Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-25T16:12:15.588Z Has data issue: false hasContentIssue false

Analysis of the Three-Dimensional Nanoscale Relationship of Ge Quantum Dots in a Si Matrix Using Focused Ion Beam Tomography.

Published online by Cambridge University Press:  21 March 2011

Alan J. Kubis
Affiliation:
Univ. of Virginia, Dept of Materials Science and Engineering, Charlottesville, VA 22904, U.S.A
Thomas E. Vandervelde
Affiliation:
Univ. of Virginia, Dept of Physics, Charlottesville, VA 22904, U.S.A
John C. Bean
Affiliation:
Univ. of Virginia, Dept of Electrical and Computer Engineering, Charlottesville, VA 22904, U.S.A
Derren N. Dunn
Affiliation:
Now at IBM Microelectronics, Hopewell Junction, NY 12533, U.S.A.
Robert Hull
Affiliation:
Univ. of Virginia, Dept of Materials Science and Engineering, Charlottesville, VA 22904, U.S.A
Get access

Abstract

It is well documented that buried layers in quantum dot (QD) superlattices influence the position of quantum dots in the subsequently grown layers through strain field interactions (e.g.1,2, 3,4). Using the Focused Ion Beam (FIB) tomographic technique we have reconstructed the 3D relationship of successive layers of coherent Ge QDs separated by epitaxial Si capping layers - a “QD superlattice”.

Techniques such as Atomic Force Microscopy (AFM) and Scanning Tunneling Microscopy (STM) can only look at a single surface layer of QDs or, in the case of Transmission Electron Microscopy (TEM), look at a two-dimensional projection of a three-dimensional volume so that 3D relationships need to be inferred. Since the strain interactions are complex, an enhanced fundamental understanding of these self-organization mechanisms can more directly be obtained from full 3D reconstructions of these structures.

By capping with Si at 300°C we were able to grow QD superlattices with QDs tens of nanometers in height. This places them within the resolution of the FIB tomographic technique to reconstruct. Using the FIB we performed in-situ serial sectioning of the QD superlattice and then reconstructed the QD superlattice. The reconstruction was then analyzed to investigate the ordering of the QDs.

Results from a reconstruction of a superlattice matrix will be presented with analysis of the self-ordering of the QDs. Observations of a novel self-limiting (in height) morphology, the quantum mesa, associated with the capping technique used will also be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Springholz, G., Pinczzolits, M., Holy, V., Zerlauth, S., Vavra, I., Bauer, G., Physica E 9, 149163 (2001).Google Scholar
2 Thanh, V. Le, Yam, V., Zheng, Y., Bouchier, D., Thin Solid Films 380, 29 (2000).Google Scholar
3 Tersoff, J., Teichert, C., Lagally, M.G., Phys. Rev. Lett. 76, 16751678 (1996).Google Scholar
4 Liu, F., Davenport, S.E., Evans, H.M., Lagally, M.G., Phys. Rev. Lett. 82, 25282531 (1999).Google Scholar
5 Huang, C.J., Li, D.Z., Cheng, B.W., Yu, J.Z., Wang, Q.M., Appl. Phys. Lett. 77, 28522854 (2000).Google Scholar
6 Tersoff, J., Phys. Rev. B 43, 93779380 (1991).Google Scholar
7 Madhukar, A.; Ramachandran, T.R., Konkar, A., Mukhametzhanov, I., Yu, W., Chen, P., Appl. Surf. Sci. 123/124, 266275 (1998).Google Scholar
8 Lutz, M.A.; Feenstra, R.M., Mooney, P.M., Tersoff, J., Chu, J.O., Surf. Sci. 316, L1075–L1080 (1994).Google Scholar
9 Stranski, I.N., Krastanov, L., Akad. Wiss. Wien, Math.-Naturwiss. Kl. II b, 146, 797 (1938).Google Scholar
10 Eaglesham, D.J., Cerullo, M., Phys. Rev. Lett. 64, 19431946 (1990).Google Scholar
11 Tomitori, M., Watanabe, K., Kobayashi, M., Nishikawa, O., Appl. Surf. Sci. 76/77, 322328 (1994).Google Scholar
12 Ross, F.M., Tromp, R.M., Reuter, M.C., Science 286, 19311934 (1999).Google Scholar
13 Mo, Y.-W., Savage, D.E., Swartzenruber, B.S., Lagally, M.G., Phys. Rev. Lett. 65, 10201023 (1990).Google Scholar
14 Hull, R. and Bean, J.C., Germanium Silicon: Physics and Material, Semiconductors and Semimetals, 56, 6 (1999).Google Scholar
15 Glocker, D.A. and Shah, S. I., Handbook of Thin Film Process Technology, Institute of Physics Publishing, E1.0:8 (1995).Google Scholar
16 Rastelli, A., Muller, E., Kanel, H. von, Appl. Phys. Lett. 80, 14381440 (2002).Google Scholar
17 JEOL LTD. Tokyo, Japan.Google Scholar
18 FEI Company, Hillsboro, OR 97124.Google Scholar
19 Photoshop, Version 6.0, Adobe Systems Inc., San Jose, CA 95110.Google Scholar
20 Fovea Pro, Reindeer Graphics Inc., Asheville, NC 28801.Google Scholar
21 MATLAB, Version 6.0, The Mathworks Inc., Natick, MA 01760.Google Scholar
22 Dunn, D.N., Hull, R.: Appl. Phys. Lett. 75, 34143416 (1999).Google Scholar
23 Dunn, D.N., Shiflet, G.J., Hull, R.: Rev. Sci. Instrum., 73, 330334 (2002).Google Scholar
24 Kubis, A.J., Shiflet, G.J, Dunn, D.N., Hull, R., Met. Mater. Trans. A., In Press.Google Scholar
25 Bischoff, J.L., Pirri, C., Dentel, D., Simon, L., Bolmont, D., Kubler, L., Mat. Sci. Eng. B 69/70, 374379 (2000).Google Scholar
26 Sutter, P., Lagally, M.G., Phys. Rev. Lett. 81, 34713474 (1998).Google Scholar
27 Rastelli, A., Muller, E., Kanel, H. von, Appl. Phys. Lett. 80, 14381440 (2002).Google Scholar
28 Dentel, D., Bischoff, J.L., Kubler, L., Werckmann, J., Romeo, M., J. Crystal Growth 191, 697710 (1998).Google Scholar