt, K. H., Sun, D., Jimenez, A. M., Lutkenhoff, E. S., Willhite, R., van Erp, T. G., et al. (2008). Developmental disruptions in neural connectivity in the pathophysiology of schizophrenia. Development and Psychopathology, 20, 12971327.Google Scholar
Kegeles, L. S., Abi-Dargham, A., Zea-Ponce, Y., Rodenhiser-Hill, J., Mann, J. J., Van Heertum, R. L., et al. (2000). Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: Implications for schizophrenia. Biological Psychiatry, 48, 627640.Google Scholar
Kegeles, L. S., Martinez, D., Kochan, L. D., Hwang, D. R., Huang, Y., Mawlawi, O., et al. (2002). NMDA antagonist effects on striatal dopamine release: Positron emission tomography studies in humans. Synapse, 43, 1929.CrossRefGoogle ScholarPubMed
Kelleher, I., Harley, M., Lynch, F., Arseneault, L., Fitzpatrick, C., & Cannon, M. (2008). Associations between childhood trauma, bullying and psychotic symptoms among a school-based adolescent sample. British Journal of Psychiatry, 193, 378382.CrossRefGoogle ScholarPubMed
Khansari, P. S., & Halliwell, R. F. (2009). Evidence for neuroprotection by the fenamate NSAID, mefenamic acid. Neurochemistry International, 55, 683688.Google Scholar
Kim, H. S., Shin, N. Y., Jang, J. H., Kim, E., Shim, G., Park, H. Y., et al. (2011). Social cognition and neurocognition as predictors of conversion to psychosis in individuals at ultra-high risk. Schizophrenia Research, 130, 170175.Google Scholar
Kim, J. J., & Haller, J. (2007). Glucocorticoid hyper- and hypofunction: Stress effects on cognition and aggression. Annals of the New York Academy of Sciences, 1113, 291303.Google Scholar
Kinney, D. K., Hintz, K., Shearer, E. M., Barch, D. H., Riffin, C., Whitley, K., et al. (2010). A unifying hypothesis of schizophrenia: Abnormal immune system development may help explain roles of prenatal hazards, post-pubertal onset, stress, genes, climate, infections, and brain dysfunction. Medical Hypotheses, 74, 555563.Google Scholar
Knoops, A. J., Gerritsen, L., van der Graaf, Y., Mali, W. P., & Geerlings, M. I. (2010). Basal hypothalamic pituitary adrenal axis activity and hippocampal volumes: The SMART-Medea study. Biological Psychiatry, 67, 11911198.Google Scholar
Kong, A., Frigge, M. L., Masson, G., Besenbacher, S., Sulem, P., Magnusson, G., et al. (2012). Rate of de novo mutations and the importance of father's age to disease risk. Nature, 488, 471475.Google Scholar
Kristensen, K., & Cadenhead, K. S. (2007). Cannabis abuse and risk for psychosis in a prodromal sample. Psychiatry Research, 151, 151154.Google Scholar
Ladouceur, C. D., Peper, J. S., Crone, E. A., & Dahl, R. E. (2012). White matter development in adolescence: The influence of puberty and implications for affective disorders. Developmental Cognitive Neuroscience 2, 3654.Google Scholar
Large, M., Sharma, S., Compton, M. T., Slade, T., & Nielssen, O. (2011). Cannabis use and earlier onset of psychosis: A systematic meta-analysis. Archives of General Psychiatry, 68, 555561.Google Scholar
Levitt, J. J., Bobrow, L., Lucia, D., & Srinivasan, P. (2010). A selective review of volumetric and morphometric imaging in schizophrenia. Current Topics in Behavioral Neurosciences, 4, 243281.Google Scholar
Mainz, V., Schulte-Ruther, M., Fink, G. R., Herpertz-Dahlmann, B., & Konrad, K. (2012). Structural brain abnormalities in adolescent anorexia nervosa before and after weight recovery and associated hormonal changes. Psychosomatic Medicine, 74, 574582.CrossRefGoogle ScholarPubMed
Markham, J. A., & Koenig, J. I. (2011). Prenatal stress: Role in psychotic and depressive diseases. Psychopharmacology 214, 89106.Google Scholar
