Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T06:38:35.777Z Has data issue: false hasContentIssue false

Extinction of inoceramid bivalves in Maastrichtian strata of the Bay of Biscay region of France and Spain

Published online by Cambridge University Press:  20 May 2016

Kenneth G. MacLeod*
Affiliation:
Department of Paleobiology, MRC:NHB 121, Smithsonian Institution, Washington, D.C. 20560

Abstract

Maastrichtian strata of the Zumaya-Algorta Formation of southwestern France and northeastern Spain record a major pulse of extinction among inoceramid bivalves well before the Cretaceous–Tertiary (K–T) boundary. Inoceramids are the most abundant macrofossils preserved in the study sections; at least six species of Inoceramus [I. (Endocostea) aff. I. (En.) balticus Giers, I. (En.) pteroides Giers, I. (Platyceramus) aff. I. (Pl.) cycloides Wegner, I. (Trochoceramus) nahorianensis Kociubynskij, I. (Tr.) morgani Sornay, and I.(?) goldfussianus d'Orbigny] are common to abundant in lower Maastrichtian strata. However, all six species disappear over a few tens of meters of section near the base of the upper Maastrichtian, as defined by the first appearance of the planktonic foraminifer Abathomphalus mayaroensis. Tenuipteria argentea (Conrad), which has not been recovered from the lower Maastrichtian portions of the sections, occurs at low abundances through the upper Maastrichtian, disappearing within 10 cm of the K–T boundary.

The mid-Maastrichtian extinction interval among inoceramids occurs within the upper Globotruncana gansseri to lower Abathomphalus mayaroensis planktonic foraminiferal zone, in nannofossil zone 24 to 25A, in the Anapachydiscus fresvillensis ammonite zone, in magnetochron 31N, and near the base of a change in slope of the seawater strontium curve, all as recognized by previous studies in one or more of the study sections. Whereas the new data presented here are not global in extent, the observed distribution of inoceramids may be the local manifestation of global oceanic changes during the mid-Maastrichtian.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrera, E., and Huber, B. T. 1990. Evolution of Antarctic bottom waters during the Maestrichtian: foraminifer oxygen and carbon isotope ratios, leg 113, p. 813827. In Barker, P. F., Kennett, J. P. et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 113. U.S. Government Printing Office, Washington, D.C. Google Scholar
Barron, E. J., Saltzman, E., and Price, D. A. 1984. Occurrence of Inoceramus in the South Atlantic and oxygen isotopic paleotemperatures in Hole 530A, p. 893904. In Hay, W. W., Sibuet, J.-C. et al. (eds.), Initial Reports of the Deep Sea Drilling Project, 75. U.S. Government Printing Office, Washington, D.C. Google Scholar
Böhm, J. 1907. Über Inoceramus Cripsi . Zeitschrift der Deutschen Geologischen Gesellschaft, 59:113114.Google Scholar
Burnett, J., Kennedy, W. J., and Ward, P. 1992. Maastrichtian nannofossil biostratigraphy in the Biscay region (south-western France, northern Spain). Newsletters on Stratigraphy, 26:145155.CrossRefGoogle Scholar
Clauser, S. 1987. Evolution de la composition isotopique de l'oxygène des carbonates durant le Campanian–Maastrichtien. Données préliminaires issues de la série de Bidart (Pyrénées-Atlantiques). Comptes Rendus des Séances Hebdomadaires de l'Académie des Sciences, Paris, série II, 304:579701.Google Scholar
