Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-09T04:28:32.578Z Has data issue: false hasContentIssue false

High Rate Deposition of Microcrystalline Silicon Solar Cells Using 13.56 MHz PECVD – Prerequisites and Limiting Factors

Published online by Cambridge University Press:  01 February 2011

Tobias Roschek
Affiliation:
Institute of Photovoltaics, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
Tobias Repmann
Affiliation:
Institute of Photovoltaics, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
Oliver Kluth
Affiliation:
Institute of Photovoltaics, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
Joachim Müller
Affiliation:
Institute of Photovoltaics, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
Bernd Rech
Affiliation:
Institute of Photovoltaics, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
Heribert Wagner
Affiliation:
Institute of Photovoltaics, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
Get access

Abstract

Microcrystalline silicon (μìc-Si:H) solar cells were prepared in a wide range of deposition parameters using high pressure 13.56 MHz plasma-enhanced chemical vapor deposition (PECVD). Focus was on the influence of deposition pressure, electrode distance and the application of a pulsed plasma on high rate deposition of solar cells. At electrode distances between 5 and 20 mm solar cells with efficiencies >8 % were prepared. A medium electrode distance of 10 mm yielded best device performance. Pulsed plasma deposition leads to good results at medium deposition rates of ∼5 Å/s, for higher rates a strong decrease of efficiency was observed. The highest efficiencies in a small area reactor were 8.9 % for CW and 8.4 % for pulsed plasma. We also succeeded in preparing μc-Si:H and a-Si:H/μc-Si:H solar cells in a 30x30 cm2 reactor with efficiencies of 9 % and 12.5 %, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Meier, J., Vallat-Sauvain, E., Dubail, S., Kroll, U., Dubail, J., Golay, S., Feitknecht, L., Torres, P., Faÿ, S., Fischer, D., Shah, A., Sol. Energy Mater. Sol. Cells 66, 7384 (2001)10.1016/S0927-0248(00)00160-4Google Scholar
2. Saito, K., Sano, M., Matuda, K., Kondo, T., Nishimoto, T., Ogawa, K., Kajita, I., Proc. 2nd World Conference PVSEC, Vienna, Austria, 1998, p. 351 Google Scholar
3. Vetterl, O., Finger, F., Carius, R., Hapke, P., Houben, L., Kluth, O., Lambertz, A., Mück, A., Rech, B., Wagner, H., Sol. Energy Mater. Sol. Cells 62, 97108 (2000)Google Scholar
4. Roschek, T., Repmann, T., Müller, J., Rech, B., Wagner, H., J. Vac. Sci. Technol. A 20 (2), (2002), in pressGoogle Scholar
5. Yamamoto, K., Yoshimi, M., Tawada, Y., Okamoto, Y., Nakajima, A., Sol. Energy Mater. Sol. Cells 66, 117125 (2001).Google Scholar
6. Guo, L., Kondo, M., Fukawa, M., Saitoh, K., Matsuda, A., Jpn. J. Appl. Phys. 37, L1116–L1118 (1998)Google Scholar
7. Rech, B., Roschek, T., Müller, J., Wieder, S., Wagner, H., Technical Digest 11th International PVSEC, Sapporo (1999) 241, for more details see also: Solar Energy Materials & Solar Cells 66, 267–273 (2001)Google Scholar
8. Roschek, T., Repmann, T., Müller, J., Rech, B., Wagner, H., Proc. 28th IEEE PVSC, Anchorage, USA (2000), p. 150 Google Scholar
9. Fukawa, M., Suzuki, S., Guo, L., Kondo, M., Matsuda, A., Sol. Energy Mater. Sol. Cells 66, 217223 (2001)Google Scholar
10. Lambertz, A., Vetterl, O., Finger, F., Proc. 17th European PVSEC, Munich, Germany (2001), in pressGoogle Scholar
11. Maemura, Y., Fijiyama, H., Takagi, T., Hayashi, R., Futako, W., Futako, W., Kondo, M., Matsuda, A., Thin Solid Films 345, 8084 (1999)Google Scholar
12. Fukuda, Y., Sakuma, Y., Fukai, Ch., Fujimura, Y., Azuma, K., Shirai, H., Thin Solid Films 386, 256260 (2001)Google Scholar
13. Madan, A., Morrison, S., Sol. Energy Mater. Sol. Cells 55, 127139 (1998) A. Madan, S. Morrison, H. Kuwahara, Sol. Energy Mater. Sol. Cells 59, 51–58 (1999). and references thereinGoogle Scholar
14. Shiratani, M., Fukuzawa, T., Watanabe, Y., Jpn. J. Appl. Phys. 38, 45424549 (1999). M. Shiratani, S. Maeda, K. Koga, Y. Watanabe, Jpn. J. Appl. Phys. 39, 287–293 (2000)Google Scholar
15. Hollenstein, Ch., Plasma Phys. Control. Fusion 42, R93–R104 (2000), and references thereinGoogle Scholar
16. Kluth, O., Rech, B., Houben, L., Wieder, S., Schöpe, G., Beneking, C., Wagner, H., Löffl, A., Schock, H.W., Thin Solid Films 351, 247 (1999)Google Scholar
17. Roschek, T., Müller, J., Wieder, S., Rech, B., Wagner, H., Proc. 16th European PVSEC, Glasgow, UK (2000), p.561 Google Scholar
18. Repmann, T., Appenzeller, W., Roschek, T., Rech, B., Kluth, O., Müller, J., Psyk, W., Geyer, R., Lechner, P., Proc. 17th European PVSEC, Munich, Germany (2001), in pressGoogle Scholar