Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T11:49:01.563Z Has data issue: false hasContentIssue false

Patterns of evolution in the Archean and Proterozoic Eons

Published online by Cambridge University Press:  08 April 2016

Andrew H. Knoll*
Affiliation:
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138

Abstract

Problems of taphonomy and sampling adequacy hinder direct evolutionary interpretations of pattern in the Precambrian paleontological record; however, molecular studies of microbial phylogeny and comparative physiological and ecological investigations of living microorganisms can be combined with geological research to establish patterns of early evolution. The Late Proterozoic record of planktonic algae resembles those of Phanerozoic plants, animals, and microplankton in its patterns of diversification and turnover, as well as in the importance of major extinction events in shaping the course of evolution. Late Proterozoic eukaryotes thus appear to be discussable in terms of the macroevolutionary issues that have become central to Phanerozoic paleobiology. In contrast, evolutionary patterns in Precambrian prokaryotes appear to be different from those of plants and animals, a possible consequence of their differing systems of genetic organization and recombination.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Awramik, S. M. and Barghoorn, E. S. 1977. The Gunflint microbiota. Precambrian Res. 5:121142.Google Scholar
Awramik, S. M., Schopf, J. W., and Walter, M. R. 1983. Filamentous fossil bacteria from the Archean of Western Australia. Precambrian Res. 20:357374.Google Scholar
Barghoorn, E. S. and Tyler, S. A. 1965. Microorganisms from the Gunflint chert. Science. 147:563577.Google Scholar
Bertrand-Sarfati, J. and Eriksson, K. A. 1977. Columnar stromatolites from the Early Proterozoic Schmidtsdrift Formation, Northern Cape Province, South Africa. I. Systematic and diagnostic features. Palaeontol. Afr. 20:126.Google Scholar
Bloeser, B., Schopf, J. W., Horodyski, R. J., and Breed, W. J. 1977. Chitinozoans from the late Precambrian Kwagunt Formation (Walcott Member, Chuar Group) of the eastern Grand Canyon, Arizona. Science. 195:676679.Google Scholar
Brock, T. D. 1973. Lower pH limit for the existence of blue-green algae: evolutionary and ecological implications. Science. 179:480483.CrossRefGoogle ScholarPubMed
Cameron, E. M. 1982. Sulphate and sulphate reduction in early Precambrian oceans. Nature. 296:145148.CrossRefGoogle Scholar
Cameron, E. M. 1983. The start of sulfur oxidation in continental environments about 2.2 × 109 years ago. Science. 221:549551.Google Scholar
Chapman, D. J. and Ragan, M. A. 1980. Evolution of biochemical pathways: evidence from comparative biochemistry. Ann. Rev. Plant Physiol. 31:639678.CrossRefGoogle Scholar
Chapman, D. J. and Schopf, J. W. 1983. Biological and biochemical effects of the development of an aerobic environment. Pp. 302320. In: Schopf, J. W., ed. Earth's Earliest Biosphere: Its Origin and Evolution. Princeton Univ. Press; Princeton, N.J.Google Scholar
Clarke, P. H. 1974. The evolution of enzymes for the utilization of novel substrates. Pp. 183217. In: Carlile, M. J. and Skehel, J. J., eds. Evolution in the Microbial World. 24th Symp. Soc. Gen. Microbiol. Cambridge Univ. Press; Cambridge.Google Scholar
Clarke, P. H. 1983. Experimental evolution. Pp. 235252. In: Bendall, D. S., ed. Evolution from Molecules to Man. Cambridge Univ. Press; Cambridge.Google Scholar
Cloud, P. 1968a. Atmospheric and hydrospheric evolution on the primitive earth. Science. 160:729736.Google Scholar
Cloud, P. 1968b. Pre-metazoan evolution and the origins of the Metazoa. Pp. 172. In: Drake, E. T., ed. Evolution and Environment. Yale Univ. Press; New Haven, Conn.Google Scholar
Cohen, Y. 1984. The Solar Lake cyanobacterial mats: strategies of photosynthetic life under sulfide. Pp. 133148. In: Cohen, Y., Castenholz, R. W., and Halvorson, H. O., eds. Microbial Mats: Stromatolites. MBL Lectures in Biology, Vol. 3. Liss; New York.Google Scholar