Clemens, W. A. 1986. Evolution of the terrestrial vertebrate fauna during the Cretaceous–Tertiary transition, p. 6385. In Elliot, D. K. (ed.), Dynamics of Extinction. John Wiley and Sons, New York.Google Scholar
Conrad, T. A. 1858. Observations on a group of Cretaceous fossil shells, found in Tippah County, Miss., with descriptions of fifty-six new species. Academy of Natural Sciences Philadelphia Journal, Series 2, 3:323336.Google Scholar
Crampton, J. S. 1988. Comparative taxonomy of the bivalve families Isognomonidae, Inoceramidae, and Retroceramidae. Palaeontology, 31:965996.Google Scholar
Delacotte, O. 1982. Étude magnétostratigraphique et géochimique de la limit Crétacé–Tertiaire de la Coupe de Bidart (Pyrénées Atlantique). , , 162 p. (unpublished, as cited in Mathey, 1988).Google Scholar
Delacotte, O., Renard, M., Laj, C., Perch-Nielsen, K., Premoli-Silva, I., and Clauser, S. 1985. Magnétostratigraphie et biostratigraphie du passage Crétacé–Tertiaire de la coupe de Bidart (Pyrénées Atlantiques). Geologie de la France, 3:243254.Google Scholar
Dhondt, A. V. 1978. Tenuipteria geulemensis (Mollusca: Bivalvia), an inoceramid species from the Upper Maastrichtian of the Sint Pietersberg area, the Netherlands. Annales Societé Royal du Zoologie Belgigue, 108:141149.Google Scholar
Dhondt, A. V. 1983a. Campanian and Maastrichtian inoceramids: a review. Zitteliana, 10:689701.Google Scholar
Dhondt, A. V. 1983b. Tegulated inoceramids and Maastrichtian biostratigraphy. Newsletters on Stratigraphy, 12:4353.Google Scholar
Dhondt, A. V. 1993. Upper Cretaceous bivalves from Tercis, Landes, SW France. Bulletin de l'Institut des Sciences Naturelles de Belgique, Sciences de la Terre, 63:211259.Google Scholar
Giers, R. 1964. Die Grossfauna der Mukronatenkreide (unteres Obercampan) im östlichen Münsterland. Fortschritte in der Geologie von Rheinland und Westfalen, 7:213294.Google Scholar
Heinz, R. 1932. Aus der neuen Systematik der Inoceramen. Beiträge zur Kenntnis der Inoceramen XIV. Mitteilungen aus dem Mineralogisch-Geologischen Staatsinstitut Hamburg, 13:126.Google Scholar
Herm, D. 1965. Mikropaläontologisch–stratigraphische Untersuchungen im Kreideflysch swischen Deva and Zumaya (Prov. Guipuzcoa, Nordspanien). Deutschen Geologischen Gesellschaft, Zeitschrift, 15:277348.Google Scholar
Hu, X., Wang, Y. L., and Schmitt, R. A. 1988. Geochemistry of sediments on the Rio Grande Rise and the redox evolution of the South Atlantic Ocean. Geochimica et Cosmochimica Acta, 52:201207.Google Scholar
Huber, B. T. 1990. Maestrichtian planktonic foraminifera biostratigraphy of the Maud Rise (Weddell Sea, Antarctica): ODP leg 113 holes 689B and 690C, p. 489513. In Barker, P. F., Kennett, J. P. et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 113. U.S. Government Printing Office, Washington, D.C. Google Scholar
Hut, P., Alvarez, W., Elder, W. P., Hansen, T., Kauffman, E. G., Keller, G., Shoemaker, E. M., and Weissman, P. R. 1987. Comet showers as a cause of mass extinctions. Nature, 329:118125.CrossRefGoogle Scholar
Jeletzky, J. A., and Clemens, W. A. 1965. Comments on Cretaceous Eutheria, Lance Scaphites, and Inoceramus? ex gr. tegulatus . Journal of Paleontology, 39:952959.Google Scholar
