Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-09T07:16:49.791Z Has data issue: false hasContentIssue false

Basic Concepts in Electromigration

Published online by Cambridge University Press:  15 February 2011

Richard S. Sorbello*
Affiliation:
Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53201
Get access

Abstract

A review of basic concepts in electromigration is presented and recent theoretical developments are discussed. The microscopic origin of the driving force for electromigration is elucidated and, as an example, the driving force exerted on an impurity near a grain boundary is calculated in a jellium model. A connection is made between the calculated electromigration driving force and 1/f-noise measurements. Results of the first computer simulations of electromigration at the microscopic level are presented. It is found that dynamical recoil effects can lead to a significant enhancement of electromigration for light interstitial impurities.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Huntington, H. B., in Diffusion in Solids, edited by Nowick, A. S. and Burton, J. J. (Academic, New York, 1975), p. 303.Google Scholar
2. Sorbello, R. S., in Electro- and Thermo-transport in Metals and Alloys, edited by Hummel, R. E. and Huntington, H. B. (The Metallurgical Society of AIME, New York, 1977), p. 2.Google Scholar
3. Verbruggen, A. H., IBM J. Res. Dev. 32, 93 (1988).Google Scholar
4. Kwok, T. and Ho, P. S., in Diffusion Phenomena in Thin Films and Microelectronic Materials, edited by Gupta, D. and Ho, P. S. (Noyes Publications, Park Ridge, New Jersey, 1988), p. 369.Google Scholar
5. Fiks, V. B., Fiz. Tverd. Tela (Leningrad) 1, 16 (1959) [Sov. Phys.-Solid State 1, 14 (1959)].Google Scholar
6. Huntington, H. B. and Grone, A. R., J. Phys. Chem. Solids 20, 76 (1961).Google Scholar
7. Bosvieux, C. and Friedel, J., J. Phys. Chem. Solids 23, 123 (1962).Google Scholar
8. Sorbello, R. S. and Dasgupta, B. B., Phys. Rev. B 21, 2196 (1980).Google Scholar
9. Sorbello, R. S., Phys. Rev. B 31, 798 (1985).Google Scholar
10. Sorbello, R. S., J. Phys. Chem. Solids 34, 937 (1973).Google Scholar
11. Genoni, T. C. and Huntington, H. B., Phys. Rev. B 16, 1344 (1977).Google Scholar
12. Lou, L., Schaich, W. L. and Swihart, J. C., Phys. Rev. B 33, 2170 (1986).Google Scholar
13. Sorbello, R. S., Lodder, A. and Hoving, S. J., Phys. Rev. B 25, 6178 (1982).Google Scholar
14. Gupta, R. P., Phys. Rev. B 25, 5188 (1982).Google Scholar
15. Ek, J. van, Electromigration in Transition Metals (Ph.D. Thesis, Centrale Huisdrukkerij Vrije Universiteit, Amsterdam, 1991); J. van Ek and A. Lodder, Solid State Communications 73, 373 (1990).Google Scholar
16. Lodder, A., J. Phys. F. 14, 2943 (1984).Google Scholar
17. Landauer, R., IBM J. Res. Develop. 1, 223 (1957); See also: R. Landauer, Z. Phys. B 21, 247 (1975); R. S. Sorbello and C. S. Chu, IBM J. Res. Develop. 32, 58 (1988).Google Scholar
18. Landauer, R. and Woo, J.W.F., Phys. Rev. B 10, 1266 (1974).Google Scholar
19. Schaich, W. L., Phys. Rev. B 13, 3350 (1976).Google Scholar
20. Sham, L. J., Phys. Rev. B 12, 3142 (1975).Google Scholar
21. Landauer, R., Phys. Rev. B 14, 1474 (1976).Google Scholar
22. Das, A. K. and Peierls, R., J. Phys. C 6, 2811 (1973).Google Scholar
23. Sorbello, R. S. and Dasgupta, B., Phys. Rev. B 16, 5193 (1977).Google Scholar
24. Schaich, W. L., Phys. Rev. B 19, 620 (1979).Google Scholar
25. Dasgupta, B. B. and Sorbello, R. S., Phys. Rev. B 21, 4196 (1980).Google Scholar
26. Chu, C. S. and Sorbello, R. S., J. Phys. Chem. Solids 52, 501 (1991).Google Scholar
27. Kumar, P. and Sorbello, R. S., Thin Solid Films 25, 25 (1975).Google Scholar
28. Rimbey, P. R. and Sorbello, R. S., Phys. Rev. B 21, 2150 (1980).Google Scholar
29. Turban, L., Noziéres, P. and Gerl, M., J. de Physique 37, 159 (1976).Google Scholar
30. Lodder, A., Solid State Commun. 71, 259 (1989); R. S. Sorbello, Solid State Commun. 76, 747 (1990).Google Scholar
31. Sorbello, R. S., Phys. Rev. B 39, 4984 (1989).Google Scholar
32. Sorbello, R. S., Technical Report RADC-TR-90-15 (Rome Air Development Center, Griffiss AFB, NY, 1990).Google Scholar
33. Zimmerman, N. W. and Webb, W. W., Phys. Rev. Lett. 61, 889 (1988); J. Pelz and J. Clarke, Phys. Rev. B 36, 4479 (1987).Google Scholar
34. Sorbello, R. S., Phys. Rev. Lett. 63, 1815 (1989).Google Scholar
35. For recent work in mesoscopic systems, see Ref. 31 and Ralls, K. S., Ralph, D. C. and Buhrman, R. A., Phys. Rev. B 40, 11561 (1989).Google Scholar