Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-09T06:28:12.146Z Has data issue: false hasContentIssue false

Efficient and Reliable Homoepitaxially-Grown InGaN-Based Light-Emitting Diodes

Published online by Cambridge University Press:  01 February 2011

X. A. Cao
Affiliation:
General Electric Global Research Center, Niskayuna, NY 12309
J. M. Teetsov
Affiliation:
General Electric Global Research Center, Niskayuna, NY 12309
S. F. LeBoeuf
Affiliation:
General Electric Global Research Center, Niskayuna, NY 12309
S. D. Arthur
Affiliation:
General Electric Global Research Center, Niskayuna, NY 12309
J. Kretchmer
Affiliation:
General Electric Global Research Center, Niskayuna, NY 12309
Get access

Abstract

InGaN/GaN multiple-quantum-well light-emitting diodes (LEDs) with peak emission at ∼405 nm were grown on bulk GaN and sapphire substrates using MOCVD. Tunneling current was found to be dominant in the LED on sapphire over a wide range of applied bias, but was substantially suppressed in the homoepitaxial LED. Nanoscale electrical characterization using conductive atomic force microscopy (C-AFM) revealed highly localized leakage current at V-defects in the LED structure on sapphire, indicating that the associated threading dislocations were electrically active and behaved as leakage current pathways connected across the p-n junction. Compared to the lateral LED on sapphire, the vertically-structured LED on GaN had a reduced series resistance of 7 Ω and greatly improved power conversion efficiencies. The homoepitaxial LED was subjected to stress test at 400 mA for 24 h and showed minimal optical degradation, whereas the same stress resulted in the destruction of the LED on sapphire due to increased current crowding and self-heating.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Schubert, E. F., Light-emitting diodes, Cambridge University Press, 2003.Google Scholar
[2] Steigerwald, D. A., Bhat, J. C., Collins, D. C., Fletcher, R. M., Holcomb, M. O., Ludowise, M. J., Martin, P. S., Rudaz, S. L., IEEE J. Sel. Top. Quantum Electron. 8, 310 (2002).Google Scholar
[3] Craford, M. G., Proc. SPIE, 4776, 1 (2002).Google Scholar
[4] Kim, H., Park, S. J., Hwang, H. and Park, N. M., Appl. Phys. Lett. 81, 1326 (2002).Google Scholar
[5] Cao, X. A., Stokes, E. B., Sandvik, P., Taskar, N., Kretchmer, J., Walker, D., Solid State Electron. 46, 1235 (2002).Google Scholar
[6] Guo, X. and Schubert, E. F., J. Appl. Phys. 90, 4191 (2001).Google Scholar
[7] Vaudo, R. P., Xu, X., Lario, C., Salant, A. D., Flynn, J. S., Brandes, G. R., Phys. Status Solidi. (A) 194, 494 (2002).Google Scholar
[8] Cao, X. A., Le Boeuf, S. F., D'Evelyn, M. P., Arthur, S. D., Kretchmer, J., Yan, C. H. and Yang, Z. H., Appl. Phys. Lett. 84, 4313 (2004).Google Scholar
[9] Eliseev, P. G., Perlin, P., Furioli, J., Sartori, P., Mu, J., and Osinski, M., J. Electron. Mater. 26, 311 (1997).Google Scholar
[10] Miskys, C. R., Kelly, M. K., Ambacher, O., Martinez-Criado, G., and Stutzmann, M., Appl. Phys. Lett. 77, 1858 (2000).Google Scholar
[11] Florescu, D. I., Ting, S. M., Ramer, J. C., Lee, D. S., Merai, V. N., Parkeh, A., Lu, D., Armour, E. A., and Chernyak, L., Appl. Phys. Lett. 83, 33 (2003).Google Scholar
[12] Chen, Y., Takeuchi, T., Amano, H., Akasaki, I., Yamada, N., Kaneko, Y., and Wang, S. Y., Appl. Phys. Lett. 72, 710 (1998).Google Scholar
[13] Miller, E. J., Schaadt, D. M., Yu, E. T., Poblenz, C., Elsass, C., and Speck, J. S., J. Appl. Phys. 91, 9821 (2002).Google Scholar
[14] Hsu, J. W. P., Manfra, M. J., Lang, D. V., Richter, S., Chu, S. N. G., Sergent, A. M.. Kleiman, R. N., Pfeiffer, L. N., and Molnar, R. J., Appl. Phys. Lett. 78, 1685 (2001).Google Scholar
[15] Kneissl, M., Bour, D. P., Romano, L., Van de Walle, C. G., Northrup, J. E., Wong, W. S., Treat, D. W., Teepe, M., Schmidt, T., and Johnson, N. M., Appl. Phys. Lett. 77, 1931 (2000).Google Scholar
[16] Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., and Sugimoto, Y., Appl. Phys. Lett. 72, 211 (1998).Google Scholar