Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-09-22T01:44:24.719Z Has data issue: false hasContentIssue false

Lattice Parameter Variation in ScGaN Alloy Thin Films on MgO(001) Grown by RF Plasma Molecular Beam Epitaxy

Published online by Cambridge University Press:  31 January 2011

Costel Constantin
Affiliation:
constaco@shu.edu, Seton Hall University, 400 South Orange Ave. 129 McNulty Hall, South Orange, New Jersey, 07079, United States
Pak Jeongihm
Affiliation:
pakj@ohio.edu, Ohio University, Physics Department, Athens, Ohio, United States
Kangkang Wang
Affiliation:
kw136705@ohio.edu, Ohio University, Physics and Astronomy, Ohio University, Athens, Ohio, 45701, United States, 740-274-1061
Abhijit Chinchore
Affiliation:
ac904605@ohio.edu, Ohio University, Physics And Astronomy, Athens, Ohio, United States
Shi Meng
Affiliation:
shi@helios.phy.ohiou.edu, Ohio University, Physics Department, Athens, Ohio, United States
Arthur R. Smith
Affiliation:
asmith@helios.phy.ohiou.edu, Ohio University, Physics Department, Athens, Ohio, United States
Get access

Abstract

We present the structural and surface characterization of the alloy formation of scandium gallium nitride ScxGa1-xN(001)/MgO(001) grown by radio-frequency molecular beam epitaxy over the Sc range of x = 0-100%. In-plane diffraction measurements show a clear face-centered cubic surface structure with single-crystalline epitaxial type of growth mode for all x; a diffuse/distinct transition in the surface structure occurs at near x = 0.5. This is consistent with out-of-plane diffraction measurements which show a linear variation of perpendicular lattice constant for x = 0 to 0.5, after which the out-of-plane lattice parameter becomes approximately constant. The x = 0.5 transition is interpreted as being related to the cross-over from zinc-blende to rock-salt structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Haider, M. B., Yang, R., Constantin, C., Lu, E., Smith, A. R., and Al-Brithen, H. A. H., J. Appl. Phys. 100(08), 083516 (2006).Google Scholar
[2] AL-Brithen, H. A., Yang, R., Haider, M. B., Constantin, C., Lu, E., Smith, A. R., Sandler, N., Ordejon, P., Phys. Rev. Letters 95, 146102 (2005).Google Scholar
[3] Lambrechtl, W. R., Phys. Rev. B 62, 13538 (2000).Google Scholar
[4] Stampfl, C., Mannstadt, W., Asahi, R., and Freeman, A. J., Phys. Rev. B 63, 155106 (2001).Google Scholar
[5] Al-Brithen, H. A., Trifan, E. M., Ingram, D. C., Smith, A. R., and Gall, D., J. Cryst. Growth 242, 345 (2002).Google Scholar
[6] Smith, A. R., Al-Brithen, H. A. H., Ingram, D. C., and Gall, D., J. Appl. Phys. 90, 1809 (2001).Google Scholar
[7] Gall, D., Petrov, I., Madsen, L. D., Sundgren, J. E., and Greene, J. E., Vac. Sci. Technol. A 16, 2411 (1998).Google Scholar
[8] Constantin, C., Haider, M. B., Ingram, D., Smith, A. R., Sandler, N., Sun, K., and Ordejón, P., J. Appl. Phys. 98(12), 123501 (2005).Google Scholar
[9] Constantin, C., Haider, M. B., Ingram, D., and Smith, A. R., Appl. Phys. Lett. 85(26), 6371 (2004).Google Scholar
[10] Constantin, C., Al-Brithen, H., Haider, M. B., Ingram, D., and Smith, A. R., Phys. Rev. B 70, 193309 (2004).Google Scholar
[11] Zerroug, S., Sahraoui, F. Ali, and Bouarissa, N., J. of Appl. Phys. 103, 063510 (2008).Google Scholar