Darnell, J. E. 1978. Implications of RNA-RNA splicing in evolution of eukaryotic cells. Science. 202:12571260.CrossRefGoogle ScholarPubMed
Dayhoff, M. O. 1983. Evolutionary connections of biological kingdoms based on protein and nucleic acid sequence evidence. Precambrian Res. 20:290313.CrossRefGoogle Scholar
Donaldson, J. A. 1976. Aphebian stromatolites in Canada: implications for stromatolite zonation. Pp. 371380. In: Walter, M. R., ed. Stromatolites. Elsevier; Amsterdam.Google Scholar
Doolittle, W. F. 1978. Genes in pieces: were they ever together? Nature. 272:581582.CrossRefGoogle Scholar
Drake, J. W. 1974. The role of mutation in microbial evolution. Pp. 4158. In: Carlile, M. J. and Skehel, J. J., eds. Evolution in the Microbial World. 24th Symp. Soc. Gen. Microbiol. Cambridge Univ. Press; Cambridge.Google Scholar
Fox, G. E., Luehrsen, K. R., and Woese, C. R. 1982. Archaebacterial 5S ribosomal RNA. Zbl. Bakl. Hyg. I. Abt. Orig. C 3:330345.Google Scholar
Fox, G. E., Pechman, K. R., and Woese, C. R. 1977. Comparative cataloging of 16S ribosomal nucleic acid: a molecular approach to prokaryotic systematics. Int. J. Syst. Bacteriol. 27:4457.Google Scholar
Fox, G. E., Stackebrandt, E., Hespell, R. B., Gibson, J., Maniloff, J., Dyer, T. A., Wolfe, R. S., Balch, W. E., Tanner, R. S., Magrum, L. J., Zablen, L. B., Blakemore, R., Gupta, R., Bonen, L., Lewis, B. J., Stahl, D. A., Luehrsen, K. R., Chen, K. N., and Woese, C. R. 1980. The phylogeny of prokaryotes. Science. 209:457463.Google Scholar
Frarey, M. J. and Roscoe, S. M. 1970. The Huronian Supergroup north of Lake Huron. Can. Geol. Surv. Pap. 70–40:143158.Google Scholar
Fredrick, J. F., ed. 1981. Origins and evolution of eukaryotic extracellular organelles. Ann. N.Y. Acad. Sci. 367.Google Scholar
Fredrickson, A. G. and Stephanopoulos, G. 1981. Microbial competition. Science. 213:972979.CrossRefGoogle ScholarPubMed
Gest, H. 1980. The evolution of biological energy-transducing systems. FEMS Microbiol. Lett. 7:7377.Google Scholar
Gest, H. and Schopf, J. W. 1983. Biochemical evolution of anaerobic energy conversion: the transition from fermentation to anoxygenic photosynthesis. Pp. 135148. In: Schopf, J. W., ed. Earth's Earliest Biosphere: Its Origin and Evolution. Princeton Univ. Press; Princeton, N.J.Google Scholar
Glaessner, M. F. 1979. Precambrian. Pp.A79A118. In: Robinson, R. A. and Teichert, C., eds. Treatise on Invertebrate Paleontology, Part A. Geol. Soc. Am.; Boulder, Colo.; and Univ. Kansas; Lawrence.Google Scholar
Golubic, S. and Barghoorn, E. S. 1977. Interpretation of microbial fossils with special reference to the Precambrian. Pp. 114. In: Flügel, E., ed. Fossil Algae. Springer; New York.Google Scholar
Gould, S. J. 1977. Ontogeny and Phylogeny. Belknap, Harvard Univ. Press; Cambridge, Mass.Google Scholar
Gray, M. W. and Doolittle, W. F. 1982. Has the endosymbiont hypothesis been proven? Microbiol. Rev. 46:142.Google Scholar
Hartman, H. 1984. The origin of the eukaryotic cell. Specul. Sci. Technol. 7(2):7781.Google Scholar
Hayes, J. M. 1983. Geochemical evidence bearing on the origin of aerobiosis, a speculative hypothesis. Pp. 291301. In: Schopf, J. W., ed. Earth's Earliest Biosphere: Its Origin and Evolution. Princeton Univ. Press; Princeton, N.J.Google Scholar
Henderson, E., Oakes, M., Clark, M. W., and Lake, J. A. 1984. A new ribosomal structure. Science. 225:510512.CrossRefGoogle Scholar
Hofmann, H. J. 1976. Precambrian microflora, Belcher Islands, Canada: significance and systematics. J. Paleontol. 50:10401073.Google Scholar
Hofmann, H. J. 1977. On Aphebian stromatolites and Riphean stromatolite stratigraphy. Precambrian Res. 4:111.CrossRefGoogle Scholar
Hofmann, H. J. 1985. The mid-Proterozoic Little Dal macrobiota, Mackenzie Mountains, northwest Canada. Palaeontology. 28:331353.Google Scholar
