Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-21T22:52:31.976Z Has data issue: false hasContentIssue false

Cu gettering in Si cavities observed by Positron Annihilation Doppler Broadening

Published online by Cambridge University Press:  17 March 2011

H. Schut
Affiliation:
Interfaculty Reactor Institute, Delft University of Technology, Mekelweg 15, NL-2629 JB Delft, The Netherlands
A. van Veen
Affiliation:
Interfaculty Reactor Institute, Delft University of Technology, Mekelweg 15, NL-2629 JB Delft, The Netherlands
S.W.H. Eijt
Affiliation:
Interfaculty Reactor Institute, Delft University of Technology, Mekelweg 15, NL-2629 JB Delft, The Netherlands
Get access

Abstract

In this study we present the results of Positron Beam Annihilation (PBA) experiments on the gettering of copper in Cz-Si implanted with 33 keV He+ ions with doses ranging from 0.5 to 3× 1016cm−2 followed by an anneal treatment at 1100 K under N2 ambient. For the higher doses this yields a sub-surface layer containing nanometer sized cavities. Copper is introduced into these cavities by diffusing from the backside of the wafer at 1000 K, again under N2 ambient. Mapping of the S and W Doppler broadening parameters, with the implantation dose as running parameter, shows the formation of cavities. After the Cu in-diffusion the change in the values of the characteristic S-W cluster points clearly demonstrates the arrival of Cu at the internal surface of the cavities.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Griffioen, C.C., Evans, J.H., Jong, P.C. de and Veen, A. van, Nucl. Instr. and Meth. B28, 360 (1987).Google Scholar
2. Myers, S.M., Bishop, D.M., Follsteadt, D.M., Stein, H.J. and Wampler, W.R., Mat. Res. Soc. Symp. Vol 283, 549 (1993).Google Scholar
3. Raineri, V., Battigla, A., Rimini, E., Nucl. Instr. Meth. B96, 249 (1995).Google Scholar
4. Veen, A. van, Schut, H. and Mijnarends, P.E., Chapter 6 in Positron beams and their applications, Coleman, P.G. (Ed.), (World Scientific, Singapore, 2000) p. 191225.Google Scholar
5. Kögler, R., Peeva, A., Anwand, W., Brauer, G., Skorupa, W., Werner, P. and Gösele, U., Appl. Phys. Lett. 75, 1279 (1999).Google Scholar
6. Valkealahti, S. and Nieminen, R.M., Appl. Phys. A 35, 51 (1984).Google Scholar
7. Hakvoort, R.A., Veen, A. van, Mijnarends, P.E. and Schut, H., Proceedings SLOPOS-6, Appl. Surf. Sci. 85, 271 (1995).Google Scholar
8. Ziegler, J.F., Biersack, J.P. and Littmark, U., The stopping and Range of Ions in Solids (TRIM), (Pergamon, New York, 1985).Google Scholar
9. Veen, A. van, Schut, H., Vries, J. de, Hakvoort, R.A. and IJpma, M.R., Positron beams for solids and surfaces, AIP Conf. Proc. 218, eds. Schultz, P.J., Massoumi, G.R. and Simpson, P.J. (AIP, New York, 1990).Google Scholar
10. Dannefaer, S. and Kerr, D., J. Appl. Phys. 60, 1313 (1986).Google Scholar