Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-03T10:56:46.425Z Has data issue: false hasContentIssue false

Atomic Scale Structural Characterization of Epitaxial (Cd,Cr)Te Magnetic Semiconductor

Published online by Cambridge University Press:  07 June 2017

Bastien Bonef*
Affiliation:
University Grenoble Alpes, F-38000 Grenoble, France CEA, INAC-MEM, F-38000 Grenoble, France
Hervé Boukari
Affiliation:
University Grenoble Alpes, F-38000 Grenoble, France CNRS, Institut Néel, F-38000 Grenoble, France
Adeline Grenier
Affiliation:
University Grenoble Alpes, F-38000 Grenoble, France CEA-LETI, MINATEC Campus, F-38054 Grenoble, France
Isabelle Mouton
Affiliation:
University Grenoble Alpes, F-38000 Grenoble, France CEA-LETI, MINATEC Campus, F-38054 Grenoble, France
Pierre-Henri Jouneau
Affiliation:
University Grenoble Alpes, F-38000 Grenoble, France CEA, INAC-MEM, F-38000 Grenoble, France
Hidekazu Kinjo
Affiliation:
Institute of Materials Science, University of Tsukuba, Tsukuba, 305-8573, Japan
Shinji Kuroda
Affiliation:
Institute of Materials Science, University of Tsukuba, Tsukuba, 305-8573, Japan
*
* Corresponding author. bbonef.prof@gmail.com
Get access

Abstract

A detailed knowledge of the atomic structure of magnetic semiconductors is crucial to understanding their electronic and magnetic properties, which could enable spintronic applications. Energy-dispersive X-ray spectrometry (EDX) in the scanning transmission electron microscope and atom probe tomography (APT) experiments reveal the formation of Cr-rich regions in Cd1−x Cr x Te layers grown by molecular beam epitaxy. These Cr-rich regions occur on a length scale of 6–10 nm at a nominal Cr composition of x=0.034 and evolve toward an ellipsoidal shape oriented along <111> directions at a composition of x=0.083. Statistical analysis of the APT reconstructed volume reveals that the Cr aggregation increases with the average Cr composition. The correlation with the magnetic properties of such (Cd,Cr)Te layers is discussed within the framework of strongly inhomogeneous materials. Finally, difficulties in accurately quantifying the Cr distribution in the CdTe matrix on an atomic scale by EDX and APT are discussed.

