Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T02:29:31.624Z Has data issue: false hasContentIssue false

Degenerations and limit Frobenius structures in rigid cohomology

Published online by Cambridge University Press:  01 February 2011

Alan G. B. Lauder*
Affiliation:
Mathematical Institute, University of Oxford, 24–29 St Giles Oxford OX1 3LB, United Kingdom (email: lauder@maths.ox.ac.uk)

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We introduce a ‘limiting Frobenius structure’ attached to any degeneration of projective varieties over a finite field of characteristic p which satisfies a p-adic lifting assumption. Our limiting Frobenius structure is shown to be effectively computable in an appropriate sense for a degeneration of projective hypersurfaces. We conjecture that the limiting Frobenius structure relates to the rigid cohomology of a semistable limit of the degeneration through an analogue of the Clemens–Schmidt exact sequence. Our construction is illustrated, and conjecture supported, by a selection of explicit examples.

Type
Research Article
Copyright
Copyright © London Mathematical Society 2011

References

[1]Abbot, T. G., Kedlaya, K. S. and Roe, D., ‘Bounding Picard numbers of surfaces using p-adic cohomology’, Arithmetic, geometry and coding theory (AGCT 2005), Séminaires et Congrès 21 (eds Rodier, F. and Vladut, S.; Societé Mathématique de France, 2009) 125159.Google Scholar
[2]Chiarellotto, B., ‘Rigid cohomology and invariant cycles for a semistable log scheme’, Duke Math. J. 97 (1999) no. 1, 155169.CrossRefGoogle Scholar
[3]Chiarellotto, B. and Le Stum, B., ‘A comparison theorem for weights’, J. Reine Angew. Math. 546 (2002) 159176.Google Scholar
[4]Christol, G. and Mebkhout, Z., ‘Sur le théorème de l’indice des équations diffèrentielles p-adiques II’, Ann. of Math. (2) 146 (1997) no. 2, 345410.CrossRefGoogle Scholar
[5]Cox, D. A. and Katz, S., Mirror symmetry and algebraic geometry, Mathematical Surveys and Monographs 68 (American Mathematical Society, Providence, RI, 1999).CrossRefGoogle Scholar
[6]Crew, R., ‘Finiteness theorems for the cohomology of an overconvergent isocrystal on a curve’, Ann. Sci. École Norm. Sup. 31 (1998) no. 6, 717763.CrossRefGoogle Scholar
[7]Dimca, A., ‘On the de Rham cohomology of a hypersurface complement’, Amer. J. Math. 113 (1991) no. 4, 763771.CrossRefGoogle Scholar
[8]Dwork, B., ‘On the rationality of the zeta function of an algebraic variety’, Amer. J. Math. 82 (1960) 631648.CrossRefGoogle Scholar
[9]Dwork, B., Gerotto, G. and Sullivan, F. J., An introduction to G-functions, Annals of Mathematics Studies 133 (Princeton University Press, Princeton, NJ, 1994).Google Scholar
[10]Gerkman, R., ‘Relative rigid cohomology and deformation of hypersurfaces’, Int. Math. Res. Pap. IMRP (2007) no. 1, 67, Art. ID rpm003.Google Scholar
[11]Harris, J. and Morrison, I., Moduli of curves, Graduate Texts in Mathematics 187 (Springer, New York, 1998).Google Scholar
[12]Illusie, L., ‘Autour de théoreme de monodromie locale, Périodes p-adique (Bures-sur-Yvette, 1988)’, Astérisque 223 (1994) 957.Google Scholar
[13]Katz, N. M., ‘Nilpotent connections and the monodromy theorem: applications of a result of Turrittin’, Publ. Math. Inst. Hautes Études Sci. 39 (1970) 175232.CrossRefGoogle Scholar
