Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T15:07:40.063Z Has data issue: false hasContentIssue false

Room temperature stress relaxation in nanocrystalline Ni measured by micropillar compression and miniature tension

Published online by Cambridge University Press:  01 April 2016

Gaurav Mohanty*
Affiliation:
Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, CH-3602 Thun, Switzerland
Juri Wehrs
Affiliation:
Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, CH-3602 Thun, Switzerland
Brad L. Boyce
Affiliation:
Sandia National Laboratories, Materials Science and Engineering Center, Albuquerque, New Mexico 87185, USA
Aidan Taylor
Affiliation:
Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, CH-3602 Thun, Switzerland
Madoka Hasegawa
Affiliation:
Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, CH-3602 Thun, Switzerland
Laetitia Philippe
Affiliation:
Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, CH-3602 Thun, Switzerland
Johann Michler
Affiliation:
Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, CH-3602 Thun, Switzerland
*
a)Address all correspondence to this author. e-mail: Gaurav.Mohanty@empa.ch
Get access

Abstract

In this study, we report a micropillar stress relaxation technique employing a stable displacement-controlled, in-situ scanning electron microscope indenter, and unusually large micropillars to precisely measure stress relaxation in electroplated nanocrystalline Ni thin films. The observed stress relaxation is significant under constant displacement: even well below the 0.2% offset yield strength, the stresses relax by ∼4% within a minute; in the work hardening regime, stress relaxes by ∼9% in 1 min. A logarithmic fit of the relaxation curves is consistent with an Arrhenius thermal activation of plasticity and suggests an activation volume in the vicinity of ∼10 b3. The apparent and effective activation volumes diverge at lower strains, particularly in the “elastic” regime. These measurements are compared to similar measurements performed on free-standing thin film tensile coupons. Both methods yield similar results, thereby validating the applicability of pillar compression to capture time-dependent plasticity. To our knowledge, these are the first micropillar stress relaxation experiments on metals ever reported.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wang, N., Wang, Z., Aust, K., and Erb, U.: Room temperature creep behavior of nanocrystalline nickel produced by an electrodeposition technique. Mater. Sci. Eng., A 237(2), 150 (1997).CrossRefGoogle Scholar
Mohamed, F.A. and Li, Y.: Creep and superplasticity in nanocrystalline materials: Current understanding and future prospects. Mater. Sci. Eng., A 298(1), 1 (2001).CrossRefGoogle Scholar
Yin, W., Whang, S., Mirshams, R., and Xiao, C.: Creep behavior of nanocrystalline nickel at 290 and 373 K. Mater. Sci. Eng., A 301(1), 18 (2001).CrossRefGoogle Scholar
Yin, W.M. and Whang, S.H.: Creep in boron-doped nanocrystalline nickel. Scr. Mater. 44(4), 569 (2001).CrossRefGoogle Scholar
Cai, B., Kong, Q., Lu, L., and Lu, K.: Low temperature creep of nanocrystalline pure copper. Mater. Sci. Eng., A 286(1), 188 (2000).CrossRefGoogle Scholar
Wei, Q., Cheng, S., Ramesh, K., and Ma, E.: Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals. Mater. Sci. Eng., A 381(1), 71 (2004).CrossRefGoogle Scholar
May, J., Höppel, H.W., and Göken, M.: Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation. Scr. Mater. 53(2), 189 (2005).CrossRefGoogle Scholar
Wang, Y.M. and Ma, E.: Strain hardening, strain rate sensitivity, and ductility of nanostructured metals. Mater. Sci. Eng., A 375–377, 46 (2004).CrossRefGoogle Scholar
Wang, Y., Hamza, A., and Ma, E.: Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni. Acta Mater. 54(10), 2715 (2006).CrossRefGoogle Scholar
Li, Y., Mueller, J., Höppel, H., Göken, M., and Blum, W.: Deformation kinetics of nanocrystalline nickel. Acta Mater. 55(17), 5708 (2007).CrossRefGoogle Scholar
Wang, Y., Hamza, A., and Ma, E.: Activation volume and density of mobile dislocations in plastically deforming nanocrystalline Ni. Appl. Phys. Lett. 86(24), 241917 (2005).CrossRefGoogle Scholar
Lu, L., Zhu, T., Shen, Y., Dao, M., Lu, K., and Suresh, S.: Stress relaxation and the structure size-dependence of plastic deformation in nanotwinned copper. Acta Mater. 57(17), 5165 (2009).CrossRefGoogle Scholar
Cottrell, A. and Stokes, R.: Effects of temperature on the plastic properties of aluminium crystals. Proc. R. Soc. London, Ser. A 233(1192), 17 (1955).CrossRefGoogle Scholar
Bochniak, W.: The Cottrell-Stokes law for FCC single crystals. Acta Metall. Mater. 41(11), 3133 (1993).CrossRefGoogle Scholar
Caillard, D. and Martin, J-L.: Thermally Activated Mechanisms in Crystal Plasticity (Elsevier, Oxford, 2003).Google Scholar
Wang, C., Zhang, M., and Nieh, T.: Nanoindentation creep of nanocrystalline nickel at elevated temperatures. J. Phys. D: Appl. Phys. 42, 115405 (2009).CrossRefGoogle Scholar