Johnson, K. R., and Hickey, L. J. 1990. Megafloral change across the Cretaceous/Tertiary boundary in the northern Great Plains and Rocky Mountains, U.S.A., p. 445455. In Sharpton, V. L. and Ward, P. D. (eds.), Global Catastrophes in Earth History. Geological Society of America, Special Paper 247.Google Scholar
Kauffman, E. G. 1986. High-resolution event stratigraphy: regional and global bioevents, p. 279335. In Walliser, O. (ed.), Global Bio-events. Lecture Notes in Earth Sciences, 8, Springer-Verlag Co., Berlin–Heidelberg.Google Scholar
Kauffman, E. G. 1988. The dynamics of marine stepwise mass extinction. Revista Española de Paleontologia, Extraordinario:5771.Google Scholar
Kauffman, E. G., and Runnegar, B. 1975. Atomodesma (Bivalvia), and Permian species of the United States. Journal of Paleontology, 49:2341.Google Scholar
Kennett, J. 1982. Marine Geology. Prentice Hall, Englewood Cliffs, New Jersey, 787 p.Google Scholar
Kennett, J., and Stott, L. D. 1991. Abrupt deep-sea warming, paleoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature, 353:225229.Google Scholar
Kociubynskij, S. P. 1968. Inoceramidae, p. 115148. In Pasternak, S. I., Gynda, V. I., Kociubynskij, S. P., and Senkovskij, Yu. M. (eds.), Stratigraphy and Fauna of the Cretaceous Strata of Western Ukraine, without the Carpathians. Naukova, Kiev.Google Scholar
Kociubynskij, S. P., and Savchinskaya, O. V. 1974. Class Bivalvia, p. 6786. In Blank, M. Y., Krymgolts, G. Y., Naidin, D. P., and Savchinskaya, O. V. (eds.), Atlas of Upper Cretaceous Fauna of the Donets Basin. Nedra, Moscow.Google Scholar
Kuhnt, W., and Kaminski, M. 1989. Upper Cretaceous deep-water agglutinated benthic foraminiferal assemblages from the western Mediterranean and adjacent areas, p. 91120. In Wiedmann, J. (ed.), Cretaceous of the Western Tethys. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart.Google Scholar
Lamolda, M., Orue-Etxebarria, X., and Proto-Decima, F. 1983. The Cretaceous–Tertiary boundary in Sopelana (Biscay, Basque Country). Zitteliana, 10:663670.Google Scholar
Lopez, G. 1986. Inoceramidos del Cretacico Superior de los Alrededores de St. Corneli (Prov. Lleida). Universitat Autonoma de Barcelona, Publicaciones de Geologia, 123 p.Google Scholar
MacLeod, K. G., and Hoppe, K. A. 1992. Evidence that inoceramid bivalves were benthic and harbored chemosynthetic symbionts. Geology, 20:117120.Google Scholar
MacLeod, K. G., and Orr, W. N. 1993. The decline and disappearance of Inoceramus in the Basque region of France and Spain based on quantitative estimates of shell fragment abundance. Paleobiology, 19:235250.Google Scholar
MacLeod, K. G., and Ward, P. D. 1990. Extinction pattern of Inoceramus (Bivalvia) based on shell fragment biostratigraphy, p. 509518. In Sharpton, V. L. and Ward, P. D. (eds.), Global Catastrophes in Earth History. Geological Society of America, Special Paper 247.Google Scholar
Mary, C., Moreau, M.-G., Orue-Etxebarria, X., Apellaniz, E., and Courtillot, V. 1991. Biostratigraphy and magnetostratigraphy of the Cretaceous/Tertiary Sopelana section (Basque country). Earth and Planetary Science Letters, 106:133150.Google Scholar
Mathey, B. 1982. El Cretacico superior del Arco Vasco: El Cretacico de España. Universidad Complutense de Madrid, 111136.Google Scholar
Mathey, B. 1988. Paleogeographical evolution of the Basco-Cantabrian Domain during the Upper Cretaceous. Revista Española de Paleontologia, Extraordinario:142147.Google Scholar
McArthur, J. M., Burnett, J., and Hancock, J. M. 1992. Strontium isotopes at the K/T boundary. Nature, 355:28.Google Scholar