Type
Materials Science Applications
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Begam, M.R., Rao, N.M., Kaleemulla, S., Krishna, N.S., Kuppan, M., Krishnaiah, G. & Subrahmanyam, J. (2014 a). Room temperature ferromagnetism in Cd 1−x Cr x Te diluted magnetic semiconductor crystals. Mater Sci Semicond Process 18, 146151.CrossRefGoogle Scholar
Begam, M.R., Rao, N.M., Kaleemulla, S., Krishnamoorthi, C., Krishna, N.S. & Kuppan, M. (2014b). Structural and magnetic properties of Cr-diffused CdTe nanocrystalline thin films deposited by electron beam evaporation. Appl Phys A 117(2), 793798.Google Scholar
Blavette, D., Vurpillot, F., Pareige, P. & Menand, A. (2001). A model accounting for spatial overlaps in 3D atom-probe microscopy. Ultramicroscopy 89(1), 145153.CrossRefGoogle Scholar
Cliff, G. & Lorimer, G. (1975). The quantitative analysis of thin specimens. Journal of Microscopy 103(2), 203207.Google Scholar
Diercks, D.R. & Gorman, B.P. (2015). Nanoscale measurement of laser-induced temperature rise and field evaporation effects in CdTe and GaN. J Phys Chem C 119(35), 2062320631.CrossRefGoogle Scholar
Diercks, D.R., Li, J., Beach, J.D., Wolden, C.A. & Gorman, B.P. (2014). Atom probe tomography for nanoscale characterization of CdTe device absorber layers and interfaces. In 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC) Denver, CO, pp. 0085–0089, IEEE.CrossRefGoogle Scholar
Dietl, T. & Ohno, H. (2014). Dilute ferromagnetic semiconductors: Physics and spintronic structures. Rev Mod Phys 86(1), 187.Google Scholar
Dietl, T., Sato, K., Fukushima, T., Bonanni, A., Jamet, M., Barski, A., Kuroda, S., Tanaka, M., Nam Hei, P. & Katayama-Yoshida, H. (2015). Spinodal nanodecomposition in semiconductors doped with transition metals. Rev Mod Phys 87(4), 1311–1377.Google Scholar
Gault, B., Müller, M., La Fontaine, A., Moody, M.P., Shariq, A., Cerezo, A., Ringer, S.P. & Smith, G.D.W. (2010). Influence of surface migration on the spatial resolution of pulsed laser atom probe tomography. J Appl Phys 108(4), 044904.CrossRefGoogle Scholar
Gorman, B.P., Puthucode, A., Diercks, D.R. & Kaufman, M.J. (2008). Cross-correlative TEM and atom probe analysis of partial crystallisation in NiNbSn metallic glasses. Mater Sci Technol 24(6), 682688.Google Scholar
Jungwirth, T., Wunderlich, J., Novak, V., Olejnik, K., Gallagher, B.L., Campion, R.P., Edmonds, K.W., Rushforth, A.W., Ferguson, A.J. & Němec, P. (2014). Spin-dependent phenomena and device concepts explored in (Ga, Mn) As. Rev Mod Phys 86(3), 855.Google Scholar
Kingham, D.R. (1982). The post-ionization of field evaporated ions: A theoretical explanation of multiple charge states. Surf Sci 116(2), 273301.Google Scholar
Kobayashi, H., Nishio, Y., Kanazawa, K., Kuroda, S., Mitome, M. & Bando, Y. (2012). Structural analysis of the phase separation in magnetic semiconductor (Zn, Cr) Te. Physica B Condens Matter 407(15), 29472949.Google Scholar
Kodzuka, M., Ohkubo, T., Hono, K., Matsukura, F. & Ohno, H. (2009). 3DAP analysis of (Ga, Mn) As diluted magnetic semiconductor thin film. Ultramicroscopy 109(5), 644648.Google Scholar
Kuroda, S., Nishizawa, N., Takita, K., Mitome, M., Bando, Y., Osuch, K. & Dietl, T. (2007). Origin and control of high-temperature ferromagnetism in semiconductors. Nat Mater 6(6), 440446.Google Scholar
Mancini, L., Amirifar, N., Shinde, D., Blum, I., Gilbert, M., Vella, A. Vurpillot, F. Lefebvre, W. Lardé, R. Talbot, E. Pareige, P. Portier, X. Ziani, A. Davesnne, C. Durand, C. Eymery, J. Butté, R. Carlin, J.F. Grandjean, N. & Rigutti, L. (2014). Composition of wide bandgap semiconductor materials and nanostructures measured by atom probe tomography and its dependence on the surface electric field. J Phys Chem C 118(41), 2413624151.Google Scholar
Martin, A.J., Weng, W., Zhu, Z., Loesing, R., Shaffer, J. & Katnani, A. (2016). Cross-sectional atom probe tomography sample preparation for improved analysis of fins on SOI. Ultramicroscopy 161, 105109.Google Scholar
Miller, M.K., Russell, K.F., Thompson, K., Alvis, R. & Larson, D.J. (2007). Review of atom probe FIB-based specimen preparation methods. Microsc Microanal 13(6), 428436.CrossRefGoogle ScholarPubMed
Moody, M.P., Stephenson, L.T., Ceguerra, A.V. & Ringer, S.P. (2008). Quantitative binomial distribution analyses of nanoscale like‐solute atom clustering and segregation in atom probe tomography data. Microsc Res Tech 71(7), 542550.CrossRefGoogle ScholarPubMed
Mouton, I., Lardé, R., Talbot, E., Cadel, E., Genevois, C., Blavette, D., Baltz, V., Prestat, E., Bayle-Guillemaud, P., Barski, A. & Jamet, M. (2012). Composition and morphology of self-organized Mn-rich nanocolumns embedded in Ge: Correlation with the magnetic properties. J Appl Phys 112(11), 113918.Google Scholar
Müller, M., Gault, B., Smith, G.D.W. & Grovenor, C.R.M. (2011 b). Accuracy of pulsed laser atom probe tomography for compound semiconductor analysis. J Phys Conf Ser 326(1), 012031.Google Scholar
Müller, M., Saxey, D.W., Smith, G.D. & Gault, B. (2011 a). Some aspects of the field evaporation behaviour of GaSb. Ultramicroscopy 111(6), 487492.Google Scholar
Müller, M., Smith, G.D.W., Gault, B. & Grovenor, C.M. (2012). Compositional nonuniformities in pulsed laser atom probe tomography analysis of compound semiconductors. J Appl Phys 111(6), 064908.Google Scholar
Nĕmec, P., Novak, V., Tesařová, N., Rozkotova, E., Reichlova, H., Butkovičová, D. Trojánek, F. Olejník, K. Malý, P. Campion, R.P. Gallagher, B.L. Sinova, J. & Jungwirth, T. (2013). The essential role of carefully optimized synthesis for elucidating intrinsic material properties of (Ga, Mn) As. Nat Commun 4, 1422.Google Scholar
Nishizawa, N., Ishikawa, K., Kuroda, S., Takita, K. & Mitome, M. (2008). Correlation between Cr distribution and ferromagnetism in iodine-doped (Zn, Cr) Te. J Korean Phys Soc 53, 2917.Google Scholar
Prosa, T.J., Geiser, B.P., Reinhard, D., Chen, Y. & Larson, D.J. (2016). Approaches for promoting accurate atom probe reconstruction. Microsc Microanal 22(S3), 664665.Google Scholar
Smeeton, T.M., Kappers, M.J., Barnard, J.S., Vickers, M.E. & Humphreys, C.J. (2003). Electron-beam-induced strain within InGaN quantum wells: False indium “cluster” detection in the transmission electron microscope. Appl Phys Lett 83(26), 54195421.CrossRefGoogle Scholar
Vurpillot, F., Gault, B., Geiser, B.P. & Larson, D.J. (2013). Reconstructing atom probe data: A review. Ultramicroscopy 132, 1930.Google Scholar
Vurpillot, F., Larson, D. & Cerezo, A. (2004). Improvement of multilayer analyses with a three‐dimensional atom probe. Surf Interface Anal 36(5–6), 552558.Google Scholar
Wang, M., Edmonds, K.W., Gallagher, B.L., Rushforth, A.W., Makarovsky, O., Patane, A. Campion, R.P. Foxon, C.T. Novak, V. & Jungwirth, T. (2013). High Curie temperatures at low compensation in the ferromagnetic semiconductor (Ga, Mn) As. Phys Rev B 87(12), 121301.Google Scholar
Watanabe, M. & Williams, D.B. (2006). The quantitative analysis of thin specimens: A review of progress from the Cliff‐Lorimer to the new ζ‐factor methods. J Microsc 221(2), 89109.Google Scholar