Mesholam-Gately, R. I., Giuliano, A. J., Goff, K. P., Faraone, S. V., & Seidman, L. J. (2009). Neurocognition in first-episode schizophrenia: A meta-analytic review. Neuropsychology, 23, 315–36.Google Scholar
Meyer, U. (2011). Developmental neuroinflammation and schizophrenia. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 42, 2034.Google Scholar
Michaeli, B., Berger, M. M., Revelly, J. P., Tappy, L., & Chiolero, R. (2007). Effects of fish oil on the neuro-endocrine responses to an endotoxin challenge in healthy volunteers. Clinical Nutrition, 26, 7077.Google Scholar
Miller, T. J., McGlashan, T. H., Rosen, J. L., Cadenhead, K., Cannon, T., Ventura, J., et al. (2003). Prodromal assessment with the Structured Interview for Prodromal Syndromes and the scale of prodromal symptoms: Predictive validity, interrater reliability, and training to reliability. Schizophrenia Bulletin, 29, 703715.Google Scholar
Miyake, N., Thompson, J., Skinbjerg, M., & Abi-Dargham, A. (2011). Presynaptic dopamine in schizophrenia. CNS Neuroscience & Therapeutics, 17, 104109.Google Scholar
Mizrahi, R., Addington, J., Rusjan, P. M., Suridjan, I., Ng, A., Boileau, I., et al. (2012). Increased stress-induced dopamine release in psychosis. Biological Psychiatry, 71, 561567.Google Scholar
Mondelli, V., Dazzan, P., Gabilondo, A., Tournikioti, K., Walshe, M., Marshall, N., et al. (2008). Pituitary volume in unaffected relatives of patients with schizophrenia and bipolar disorder. Psychoneuroendocrinology, 33, 10041012.Google Scholar
Mondelli, V., Pariante, C. M., Navari, S., Aas, M., D'Albenzio, A., Di Forti, M., et al. (2010). Higher cortisol levels are associated with smaller left hippocampal volume in first-episode psychosis. Schizophrenia Research, 119, 7578.Google Scholar
Moore, T. H., Zammit, S., Lingford-Hughes, A., Barnes, T. R., Jones, P. B., Burke, M., et al. (2007). Cannabis use and risk of psychotic or affective mental health outcomes: A systematic review. Lancet, 370, 319328.Google Scholar
Murray, C. J. L., & Lopez, A. D. (1996). The global burden of disease: A comprehensive assessment of mortality and disability from diseases, injuries, and risk factors in 1990 and projected to 2020. Cambridge, MA: Harvard University Press.Google Scholar
Myin-Germeys, I., Krabbendam, L., Delespaul, P. A., & van Os, J. (2003). Do life events have their effect on psychosis by influencing the emotional reactivity to daily life stress? Psychological Medicine, 33, 327333.CrossRefGoogle ScholarPubMed
Myin-Germeys, I., Krabbendam, L., Delespaul, P. A., & van Os, J. (2004). Sex differences in emotional reactivity to daily life stress in psychosis. Journal of Clinical Psychiatry, 65, 805809.Google Scholar
Myin-Germeys, I., Marcelis, M., Krabbendam, L., Delespaul, P., & van Os, J. (2005). Subtle fluctuations in psychotic phenomena as functional states of abnormal dopamine reactivity in individuals at risk. Biological Psychiatry, 58, 105110.Google Scholar
Myin-Germeys, I., van Os, J., Schwartz, J. E., Stone, A. A., & Delespaul, P. A. (2001). Emotional reactivity to daily life stress in psychosis. Archives of General Psychiatry, 58, 11371144.Google Scholar
Myles-Worsley, M., Ord, L., Blailes, F., Ngiralmau, H., & Freedman, R. (2004). P50 sensory gating in adolescents from a Pacific island isolate with elevated risk for schizophrenia. Biological Psychiatry, 55, 663667.Google Scholar
Nieman, D., Becker, H., van de Fliert, R., Plat, N., Bour, L., Koelman, H., et al. (2007). P50 sensory gating in adolescents from a Pacific island risk for developing psychosis. Schizophrenia Research, 9, 5460.Google Scholar
