Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-07T18:53:08.334Z Has data issue: false hasContentIssue false

Reduced basis method for finite volume approximations of parametrized linear evolution equations

Published online by Cambridge University Press:  27 March 2008

Bernard Haasdonk
Affiliation:
Institute of Mathematics, University of Freiburg, Hermann-Herder-Str. 10, 79104 Freiburg, Germany. haasdonk@mathematik.uni-freiburg.de
Mario Ohlberger
Affiliation:
Institute of Numerical and Applied Mathematics, University of Münster, Einsteinstr. 62, 48149 Münster, Germany. mario.ohlberger@math.uni-muenster.de
Get access

Abstract

The model order reduction methodology of reduced basis (RB) techniques offers efficient treatment of parametrized partial differential equations (P2DEs) by providing both approximate solution procedures and efficient error estimates. RB-methods have so far mainly been applied to finite element schemes for elliptic and parabolic problems. In the current study we extend the methodology to general linear evolution schemes such as finite volume schemes for parabolic and hyperbolic evolution equations. The new theoretic contributions are the formulation of a reduced basis approximation scheme for these general evolution problems and the derivation of rigorous a-posteriori error estimates in various norms. Algorithmically, an offline/online decomposition of the scheme and the error estimators is realized in case of affine parameter-dependence of the problem. This is the basis for a rapid online computation in case of multiple simulation requests. We introduce a new offline basis-generation algorithm based on our a-posteriori error estimator which combines ideas from existing approaches. Numerical experiments for an instationary convection-diffusion problem demonstrate the efficient applicability of the approach.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almroth, B.O., Stern, P. and Brogan, F.A., Automatic choice of global shape functions in structural analysis. AIAA J. 16 (1978) 525528. CrossRef
Arnold, D.N., Brezzi, F., Cockburn, B. and Marini, L.D., Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002) 17491779. CrossRef
Bardos, C., Leroux, A.Y. and Nedelec, J.C., First order quasilinear equations with boundary conditions. Comm. Partial Diff. Eq. 4 (1979) 10171034. CrossRef
Barrault, M., Maday, Y., Nguyen, N.C. and Patera, A.T., An `empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations. C. R. Acad. Sci. Paris Ser. I Math. 339 (2004) 667672. CrossRef
T. Barth and M. Ohlberger, Finite volume methods: Foundation and analysis, in Encyclopedia of Computational Mechanics, E. Stein, R. de Borst and T.J.R. Hughes Eds., John Wiley & Sons (2004).
Carrillo, J., Entropy solutions for nonlinear degenerate problems. Arch. Ration. Mech. Anal. 147 (1999) 269361. CrossRef
B. Cockburn, Discontinuous Galerkin methods for computational fluid dynamics, in Encyclopedia of Computational Mechanics, E. Stein, R. de Borst and T.J.R. Hughes Eds., John Wiley & Sons (2004).
Cockburn, B. and Shu, C.-W., Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16 (2001) 173261. CrossRef
Coudiere, Y., Vila, J.P. and Villedieu, P., Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem. ESAIM: M2AN 33 (1999) 493516. CrossRef
R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in Handbook of numerical analysis, volume VII, North-Holland, Amsterdam (2000) 713–1020.
Eymard, R., Gallouët, T., Herbin, R. and Michel, A., Convergence of a finite volume scheme for nonlinear degenerate parabolic equations. Numer. Math. 92 (2002) 4182. CrossRef
Eymard, R., Gallouët, T. and Herbin, R., A cell-centred finite volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension. IMA J. Numer. Anal. 26 (2006) 326353. CrossRef
E. Godlewski and P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer (1996).
M.A. Grepl, Reduced-basis Approximations and a Posteriori Error Estimation for Parabolic Partial Differential Equations. Ph.D. thesis, Massachusetts Institute of Technology, USA (2005).
Grepl, M.A. and Patera, A.T., A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. ESAIM: M2AN 39 (2005) 157181. CrossRef
P. Grisvard, Singularities in boundary value problems, Recherches en Mathématiques Appliquées 22 [Research in Applied Mathematics]. Masson, Paris (1992).