McLaren, D. J., and Goodfellow, W. D. 1990. Geological and biological consequences of giant impacts. Annual Review of Earth and Planetary Sciences, 18:123171.Google Scholar
Mount, J. F., and Ward, P. 1986. Origin of limestone/marl alterations in the upper Maastrichtian of Zumaya, Spain. Journal of Sedimentary Petrology, 56:228236.Google Scholar
Nelson, B. K., MacLeod, K. G., and Ward, P. D. 1991. Rapid change in strontium isotopic composition of seawater prior to the Cretaceous/Tertiary boundary. Nature, 351:644647.Google Scholar
Newell, N. D. 1965. Classification of the Bivalvia. American Museum Novitates, 2206, 25 p.Google Scholar
Noda, M., and Muramoto, K. 1980. A new species of Inoceramus (Bivalvia) from the Upper Cretaceous of Hokkaido. Transactions and Proceedings of the Palaeontological Society of Japan, New Series, 119:388402.Google Scholar
Officer, C. B., Hallam, A., Drake, C. L., and Devine, J. D. 1987. Late Cretaceous and paroxysmal Cretaceous/Tertiary extinctions. Nature, 326:143149.Google Scholar
Orbigny, A. d'. 1843–1847. Paléontologie Française, Terrains Crétacés, III. Bertrand, Paris, 807 p.Google Scholar
Perch-Nielsen, K. 1979. Calcareous nannofossils at the Cretaceous–Tertiary boundary near Biarritz, France, p. 151155. In Christensen, W. K. and Birkelund, T. (eds.), Cretaceous–Tertiary Boundary Events. University of Copenhagen, 2.Google Scholar
Percival, S. F., and Fischer, A. G. 1977. Changes in the calcareous nannoplankton in the Cretaceous–Tertiary biotic crisis at Zumaya, Spain. Evolutionary Theory, 2:135.Google Scholar
Raup, D. 1989. The case for extraterrestrial causes of extinction. Philosophical Transactions of the Royal Society of London, Series B, 325:421435.Google Scholar
Saltzman, E., and Barron, E. J. 1982. Deep circulation in the Late Cretaceous: oxygen isotope paleotemperatures from Inoceramus remains in DSDP cores. Palaeogeography, Palaeoclimatology, Palaeoecology, 40:167181.Google Scholar
Seilacher, A. 1982. Posidonia shales (Toarcian, S. Germany)—stagnant basin model revalidated, p. 2555. In Gallitelli, E. M. (ed.), Palaeontology, Essentials of Historical Geology. S.T.E.M. Mucchi, Modena.Google Scholar
Seitz, O. 1967. Die Inoceramen des Santon und Unter-Campan von Nordwestdeutschlands. III. Teil. Taxonomie und Stratigraphie der Untergattungen Endocostea, Haenleinia, Platyceramus, Cladoceramus, Selenoceramus, und Cordiceramus mit besonderer Berücksichtigung des Parasitismus bei diesen Untergattungen. Beihefte zum Geologischen Jahrbuch, 75:1171.Google Scholar
Seitz, O. 1970. Ueber einige Inoceramen aus der Oberen Kreide. Beihefte zum Geologischen Jahrbuch, 86:107171.Google Scholar
Seyve, C. 1990. Nannofossil biostratigraphy of the Cretaceous–Tertiary boundary in the French Basque Country. Centres de Recherches Exploration–Production Elf-Aquitaine, Bulletin, 14:553572.Google Scholar
Sornay, J. 1973. Sur les inocérames du Maestrichtien de Madagascar et sur une espèce de la Craie à Baculites du NW de la France. Annales de Paléontologie (Invertébrés), 59:8393.Google Scholar
Sornay, J. 1976. La faune d'Inocérames de Dau (région de Royan, Charente-Maritime) et remarques sur deux espèces de d'Orbigny: I. regularis et I. goldfussi . Annales de Paléontologie (Invertébrés), 62:118.Google Scholar