Niendam, T. A., Jalbrzikowski, M., & Bearden, C. E. (2009). Exploring predictors of outcome in the psychosis prodrome: Implications for early identification and intervention. Neuropsychology Review, 19, 280293.Google Scholar
O'Donovan, M. C., Craddock, N. J., & Owen, M. J. (2009). Genetics of psychosis; Insights from views across the genome. Human Genetics, 126, 312.Google Scholar
Ozgurdal, S., Gudlowski, Y., Witthaus, H., Kawohl, W., Uhl, I., Hauser, M., et al. (2008). Reduction of auditory event-related P300 amplitude in subjects with at-risk mental state for schizophrenia. Schizophrenia Research, 105, 272278.Google Scholar
Palmer, B. W., Dawes, S. E., & Heaton, R. K. (2009). What do we know about neuropsychological aspects of schizophrenia? Neuropsychology Review, 19, 365384.Google Scholar
Palmier-Claus, J. E., Dunn, G., & Lewis, S. W. (2012). Emotional and symptomatic reactivity to stress in individuals at ultra-high risk of developing psychosis. Psychological Medicine, 42, 10031012.Google Scholar
Pariante, C. M., Dazzan, P., Danese, A., Morgan, K. D., Brudaglio, F., Morgan, C., et al. (2005). Increased pituitary volume in antipsychotic-free and antipsychotic-treated patients of the AEsop first-onset psychosis study. Neuropsychopharmacology, 30, 19231931.Google Scholar
Pariante, C. M., Vassilopoulou, K., Velakoulis, D., Phillips, L., Soulsby, B., Wood, S. J., et al. (2004). Pituitary volume in psychosis. British Journal of Psychiatry, 185, 510.Google Scholar
Peper, J. S., Hulshoff Pol, H. E., Crone, E. A., & van Honk, J. (2011). Sex steroids and brain structure in pubertal boys and girls: A mini-review of neuroimaging studies. Neuroscience, 191, 2837.Google Scholar
Perez, A. R., Bottasso, O., & Savino, W. (2009). The impact of infectious diseases upon neuroendocrine circuits. Neuroimmunomodulation, 16, 96105.CrossRefGoogle ScholarPubMed
Phillips, L. J., Edwards, J., McMurray, N., & Francey, S. (2012). Comparison of experiences of stress and coping between young people at risk of psychosis and a non-clinical cohort. Behavioural and Cognitive Psychotherapy, 40, 6988.Google Scholar
Phillips, L. J., Francey, S. M., Edwards, J., & McMurray, N. (2007). Stress and psychosis: Towards the development of new models of investigation. Clinical Psychology Review, 27, 307317.CrossRefGoogle ScholarPubMed
Pruessner, M., Iyer, S. N., Faridi, K., Joober, R., & Malla, A. K. (2011). Stress and protective factors in individuals at ultra-high risk for psychosis, first episode psychosis and healthy controls. Schizophrenia Research, 129, 2935.Google Scholar
Puri, B. K. (2010). Progressive structural brain changes in schizophrenia. Expert Review of Neurotherapeutics, 10, 3342.Google Scholar
Quednow, B. B., Frommann, I., Berning, J., Kuhn, K. U., Maier, W., & Wagner, M. (2008). Impaired sensorimotor gating of the acoustic startle response in the prodrome of schizophrenia. Biological Psychiatry, 64, 766773.Google Scholar
Ranganathan, M., Braley, G., Pittman, B., Cooper, T., Perry, E., Krystal, J., et al. (2009). The effects of cannabinoids on serum cortisol and prolactin in humans. Psychopharmacology, 203, 737744.Google Scholar
Renwick, L., Jackson, D., Turner, N., Sutton, M., Foley, S., McWilliams, S., et al. (2009). Are symptoms associated with increased levels of perceived stress in first-episode psychosis? International Journal of Mental Health Nursing, 18, 186194.Google Scholar
Schenkel, L. S., Spaulding, W. D., DiLillo, D., & Silverstein, S. M. (2005). Histories of childhood maltreatment in schizophrenia: Relationships with premorbid functioning, symptomatology, and cognitive deficits. Schizophrenia Research, 76, 273286.Google Scholar