R. Herbin and M. Ohlberger, A posteriori error estimate for finite volume approximations of convection diffusion problems, in Proc. 3rd Int. Symp. on Finite Volumes for Complex Applications - Problems and Perspectives (2002) 753–760.
Higdon, R.L., Initial-boundary value problems for linear hyperbolic systems. SIAM Rev. 28 (1986) 177217. CrossRef
Jasor, M.-J. and Lévi, L., Singular perturbations for a class of degenerate parabolic equations with mixed Dirichlet-Neumann boundary conditions. Ann. Math. Blaise Pascal 10 (2003) 269296. CrossRef
D. Kröner, Numerical Schemes for Conservation Laws. John Wiley & Sons and Teubner (1997).
R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems. Cambridge University Press (2002).
Machiels, L., Maday, Y., Oliveira, I.B., Patera, A. and Rovas, D.V., Output bounds for reduced-basis approximations of symmetric positive definite eigenvalue problems. C. R. Acad. Sci. Paris Ser. I Math. 331 (2000) 153158. CrossRef
Mangold, M. and Sheng, M., Nonlinear model reduction of a 2D MCFC model with internal reforming. Fuel Cells 4 (2004) 6877. CrossRef
B.C. Moore, Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Trans. Automat. Control AC-26 (1981) 17–32. CrossRef
N.C. Nguyen, K. Veroy and A.T. Patera, Certified real-time solution of parametrized partial differential equations, in Handbook of Materials Modeling, S. Yip Ed., Springer (2005) 1523–1558.
Noor, A.K. and Peters, J.M., Reduced basis technique for nonlinear analysis of structures. AIAA J. 18 (1980) 455462.
Ohlberger, M., A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations. ESAIM: M2AN 35 (2001) 355387. CrossRef
Ohlberger, M., A posteriori error estimate for finite volume approximations to singularly perturbed nonlinear convection-diffusion equations. Numer. Math. 87 (2001) 737761. CrossRef
Ohlberger, M. and Vovelle, J., Error estimate for the approximation of non-linear conservation laws on bounded domains by the finite volume method. Math. Comp. 75 (2006) 113150. CrossRef
A.T. Patera and G. Rozza, Reduced Basis Approximation and a Posteriori Error Estimation for Parametrized Partial Differential Equations. Version 1.0, Copyright MIT 2006, to appear in (tentative rubric) MIT Pappalardo Graduate Monographs in Mechanical Engineering.
Porsching, T.A. and Lee, M.L., The reduced basis method for initial value problems. SIAM J. Numer. Anal. 24 (1987) 12771287. CrossRef
Prud'homme, C., Rovas, D., Veroy, K. and Patera, A.T., A mathematical and computational framework for reliable real-time solution of parametrized partial differential equations. ESAIM: M2AN 36 (2002) 747771. CrossRef
Prud'homme, C., Rovas, D.V., Veroy, K., Machiels, L., Maday, Y., Patera, A.T. and Turinici, G., Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods. J. Fluids Engineering 124 (2002) 7080. CrossRef
A. Quarteroni, G. Rozza, L. Dede and A. Quaini, Numerical approximation of a control problem for advection-diffusion processes, in System Modeling and Optimization, Proceedings of 22nd IFIP TC7 Conference (2006).
Rovas, D.V., Machiels, L. and Maday, Y., Reduced basis output bound methods for parabolic problems. IMA J. Numer. Anal. 26 (2006) 423445. CrossRef
Rowley, C.W., Model reduction for fluids, using balanced proper orthogonal decomposition. Int. J. Bifurcat. Chaos 15 (2005) 9971013. CrossRef
G. Rozza, Shape design by optimal flow control and reduced basis techniques: Applications to bypass configurations in haemodynamics. Ph.D. thesis, École Polytechnique Fédérale de Lausanne, Switzerland (2005).
B. Schölkopf and A.J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond. MIT Press (2002).
T. Tonn and K. Urban, A reduced-basis method for solving parameter-dependent convection-diffusion problems around rigid bodies. Technical Report 2006-03, Institute for Numerical Mathematics, Ulm University, ECCOMAS CFD (2006).
Veroy, K. and Patera, A.T., Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: Rigorous reduced-basis a posteriori error bounds. Int. J. Numer. Meth. Fluids 47 (2005) 773788. CrossRef
Veroy, K., Prud'homme, C. and Patera, A.T., Reduced-basis approximation of the viscous Burgers equation: rigorous a posteriori error bounds. C. R. Acad. Sci. Paris Ser. I Math. 337 (2003) 619624. CrossRef