Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T06:32:31.170Z Has data issue: false hasContentIssue false

An Early Permian flora with Late Permian and Mesozoic affinities from north-central Texas

Published online by Cambridge University Press:  14 July 2015

William A. DiMichele
Affiliation:
1Department of Paleobiology, Smithsonian Institution, Washington, D.C., 20560,
Sergius H. Mamay
Affiliation:
1Department of Paleobiology, Smithsonian Institution, Washington, D.C., 20560,
Dan S. Chaney
Affiliation:
1Department of Paleobiology, Smithsonian Institution, Washington, D.C., 20560,
Robert W. Hook
Affiliation:
2Texas Memorial Museum, The University of Texas at Austin, Austin 78758
W. John Nelson
Affiliation:
3Illinois State Geological Survey, Champaign, IL 61820

Abstract

Early Permian (late Leonardian Series) plant assemblages from King, Knox, and Stonewall Counties of North-Central Texas are dominated by seed plants, some apparently congeneric with taxa heretofore known only from the Late Permian or the Mesozoic. Conifers are the dominant elements, including one or more species of Ullmannia, Pseudovoltzia liebeana, both known from the Late Permian Zechstein flora of Germany and England, Podozamites sp., characteristic of the Mesozoic, and Walchia sp., abundant in Early Permian floras. Locally common are Taeniopteris cf. eckardtii, a Zechstein species, an unidentified plant represented by pinnulelike laminae with fine parallel veins, similar to pinnules of some Mesozoic cycads, and calamite stems. Rarely encountered are leaf fragments of the Paleozoic ginkgophyte Dicranophyllum, flabellate ginkgophyte leaves, leaves with a broad midvein and narrow, fimbriate lamina, and Wattia, typical of the Early Permian. Associated with these foliar remains are ovulate reproductive structures including the presumed cycad megasporophyll Dioonitocarpidium, known only from the Mesozoic, a voltzialean cone scale similar to Swedenborgia, and a variety of seeds, some remarkably similar to Agathis, of Cretaceous age. The assemblage includes only rare scraps of foliage and seeds possibly attributable to the pteridophyllous elements (gigantopterids, callipterids, and ferns) that dominate the Permian. The fossil plants occur in multistorey, fining-upwards, tidal-channel deposits that also include pelecypods and fragmentary palaeoniscoid fish. The occurrence of derived lineages in xeric habitats during the Early Permian indicates that some supposed Mesozoic groups actually preceded and survived the end-Permian extinction, reappearing in basinal lowlands during the mid-Mesozoic.