Seidman, L. J., Giuliano, A. J., Meyer, E. C., Addington, J., Cadenhead, K. S., Cannon, T. D., et al. (2010). Neuropsychology of the prodrome to psychosis in the NAPLS consortium: Relationship to family history and conversion to psychosis. Archives of General Psychiatry, 67, 578588.Google Scholar
Shalev, I., Lerer, E., Israel, S., Uzefovsky, F., Gritsenko, I., Mankuta, D., et al. (2009). BDNF Val66Met polymorphism is associated with HPA axis reactivity to psychological stress characterized by genotype and gender interactions. Psychoneuroendocrinology, 34, 382388.Google Scholar
Shapiro, D. I., Cubells, J. F., Ousley, O. Y., Rockers, K., & Walker, E. F. (2011). Prodromal symptoms in adolescents with 22q11.2 deletion syndrome and schizotypal personality disorder. Schizophrenia Research, 129, 2028.Google Scholar
Shevlin, M., Houston, J. E., Dorahy, M. J., & Adamson, G. (2008). Cumulative traumas and psychosis: An analysis of the national comorbidity survey and the British Psychiatric Morbidity Survey. Schizophrenia Bulletin, 34, 193199.Google Scholar
Siever, L., & Davis, K. (2004). The pathophysiology of schizophrenia disorders: Perspectives from the spectrum. American Journal of Psychiatry, 161, 398413.Google Scholar
Smieskova, R., Fusar-Poli, P., Allen, P., Bendfeldt, K., Stieglitz, R. D., Drewe, J., et al. (2010). Neuroimaging predictors of transition to psychosis: A systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews, 34, 12071222.Google Scholar
Sorensen, H. J., Mortensen, E. L., Reinisch, J. M., & Mednick, S. A. (2009). Parental psychiatric hospitalisation and offspring schizophrenia. World Journal of Biological Psychiatry, 10, 571575.Google Scholar
Spauwen, J., Krabbendam, L., Lieb, R., Wittchen, H. U., & van Os, J. (2006). Impact of psychological trauma on the development of psychotic symptoms: Relationship with psychosis proneness. British Journal of Psychiatry, 188, 527533.Google Scholar
Stone, J. M., Bhattacharyya, S., Barker, G. J., & McGuire, P. K. (2012). Substance use and regional gray matter volume in individuals at high risk of psychosis. European Neuropsychopharmacology, 22, 114122.Google Scholar
Strelzyk, F., Hermes, M., Naumann, E., Oitzl, M., Walter, C., Busch, H. P., et al. (2012). Tune it down to live it up? Rapid, nongenomic effects of cortisol on the human brain. Journal of Neuroscience, 32, 616625.Google Scholar
Takahashi, T., Wood, S. J., Yung, A. R., Phillips, L. J., Soulsby, B., McGorry, P. D., et al. (2009). Insular cortex gray matter changes in individuals at ultra-high-risk of developing psychosis. Schizophrenia Research, 111, 94102.Google Scholar
Tessner, K. D., Mittal, V., & Walker, E. F. (2011). Longitudinal study of stressful life events and daily stressors among adolescents at high risk for psychotic disorders. Schizophrenia Bulletin, 37, 432441.Google Scholar
Tessner, K. D., Walker, E. F., Dhruv, S. H., Hochman, K., & Hamann, S. (2007). The relation of cortisol levels with hippocampus volumes under baseline and challenge conditions. Brain Research, 1179, 7078.Google Scholar
Thompson, A. D., Bartholomeusz, C., & Yung, A. R. (2011). Social cognition deficits and the “ultra high risk” for psychosis population: A review of literature. Early Intervention in Psychiatry, 5, 192202.Google Scholar
Thompson, J. L., Kelly, M., Kimhy, D., Harkavy-Friedman, J. M., Khan, S., Messinger, J. W., et al. (2009). Childhood trauma and prodromal symptoms among individuals at clinical high risk for psychosis. Schizophrenia Research, 108, 176181.Google Scholar