Sornay, J., and Bilotte, M. 1978. Faunes d'Inocérames du Campanien et du Maastrichtien des Pyrénées. Annales de Paléontologie (Invertébrés), 64:2745.Google Scholar
Sowerby, J. 1814. Proceedings of the meeting of the Linnæan Society, 11/1/1814. Annals of Philosophy, 4:448.Google Scholar
Speden, I. G. 1970. Generic status of the Inoceramus? tegulatus species group (Bivalvia) of the latest Cretaceous of North America and Europe. Postilla 145, 45 p.Google Scholar
Spicer, R. A., and Parrish, J. T. 1990. Latest Cretaceous woods of the central North Slope, Alaska. Palaeontology, 33:225242.Google Scholar
Stephenson, L. W. 1955. Owl Creek (Upper Cretaceous) fossils from Crowleys Ridge, southeastern Missouri. U.S. Geological Survey Professional Paper 274-E:97140.Google Scholar
Stephenson, L. W., and Monroe, W. H. 1940. The Upper Cretaceous deposits (Mississippi). Mississippi State Geological Survey Bulletin 40, 296 p.Google Scholar
Thomas, E. 1990. Late Cretaceous through Neogene deep-sea benthic foraminifers (Maud Rise, Weddell Sea, Antarctica): ODP leg 113 holes 689B and 690C, p. 571594. In Barker, P. F., Kennett, J. P. et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 113. U.S. Government Printing Office, Washington, D.C. Google Scholar
Tröger, K.-A., and Röhlich, P. 1980. Zur Variabilität und Paläobiogeographie von Inoceramus (Trochoceramus) ianjonaensis Sornay aus dem Maastricht von Libyen. Freiberger Forschungsheft C, 357:93103.Google Scholar
Wang, Y. L., Liu, Y.-G., and Schmitt, R. A. 1986. Rare earth element geochemistry of South Atlantic deep sea sediments: Ce anomaly change at ~54 My. Geochimica et Cosmochimica Acta, 50:13371355.Google Scholar
Ward, P. D. 1988. Maastrichtian ammonite and inoceramid ranges from Bay of Biscay Cretaceous–Tertiary boundary sections. Revista Española de Paleontologia, Extraordinario:116126.Google Scholar
Ward, P. D., and Kennedy, W. J. 1993. Maastrichtian ammonites from the Biscay region. Journal of Paleontology, Memoir 34, 58 p.Google Scholar
Ward, P. D., MacLeod, K., and Mount, J. 1991. End-Cretaceous molluscan extinction patterns in Bay of Biscay K/T boundary sections: two different patterns. Geology, 19:11811184.Google Scholar
Ward, P. D., Nelson, B. K., and MacLeod, K. G. 1992. Rapid change in strontium isotopic composition of seawater prior to the Cretaceous/Tertiary boundary—reply. Nature, 358:378.Google Scholar
Ward, P. D., Wiedmann, J., and Mount, J. 1986. Maastrichtian molluscan biostratigraphy and extinction patterns in a Cretaceous–Tertiary boundary section exposed at Zumaya, Spain. Geology, 14:899903.Google Scholar
Wegner, T. 1905. Die Granulatenkreide des westlichen Münsterlandes. Zeitschrift der Deutschen Geologischen Gesellschaft, 57:112232.Google Scholar
Whitfield, R. P. 1877. Preliminary report on the palaeontology of the Black Hills. U.S. Geographical and Geological Survey of the Rocky Mountain Region (Powell), 49 p.Google Scholar
Wiedmann, J. 1986. Macro-invertebrates and the Cretaceous–Tertiary boundary, p. 397409. In Walliser, O. (ed.), Global Bio-events. Lecture Notes in Earth Sciences, 8, Speringer-Verlag Co., Berlin-Heidelberg.Google Scholar
Wolfe, J. A., and Upchurch, G. R. 1987. North American nonmarine climates and vegetation during the Late Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology, 61:3377.Google Scholar
Zittel, K. A. 1881. Handbuch der Paläontologie. Abteilung Paläzoologie 2. Leipzig, München, 893 p.Google Scholar