Hofmann, H. J. and Aitken, J. D. 1979. Precambrian biota from the Little Dal Group, Mackenzie Mountains, northwestern Canada. Can. J. Earth Sci. 16:150166.Google Scholar
Hofmann, H. J. and Schopf, J. W. 1983. Early Proterozoic microfossils. Pp. 321360. In: Schopf, J. W., ed. Earth's Earliest Biosphere: Its Origin and Evolution. Princeton Univ. Press; Princeton, N.J.Google Scholar
Holland, H. D. 1984. The Chemical Evolution of the Atmosphere and Oceans. Princeton Univ. Press; Princeton, N.J.Google Scholar
Horodyski, R. J. 1980. Middle Proterozoic shale-facies microbiota from the Lower Belt Supergroup, Little Belt Mountains, Montana. J. Paleontol. 54(4):649663.Google Scholar
Jacob, F. 1982. The Possible and the Actual. Pantheon; New York.Google Scholar
Jacob, F. 1983. Molecular tinkering in evolution. Pp. 131144. In: Bendall, D. S., ed. Evolution from Molecules to Man. Cambridge Univ. Press; Cambridge.Google Scholar
Kaine, B. P., Gupta, R., and Woese, C. R. 1983. Putative introns in tRNA genes of prokaryotes. Proc. Nat. Acad. Sci. U.S.A. 80:33093312.Google Scholar
Kandler, O., ed. 1982. Archaebacteria. Proceedings of the First International Workshop on Archaebacteria, Munich, June 27–July 1, 1981. Fischer; Stuttgart.Google Scholar
Knoll, A. H. 1979. Archean photoautotrophy: some alternatives and limits. Origins of Life. 9:313327.CrossRefGoogle ScholarPubMed
Knoll, A. H. 1983. Biological interactions and Precambrian eukaryotes. Pp. 251283. In: Tevesz, M. J. S. and McCall, P. L., eds. Biotic Interactions in Recent and Fossil Benthic Communities. Plenum; New York.Google Scholar
Knoll, A. H. 1984. Microbiotas of the late Precambrian Hunnberg Formation, Nordaustlandet, Svalbard. J. Paleontol. 58:131162.Google Scholar
Knoll, A. H. 1985. The distribution and evolution of microbial life in the Late Proterozoic Era. Ann. Rev. Microbiol., in press.Google Scholar
Knoll, A. H. and Barghoorn, E. S. 1977. Archean microfossils showing cell division from the Swaziland System of South Africa. Science. 198:396398.Google Scholar
Knoll, A. H. and Calder, S. 1983. Microbiota of the late Precambrian Ryssö Formation, Nordaustlandet, Svalbard. Palaeontology. 26:467496.Google Scholar
Knoll, A. H. and Golubic, S., 1979. Anatomy and taphonomy of a Precambrian algal stromatolite. Precambrian Res. 10:115151.Google Scholar
Knoll, A. H. and Simonson, B. 1981. Early Proterozoic microfossils and penecontemporaneous quartz cementation in the Sokoman Iron Formation, Canada. Science. 211:478480.Google Scholar
Knoll, A. H. and Vidal, G. 1980. Late Proterozoic vase-shaped microfossils from the Visingsö Beds, Sweden. Geol. Fören. Stockh. Förh. 102:207211.Google Scholar
Kubitschek, H. E. 1974. Operation of selection pressure on microbial populations. Pp. 105130. In: Carlile, M. J. and Skehel, J. J., eds. Evolution in the Microbial World. 24th Symp. Soc. Gen. Microbiol. Cambridge Univ. Press; Cambridge.Google Scholar
Margulis, L. 1981. Symbiosis in Cell Evolution. W. F. Freeman; San Francisco.Google Scholar
Mercer-Smith, J. A. and Mauzerall, D. 1981. Molecular hydrogen production by uroporphyrin and coproporphyrin: a model for the evolution of photosynthetic function. Photochem. Photobiol. 34(3):407410.Google Scholar
Muir, M. D. and Grant, P. R. 1976. Micropaleontological evidence from the Onverwacht Group, South Africa. Pp. 595604. In: Windley, B. F., ed. The Early History of the Earth. Wiley; London.Google Scholar
Peat, C. J., Muir, M. D., Plumb, K. A., McKirdy, D. M., and Norvick, M. S. 1978. Proterozoic microfossils from the Roper Group, Northern Territory, Australia. BMR J. Australian Geol. Geophys. 3:117.Google Scholar
Rogers, J. 1983. Introns in Archaebacteria. Nature. 304:685.Google Scholar
Schopf, J. W. 1978. The evolution of the earliest cells. Sci. Am. 239(3):110134.Google Scholar
Schopf, J. W., ed. 1983. Earth's Earliest Biosphere: Its Origin and Evolution. Princeton Univ. Press; Princeton, N.J.Google Scholar