Thompson, K. N., Berger, G., Phillips, L. J., Komesaroff, P., Purcell, R., & McGorry, P. D. (2007). HPA axis functioning associated with transition to psychosis: Combined DEX/CRH test. Journal of Psychiatric Research, 41, 446450.Google Scholar
Toth, S. L., Pickreign Stronach, E., Rogosch, F. A., Caplan, R., & Cicchetti, D. (2011). Illogical thinking and thought disorder in maltreated children. Journal of the American Academy of Child & Adolescent Psychiatry, 50, 659668.Google Scholar
Trotman, H. D., Holtzman, C. W., Ryan, A. T., Shapiro, D. I., MacDonald, A. N., Goulding, S. N., et al. (in press). The development of psychotic disorders in adolescence: A potential role for hormones. Hormones and behavior.Google Scholar
Turetsky, B. I., Calkins, M. E., Light, G. A., Olincy, A., Radant, A. D., & Swerdlow, N. R. (2007). Neurophysiological endophenotypes of schizophrenia: The viability of selected candidate measures. Schizophrenia Bulletin, 33, 6994.Google Scholar
Uchida, H., Takeuchi, H., Graff-Guerrero, A., Suzuki, T., Watanabe, K., & Mamo, D. C. (2011). Dopamine D2 receptor occupancy and clinical effects: A systematic review and pooled analysis. Journal of Clinical Psychopharmacology, 31, 497502.Google Scholar
Uhlhaas, P. J., & Singer, W. (2011). The development of neural synchrony and large-scale cortical networks during adolescence: Relevance for the pathophysiology of schizophrenia and neurodevelopmental hypothesis. Schizophrenia Bulletin, 37, 514523.Google Scholar
van der Stelt, O., & Belger, A. (2007). Application of electroencephalography to the study of cognitive and brain functions in schizophrenia. Schizophrenia Bulletin, 33, 955970.Google Scholar
van der Stelt, O., Lieberman, J. A., & Belger, A. (2005). Auditory P300 in high-risk, recent-onset and chronic schizophrenia. Schizophrenia Research, 77, 309320.Google Scholar
van Haren, N. E., Picchioni, M. M., McDonald, C., Marshall, N., Davis, N., Ribchester, T., et al. (2004). A controlled study of brain structure in monozygotic twins concordant and discordant for schizophrenia. Biological Psychiatry, 56, 454461.Google Scholar
van Os, J., Bak, M., Hanssen, M., Bijl, R. V., de Graaf, R., & Verdoux, H. (2002). Cannabis use and psychosis: A longitudinal population-based study. American Journal of Epidemiology, 156, 319327.CrossRefGoogle ScholarPubMed
van Tricht, M. J., Nieman, D. H., Koelman, J. H., Bour, L. J., van der Meer, J. N., van Amelsvoort, T. A., et al. (2011). Auditory ERP components before and after transition to a first psychotic episode. Biological Psychology, 87, 350357.Google Scholar
van Tricht, M. J., Nieman, D. H., Koelman, J. H., van der Meer, J. N., Bour, L. J., de Haan, L., et al. (2010). Reduced parietal P300 amplitude is associated with an increased risk for a first psychotic episode. Biological Psychiatry, 68, 642648.Google Scholar
Varese, F., Smeets, F., Drukker, M., Lieverse, R., Lataster, T., Viechtbauer, W., et al. (2012). Childhood adversities increase the risk of psychosis: A meta-analysis of patient-control, prospective- and cross-sectional cohort studies. Schizophrenia Bulletin, 38, 661671.Google Scholar
Walder, D., Trotman, H., Cubells, J., Brasfield, J., Tang, Y., & Walker, E. (2010). Catechol-O-methyltransferase modulation of cortisol secretion in psychiatrically at-risk and healthy adolescents. Psychiatric Genetics, 20, 166170.Google Scholar
Walker, E. F. (1994). Developmentally moderated expressions of the neuropathology underlying schizophrenia. Schizophrenia Bulletin, 20, 453480.Google Scholar