[14]Katz, N. M. and Oda, T., ‘On the differentiation of de Rham cohomology classes with respect to parameters’, J. Math. Kyoto Univ. 8 (1968) 199213.Google Scholar
[15]Kedlaya, K. S., ‘Effective p-adic cohomology for cyclic cubic threefolds’. Available at www.mit.edu/∼kedlaya/papers/.Google Scholar
[16]Kedlaya, K. S., ‘Semistable reduction for overconvergent F-isocrystals on a curve’, Math. Res. Lett. 10 (2003) 151159.CrossRefGoogle Scholar
[17]Kedlaya, K. S., p-adic differential equations (Cambridge University Press, Cambridge, 2010).CrossRefGoogle Scholar
[18]Kloosterman, R., ‘Point counting on singular hypersurfaces’, Algorithmic number theory: ANTS VIII, Lecture Notes in Computer Science 5011 (eds van der Poorten, A. J. and Stein, A.; Springer, Berlin, 2008) 327341.CrossRefGoogle Scholar
[19]Kollár, J., Lectures on resolution of singularities, Annals of Mathematics Studies 166 (Princeton University Press, Princeton, NJ, 2007).Google Scholar
[20]Landman, A., ‘On the Picard–Lefschetz transformation for algebraic manifolds acquiring general singularities’, Trans. Amer. Math. Soc. 181 (1973) 89126.CrossRefGoogle Scholar
[21]Lang, S., Algebra (revised third edition), Graduate Texts in Mathematics 211 (Springer, Berlin, 2002).Google Scholar
[22]Lauder, A. G. B., ‘Counting solutions to equations in many variables over finite fields’, Found. Comput. Math. 4 (2004) no. 3, 221267.CrossRefGoogle Scholar
[23]Lauder, A. G. B., ‘A recursive method for computing zeta functions of varieties’, LMS J. Comput. Math. 9 (2006) 222269 (electronic).CrossRefGoogle Scholar
[24]Le Stum, B., Rigid cohomology, Cambridge Tracts in Mathematics 172 (Cambridge University Press, Cambridge, 2007).CrossRefGoogle Scholar
[25]Le Stum, B., ‘The overconvergent site’, Mém. Soc. Math. Fr. (N.S.), to appear. Preprint (2011), available at perso.univ-rennes1.fr/bernard.le-stum/.CrossRefGoogle Scholar
[26]Macaulay, F. S., The algebraic theory of modular systems (Cambridge University Press, Cambridge, 1916).CrossRefGoogle Scholar
[27]Mazur, B., ‘Frobenius and the Hodge filtration’, Bull. Amer. Math. Soc. 78 (1972) 653667.CrossRefGoogle Scholar
[28]Mieda, Y., ‘The Picard–Lefschetz formula for p-adic cohomology’, Math. Z. 257 (2007) 403425.CrossRefGoogle Scholar
[29]Morrison, D. S., ‘The Clemens–Schmidt exact sequence and applications’, Topics in transcendental algebraic geometry, Annals of Mathematics Studies 106 (ed. Griffiths, P.; Princeton University Press, Princeton, NJ, 1984) 101119.CrossRefGoogle Scholar
[30]Mumford, D., ‘Semi-stable reduction’, Toroidal embeddings I, Lecture Notes in Mathematics 339 (eds Kempf, G., Knudsen, F., Mumford, D. and Saint-Donat, B.; Springer, Berlin, 1973) 53108.Google Scholar
[31]Pancratz, S., ‘Computing Gauss–Manin connections for families of projective hypersurfaces’, D. Phil. Transfer of Status Thesis, University of Oxford, 2009. Available at www.pancratz.org.Google Scholar
[32]Peters, C. A. M. and Steenbrink, J. H. M., Mixed Hodge structures (Springer, Berlin, 2008).Google Scholar
[33]Petrequin, D., ‘Classes de Chern et classes de cycles en cohomologie rigide’, Bull. Soc. Math. France 131 (2003) no. 1, 59121.CrossRefGoogle Scholar
[34]van der Put, M. and Singer, M., Galois theory of linear differential equations (Springer, Berlin, 2003).CrossRefGoogle Scholar