Type
Research Article
Copyright
Copyright © The Paleontological Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ash, S. 1994. Donwelliacaulis chlouberii gen. et sp. nov. (Guaireaceae, Osmundales) one of the oldest plant megafossils in North America. Palaeontographica, 234B:117.Google Scholar
Böse, E. 1917. Permo-Carboniferous Ammonoids of the Glass Mountains. Texas Bureau of Economic Geology Bulletin, 1762:1241.Google Scholar
Bowring, S. A., Erwin, D. H., Jin, Y. G., Martin, M. W., Davidek, K., and Wang., W. 1998. U/Pb Zircon geochronology and tempo of the end-Permian mass extinction. Science, 280:10391045.CrossRefGoogle ScholarPubMed
Broutin, J., Doubinger, J., Farjanel, G., Freytet, F., Kerp, H., Langiaux, J., Lebreton, M. L., Sebban, S., and Satta., S. 1990. Le renouvellement des flores au passage Carbonifère Permien: approaches stratigraphique, biologique, sédimentologique. Académie des Sciences Paris, Comptes Rendues, 311:15631569.Google Scholar
Chaney, D. S., DiMichele, W. A., Mamay, S. H., and Hook., R. W. 1997. A new flora from the evaporite-bearing Blaine Formation (Pease River Group, Lower Permian) of King County, Texas. American Journal of Botany (Abst. Supplement), 84:131.Google Scholar
Clement-Westerhoff, J. A. 1984. Aspects of Permian palaeobotany and palynology. IV. The conifer Ortiseia Florin from the Val Gardena Formation of the Dolomites and Venetian Alps (Italy) with special reference to a revised concept of the Walchiaceae (Göeppert) Schimper. Review of Palaeobotany and Palynology, 41:51166.CrossRefGoogle Scholar
Clement-Westerhoff, J. A. 1987. Aspects of Permian palaeobotany and palynology, 7: The Majonicaceae, a new family of Late Permian conifers. Review Paleobotany and Palynology, 52:375402.CrossRefGoogle Scholar
Clement-Westerhoff, J. A. 1988. Morphology and phylogeny of Paleozoic conifers, p. 298337. In Beck, C. B. (ed.), Origin and Evolution of Gymnosperms. Columbia University Press, New York.Google Scholar
Clifton, R. L. 1942. Invertebrate faunas from the Blaine and Dog Creek Formations of the Permian Leonard Series. Journal of Paleontoloav 16:685699.Google Scholar
Clifton, R. L. 1945. Permian Word formation: its faunal and stratigraphic correlatives. American Association of Petroleum Geologists Bulletin 29:17661776.Google Scholar
Clifton, R. L. 1946. Middle Permian Cephalopoda from Texas and New Mexico. Journal of Paleontology, 20:556559.Google Scholar
Cridland, A. A., and Morris., J. E. 1963. Taeniopteris, Walchia, and Dichophyllum in the Pennsylvanian System in Kansas. University of Kansas Science Bulletin, 44:7185.Google Scholar
DiMichele, W. A., and Aronson., R. B. 1992. The Pennsylvanian-Permian vegetational transition: a terrestrial analogue to the onshore-offshore hypothesis. Evolution, 46:807824.CrossRefGoogle ScholarPubMed
DiMichele, W. A., Chaney, D. S., Dixon, W. H., John Nelson, W., and Hook., R. W. 2000. An Early Permian coastal flora from the Central Basin Platform of Gaines County, West Texas. Palaios, 15:524534.2.0.CO;2>CrossRefGoogle Scholar
Florin, R. 1951. Evolution in cordaites and conifers. Acta Horti Bergiani, 15:285389.Google Scholar
Frederiksen, N. O. 1972. The rise of the Mesophytic flora. Geoscience and Man, 4:1728.CrossRefGoogle Scholar
Grand ‘Eury, F. C. 1877. Flore Carbonifère du Département de la Loire et du Centre de la France. Acad. Sci. Inst. France Mém., 24:1624.Google Scholar
Guo, Y. 1990. Paleoecology of flora from coal measures of Upper Permian in western Guizhou. Journal China Coal Society, 15:4854.Google Scholar
Halle, T. G. 1927. Paleozoic plants from Central Shansi. Paleontologica Sinica, 2:1316.Google Scholar
Harris, T. M. 1926. The Rhaetic flora of Scoresby Sound East Greenland. Medd. Gronland, 68:43147.Google Scholar
Jones, J. O. 1971. The Blaine Formation of North Texas. Unpublished Ph.D. dissertation. University of Iowa, Iowa City, 173 p.Google Scholar
Jones, J. O., and Hentz., T. R. 1988. Permian strata of North-Central Texas, p. 309316. In Geological Society of America Centennial Field Guide—South-Central Section.CrossRefGoogle Scholar
Knoll, A. H. 1984. Patterns of extinction in the fossil record of vascular plants, p.2168. In Nitecki, M. H. (ed.), Extinctions. University of Chicago Press, Chicago.Google Scholar
Kraüsel, R. 1949. Koniferen und andere Gymnospermen aus der Trias von Lunz, Nieder-Österriech. Palaeontographica, Abt. B, 84:3582.Google Scholar
Kraüsel, R. 1953. Ein neues Dioonitocarpidium aus der Trias von Lunz. Senckenbergiana, 34:105108.Google Scholar
Lilienstern, H. R. 1928. Dioonites pennaeformis Schenk, eine Fertile Cycadee aus der Lettenkohle. Palaeont. Zeitscher., 10:91107.CrossRefGoogle Scholar
Looy, C. V., Brugman, W. A., Dilcher, D. L., and Visscher., H. 1999. The delayed resurgence of forests after the Permian-Triassic ecologic crisis. Proceedings of the National Academy of Sciences of the United States, 96:1385713862.CrossRefGoogle ScholarPubMed
Lyons, P. C., and Darrah., W. C. 1989. Earliest conifers in North America: upland and/or paleoclimatic indicators? Palaios, 4:480486.CrossRefGoogle Scholar
Mamay, S. H. 1967. Lower Pemian plants from the Arroyo Formation in Baylor County, North-Central Texas. U.S. Geological Survey Professional Paper, 575-C:C120C126.Google Scholar