Walker, E. F., Brennan, P. A., Esterberg, M., Brasfield, J., Pearce, B., & Compton, M. T. (2010). Longitudinal changes in cortisol secretion and conversion to psychosis in at-risk youth. Journal of Abnormal Psychology, 119, 401–8.Google Scholar
Walker, E. F., & Diforio, D. (1997). Schizophrenia: A neural diathesis–stress model. Psychological Review, 104, 667685.Google Scholar
Walker, E. F., Mittal, V., & Tessner, K. (2008). Stress and the hypothalamic pituitary adrenal axis in the developmental course of schizophrenia. Annual Review of Clinical Psychology, 4, 189216.Google Scholar
Walker, E. F., Trotman, H. D., Pearch, B. D., Addington, J., Cadenhead, K. S., Cornblatt, B. A., et al. (in press). Cortisol levels and risk for psychosis: Initial findings from the North American longitudinal study. Biological Psychiatry.Google Scholar
Walker, E. F., Walder, D., & Reynolds, F. (2001). Developmental changes in cortisol secretion in normal and at-risk youth. Development and Psychopathology, 13, 721732.Google Scholar
Weinberg, S. M., Jenkins, E. A., Marazita, M. L., & Maher, B. S. (2007). Minor physical anomalies in schizophrenia: A meta-analysis. Schizophrenia Research, 89, 7285.Google Scholar
Weinstein, D. D., Diforio, D., Schiffman, J., Walker, E., & Bonsall, R. (1999). Minor physical anomalies, dermatoglyphic asymmetries, and cortisol levels in adolescents with schizotypal personality disorder. American Journal of Psychiatry, 156, 617623.Google Scholar
Welch, K. A., McIntosh, A. M., Job, D. E., Whalley, H. C., Moorhead, T. W., Hall, J., et al. (2011). The impact of substance use on brain structure in people at high risk of developing schizophrenia. Schizophrenia Bulletin, 37, 1066–76.Google Scholar
Wisdom, J. P., Manuel, J. I., & Drake, R. E. (2011). Substance use disorder among people with first-episode psychosis: A systematic review of course and treatment. Psychiatric Services, 62, 10071012.Google Scholar
Witthaus, H., Kaufmann, C., Bohner, G., Ozgurdal, S., Gudlowski, Y., Gallinat, J., et al. (2009). Gray matter abnormalities in subjects at ultra-high risk for schizophrenia and first-episode schizophrenic patients compared to healthy controls. Psychiatry Research, 173, 163169.Google Scholar
Woods, S., Addington, J., Cadenhead, K., Cannon, T., Cornblatt, B., Heinssen, R., et al. (2009). Validity of the prodromal risk syndrome for first psychosis: Findings from the North American Prodrome Longitudinal Study. Schizophrenia Bulletin, 35, 894908.Google Scholar
Yehuda, S., Rabinovitz, S., & Mostofsky, D. I. (2005). Mixture of essential fatty acids lowers test anxiety. Nutritional Neuroscience, 8, 265267.Google Scholar
Ziermans, T. B., Schothorst, P., Magnee, M., van Engeland, H., & Kemner, C. (2011). Reduced prepulse inhibition in adolescents at risk for psychosis: A 2-year follow-up study. Journal of Psychiatry and Neuroscience, 36, 127134.Google Scholar
Ziermans, T. B., Schothorst, P. F., Schnack, H. G., Koolschijn, P. C., Kahn, R. S., van Engeland, H., et al. (2012). Progressive structural brain changes during development of psychosis. Schizophrenia Bulletin, 38, 519530.Google Scholar
Ziermans, T. B., Schothorst, P. F., Sprong, M., Magnee, M. J., van Engeland, H., & Kemner, C. (2012). Reduced prepulse inhibition as an early vulnerability marker of the psychosis prodrome in adolescence. Schizophrenia Research, 134, 1015.Google Scholar
Zunszain, P. A., Anacker, C., Cattaneo, A., Carvalho, L. A., & Pariante, C. M. (2011). Glucocorticoids, cytokines and brain abnormalities in depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 35, 722729.Google Scholar