Asif, S.A.S. and Pethica, J.: Nanoindentation creep of single-crystal tungsten and gallium arsenide. Philos. Mag. A 76(6), 1105 (1997).CrossRefGoogle Scholar
Schwaiger, R., Moser, B., Dao, M., Chollacoop, N., and Suresh, S.: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 51(17), 5159 (2003).CrossRefGoogle Scholar
Maier, V., Durst, K., Mueller, J., Backes, B., Höppel, H.W., and Göken, M.: Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al. J. Mater. Res. 26(11), 1421 (2011).CrossRefGoogle Scholar
Wheeler, J.M., Maier, V., Durst, K., Göken, M., and Michler, J.: Activation parameters for deformation of ultrafine-grained aluminium as determined by indentation strain rate jumps at elevated temperature. Mater. Sci. Eng., A 585, 108 (2013).CrossRefGoogle Scholar
Goodall, R. and Clyne, T.: A critical appraisal of the extraction of creep parameters from nanoindentation data obtained at room temperature. Acta Mater. 54(20), 5489 (2006).CrossRefGoogle Scholar
Schiffmann, K.I.: Nanoindentation creep and stress relaxation tests of polycarbonate: Analysis of viscoelastic properties by different rheological models. Z. Metallkd. 97(9), 1199 (2006).Google Scholar
Uchic, M.D. and Dimiduk, D.M.: A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing. Mater. Sci. Eng., A 400, 268 (2005).CrossRefGoogle Scholar
Uchic, M.D., Shade, P.A., and Dimiduk, D.M.: Plasticity of micrometer-scale single crystals in compression. Annu. Rev. Mater. Res. 39, 361 (2009).CrossRefGoogle Scholar
Wang, C., Lai, Y., Huang, J., and Nieh, T.: Creep of nanocrystalline nickel: A direct comparison between uniaxial and nanoindentation creep. Scr. Mater. 62(4), 175 (2010).CrossRefGoogle Scholar
Özerinç, S., Averback, R.S., and King, W.P.: In situ creep measurements on micropillar samples during heavy ion irradiation. J. Nucl. Mater. 451(1), 104 (2014).CrossRefGoogle Scholar
Mohanty, G., Wheeler, J.M., Raghavan, R., Wehrs, J., Hasegawa, M., Mischler, S., Philippe, L., and Michler, J.: Elevated temperature, strain rate jump microcompression of nanocrystalline nickel. Philos. Mag. 95, 18781895 (2014).CrossRefGoogle Scholar
Wehrs, J., Mohanty, G., Guillonneau, G., Taylor, A.A., Maeder, X., Frey, D., Philippe, L., Mischler, S., Wheeler, J.M., and Michler, J.: Comparison of in situ micromechanical strain-rate sensitivity measurement techniques. JOM 67, 16841693 (2015).Google Scholar
Lin, I-K., Liao, Y-M., Chen, K-S., and Zhang, X.: Viscoelastic characterization of soft micropillars for cellular mechanics study. In 12th International Conference on Miniaturized Systems for Chemistry and Life Sciences (Royal Society of Chemistry, San Diego, 2008).Google Scholar
Dotsenko, V.: Stress relaxation in crystals. Phys. Status Solidi B 93(1), 11 (1979).CrossRefGoogle Scholar
Guiu, F. and Pratt, P.: Stress relaxation and the plastic deformation of solids. Phys. Status Solidi B 6(1), 111 (1964).CrossRefGoogle Scholar
Van Swygenhoven, H., Derlet, P., and Frøseth, A.: Nucleation and propagation of dislocations in nanocrystalline fcc metals. Acta Mater. 54(7), 1975 (2006).CrossRefGoogle Scholar
Bitzek, E., Derlet, P., Anderson, P., and Van Swygenhoven, H.: The stress–strain response of nanocrystalline metals: A statistical analysis of atomistic simulations. Acta Mater. 56(17), 4846 (2008).CrossRefGoogle Scholar
Brandstetter, S., Budrović, Ž., Van Petegem, S., Schmitt, B., Stergar, E., Derlet, P., and Van Swygenhoven, H.: Temperature-dependent residual broadening of x-ray diffraction spectra in nanocrystalline plasticity. Appl. Phys. Lett. 87(23), 231910 (2005).CrossRefGoogle Scholar
Gianola, D., Van Petegem, S., Legros, M., Brandstetter, S., Van Swygenhoven, H., and Hemker, K.: Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater. 54(8), 2253 (2006).CrossRefGoogle Scholar
Meyers, M.A., Mishra, A., and Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51(4), 427 (2006).CrossRefGoogle Scholar
Spätig, P., Bonneville, J., and Martin, J-L.: A new method for activation volume measurements: Application to Ni3(Al, Hf). Mater. Sci. Eng., A 167(1), 73 (1993).CrossRefGoogle Scholar
Saile, V.: LIGA and Its Applications, Saile, Volker, Wallrabe, Ulrike, Tabata, Osamu, Korvink, Jan G., eds. (John Wiley & Sons, Weinheim, 2009).Google Scholar
Giannuzzi, L. and Stevie, F.: A review of focused ion beam milling techniques for TEM specimen preparation. Micron 30(3), 197 (1999).CrossRefGoogle Scholar
Philippe, L., Schwaller, P., Bürki, G., and Michler, J.: A comparison of microtensile and microcompression methods for studying plastic properties of nanocrystalline electrodeposited nickel at different length scales. J. Mater. Res. 23(05), 1383 (2008).CrossRefGoogle Scholar
Wheeler, J.M. and Michler, J.: Elevated temperature, nano-mechanical testing in situ in the scanning electron microscope. Rev. Sci. Instrum. 84(4), 045103 (2013).CrossRefGoogle ScholarPubMed