Schopf, J. W. and Walter, M. R. 1983. Archean microfossils: new evidence of ancient microbes. Pp. 214239. In: Schopf, J. W., ed. Earth's Earliest Biosphere: Its Origin and Evolution. Princeton Univ. Press; Princeton, N.J.Google Scholar
Schwartz, R. M. and Dayhoff, M. O. 1978. Origins of prokaryotes, eukaryotes, mitochondria, and chloroplasts. Science. 199:395403.Google Scholar
Searcy, D. G., Stein, D. B., and Green, G. R. 1978. Phylogenetic affinities between eukaryotic cells and a thermophilic mycoplasma. Biosystems. 10:1928.Google Scholar
Searcy, D. G., Stein, D. B., and Searcy, K. B. 1981. A mycoplasma-like archaebacterium possibly related to the nucleus and cytoplasm of eukaryotic cells. Ann. N.Y. Acad. Sci. 361:312324.Google Scholar
Semikhatov, M. A. 1978. Aphebian assemblage of stromatolites: general characteristics and comparison with the Aphebian one [in Russian]. Trans. Geol. Inst. Acad. Sci. USSR. 312:148158.Google Scholar
Semikhatov, M. A., Gebelein, C. D., Cloud, P., Awramik, S. M., and Benmore, W. C. 1979. Stromatolite morphogenesis—progress and problems. Can. J. Earth Sci. 16(5):9921015.Google Scholar
Sepkoski, J. J. 1978. A kinetic model of Phanerozoic taxonomic diversity. I. Analysis of marine orders. Paleobiology 4:223251.Google Scholar
Sepkoski, J. J. 1979. A kinetic model of Phanerozoic taxonomic diversity. II. Early Phanerozoic families and multiple equilibria. Paleobiology. 5:222251.Google Scholar
Simpson, G. G. 1961. Principles of Animal Taxonomy. Columbia Univ. Press; New York.CrossRefGoogle Scholar
Sneath, P. H. A. 1974. Phylogeny of micro-organisms. Pp. 141. In: Carlile, M. J. and Skehel, J. J., eds. Evolution in the Microbial World. 24th Symp. Soc. Gen. Microbiol. Cambridge Univ. Press; Cambridge.Google Scholar
Stackebrandt, E. and Woese, C. R. 1981. The evolution of prokaryotes. Pp. 131. In: Carlile, M. J, Collins, J. F., and Moseley, B. E. B., eds. Molecular and Cellular Aspects of Microbial Evolution. Soc. Gen. Microbiol. Symp. 31(1981). Cambridge Univ. Press; Cambridge.Google Scholar
Stanley, S. M. 1976. Fossil data and the Precambrian-Cambrian evolutionary transition. Am. J. Sci. 276:5676.Google Scholar
Van Valen, L. M. and Maiorana, V. C. 1980. The Archaebacteria and eukaryotic origins. Nature. 287:248249.Google Scholar
Vidal, G. 1976. Late Precambrian microfossils from the Visingsö Beds in southern Sweden. Fossils and Strata. 9:154.Google Scholar
Vidal, G. 1984. The oldest eukaryotic cells. Sci. Amer. 250(2):4857.CrossRefGoogle ScholarPubMed
Vidal, G. and Knoll, A. H. 1982. Radiations and extinctions of plankton in the late Proterozoic and early Cambrian. Nature. 287:5760.Google Scholar
Vidal, G. and Knoll, A. H. 1983. Proterozoic plankton. Geol. Soc. Am. Mem. 161:265277.Google Scholar
Walsh, M. M. and Lowe, D. R. 1983. Filamentous microfossils from the 3.1–3.5 billion-year-old Swaziland Supergroup, Barberton Mountain Land, South Africa. Lunar and Planetary Sci. 14:814815. (Abstract.)Google Scholar
Walter, M. R., ed. 1976. Stromatolites. Elsevier; Amsterdam. 790 pp.Google Scholar
Walter, M. R. 1983. Archean stromatolites: evidence of the Earth's earliest benthos. Pp. 187212. In: Schopf, J. W., ed. Earth's Earliest Biosphere: Its Origin and Evolution. Princeton Univ. Press; Princeton, N.J.Google Scholar
Ward, D. M., Beck, E., Revsbech, N. P., Sandbeck, K. A., and Winfrey, M. R. 1984. Decomposition of hot spring microbial mats. Pp. 191214. In: Cohen, Y., Castenholz, R. W., and Halvorson, H. O., eds. Decomposition of Hot Spring Microbial Mats. Liss; New York.Google Scholar
Woese, C. R. 1982. Archaebacteria and cellular origins: an overview. Zbl. Bakt. Hyg., I. Abt. Orig. C 3:117.Google Scholar
Woese, C. R. 1983. The primary lines of descent and the universal ancestor. Pp. 209233. In: Bendal, D. S., ed. Evolution from Molecules to Man. Cambridge Univ. Press; Cambridge.Google Scholar