Mamay, S. H. 1992. Sphenopteridium and Telangiopsis in a Diplopteridium-like association from the Virgillian (Upper Pennsylvanian) of New Mexico. American Journal of Botany, 79:10921101.CrossRefGoogle Scholar
Mamay, S. H., Miller, J. M., Rohr, D. H., and Stein, W. E. Jr. 1988. Foliar morphology and anatomy of the Gigantopterid plant Delnortea abbottiae, from the Lower Permian of West Texas. American Journal of Botany, 75:14091433.CrossRefGoogle Scholar
Mear, C. E. 1984. Stratigraphy of Upper Permian rocks, Midland Basin and Eastern Shelf, Texas. Society of Economic Paleontologists and Mineralogists, Permian Basin Section Publication, 84-23:8993.Google Scholar
Nathorst, A. G. 1876. Bidgrag Till Sveriges Fossila Flora. Kongliga Svenska Vetenskaps-Akademien Stockholm Handlingar, 14(3) Pt. 1, p. 182.Google Scholar
Olson, E. C. 1962. Late Permian terrestrial vertebrates, USA and USSR. Transactions of the American Philosophical Society, 52:3224.CrossRefGoogle Scholar
Pálfy, J. Z., Mortensen, J. K., Carter, E. S., Smith, P. L., Frirdman, R. M., and Tipper., H. W. 2000. Timing the end-Triassic mass extinction: first on land, then in the sea. Geology, 28:3942.2.0.CO;2>CrossRefGoogle Scholar
Pfefferkorn, H. W. 1980. A note on the term “upland flora.” Review of Paleobotany and Palynology, 30:157158.CrossRefGoogle Scholar
Plummer, F. B., and Scott., G. 1937. Upper Paleozoic Ammonites in Texas. The Geology of Texas. Texas Bureau of Economic Geology, Bulletin 3701 Volume 3, Pt. 1, 516 p.Google Scholar
Read, C. B., and Mamay., S. H. 1964. Upper Paleozoic floral zones and floral provinces of the United States. U.S. Geological Survey Professional Paper, 454-K:135.Google Scholar
Retallack, S. J. 1995. Permian-Triassic life crisis on land. Science, 267:7780.CrossRefGoogle ScholarPubMed
Retallack, S. J. 1997. Earliest Triassic origin of Isoetes and quillwort evolutionary radiation. Journal of Paleontology, 71:500521.CrossRefGoogle Scholar
Roth, R. 1945. Permian Pease River Group of Texas. Geological Society of America, Bulletin, 56:893908.CrossRefGoogle Scholar
Rothwell, G. W., and Mapes., G. 1988. Vegetation of a Paleozoic conifer community, p. 213223. In Mapes, G. and Mapes, R. H. (eds.), Regional Geology and Paleontology of Upper Paleozoic Hamilton Quarry Area in Southeastern Kansas. Guidebook 33rd Annual Meeting, South-Central Section, Geological Society of America, Boulder, Colorado.Google Scholar
Schweitzer, H. J. 1986. The land flora of the English and German Zechstein sequences, p. 3154. In Harwood, G. M. and Smith, D. B. (eds.), The English Zechstein and Related Topics. Geological Society Special Publication 22. The Geological Society, London.Google Scholar
Scott, A. C. 1974. The earliest Conifer. Nature, 251:707708.CrossRefGoogle Scholar
Seward, A. C. 1926. On a small collection of fossil plants from the Tanganyika Territory. Geological Magazine, 63:385392.Google Scholar
Skinner, J. W. 1946. Correlation of Permian of West Texas and Southeast New Mexico. American Association of Petroleum Geologists Bulletin, 30:18571974.Google Scholar
Smith, G. E. 1974. Depositional systems, San Angelo Formation (Permian), North Texas—facies control of red-bed copper mineralization. Texas Bureau of Economic Geology, Report of Investigations, 80:1073.Google Scholar
Smith, G. E. 1976. Sabhka and tidal-flat facies control of stratiform copper deposits in North Texas, p. 2539. In Johnson, K. S. and Croy, R. L. (eds.), Stratiform Copper Deposits of the Midcontinent Region, a Symposium. Oklahoma Geological Survey, Circular 77.Google Scholar
Stockey, R. J. 1994. Mesozoic Araucariaceae: morphology and systematic relationships. Journal of Plant Research, 107:493502.CrossRefGoogle Scholar
Stoneley, H. M. M. 1958. The Upper Permian flora of England. British Museum Natural History Geology Bulletin, 3:295337.Google Scholar
Stroud, R. B., McMahan, A. B., Stroup, R. K., and Hibpschman., M. H. 1970. Production potential of copper deposits associated with Permian red bed formations in Texas, Oklahoma, and Kansas. U.S. Bureau of Mines, Report of Investigations, 7422, 103 p.Google Scholar
Wilson, L. R. 1962. Permian plant microfossils from the Flowerpot Formation, Greer County, Oklahoma. Oklahoma State Geological Survey Circular, 49:149.Google Scholar
Winston, R. B. 1983. A Late Pennsylvanian upland flora in Kansas: systematics and environmental implications. Review of Paleobotany and Palynology, 40:531.CrossRefGoogle Scholar
Zalessky, M. D. 1928. Sur L'Extension du Continent de L'Angaride et Premières données Sur la Flore de ses Limites Oussouriennes. Annales de la Societe du Nord de la France, 53:118138.Google Scholar
Zhou, Z., Glenister, B. F., Furnish, W. M., and Spinosa., C. 1996. Multi-episodal extinction and ecological differentiation of Permian ammonoids. Permophiles, 29:5262.Google Scholar
Ziegler, A. M. 1990. Phytogeographic patterns and continental configurations during the Permian Period, p. 363379. In McKerrow, W. C. and Scotese, C. R. (eds.), Palaeozoic Palaeogeography and Biogeography. Geological Society of London Memoir, 12.Google Scholar