Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-21T09:01:25.609Z Has data issue: false hasContentIssue false

Dielectric Properties of PCB Embedded Bismuth-Zinc-Niobium Films Prepared using RF Magnetron Sputtering

Published online by Cambridge University Press:  26 February 2011

Seungeun Lee
Affiliation:
seungeun38.lee@samsung.com, Samsung Electro-Mechanics, eMD Lab, 314,Maetan3-dong, Yeongtong-gu, Suwon, N/A, Korea, Republic of
Jung Won Lee
Affiliation:
jungwon88.lee@samsung.com, Samsung Electro-Mechanics, eMD Lab, 314,Maetan3-dong, Yeongtong-gu, Suwon, N/A, Korea, Republic of
Inhyung Lee
Affiliation:
ihyung.lee@samsung.com, Samsung Electro-Mechanics, eMD Lab, 314,Maetan3-dong, Yeongtong-gu, Suwon, N/A, Korea, Republic of
Yul Kyo Chung
Affiliation:
ykchung@samsung.com, Samsung Electro-Mechanics, eMD Lab, 314,Maetan3-dong, Yeongtong-gu, Suwon, N/A, Korea, Republic of
Get access

Abstract

Dielectric properties of bismuth-zinc-niobium oxide (Bi1.5Zn1.0Nb1.5O7, BZN) thin films have been investigated for embedded capacitor. Crystalline BZN has a pyrochlore structure in nature and shows a dielectric constant of ∼ 200 and very low leakage current when crystallized. Since the process temperature is limited to < 200 due to an organic based substrate in printed circuit board, as-deposited BZN film is composed of an amorphous phase, confirmed by XRD analysis. However, it shows remarkably high dielectric constant of 113. It makes BZN to be a proper candidate as a decoupling embedded capacitor in power delivery circuits. Effects of post treatment such as oxygen plasma treatment and low temperature thermal annealing on dielectric properties of BZN thin films are studied. By optimizing deposition conditions, amorphous BZN thin film is well processed in the current PCB process and provides a capacitance density as high as 218 nF/cm2 and leakage current less than 1 μA/cm2 at 3V.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Borland, W. J. and Ferguson, S., Circuit Tree, March (2001).Google Scholar
2. Madou, A. and Martens, L., IEEE Trans. On Electromag. Compatibility 43, 549 (2001)Google Scholar
3. Bhattacharya, S. K. and Tummala, R. R., J. Mater. Sci.-Mater. Electron. 11, 253 (2000)Google Scholar
4. Ulrich, R. K., Schaper, L. W., Integrated passive component technology (A John Wiley & Sons, INC.), p. 229 (2003)Google Scholar
5. Jain, P., Rymaszewski, E. J., IEEE trans. Adv. Packaging, 25(3), 454 (2002)Google Scholar
6. Kim, T., Kingon, A I., Maria, J P. and Croswell, R T., J. Mater. Res. 19, 2841 (2004).Google Scholar
7. Kim, Taeyun, Hanson, Jacqueline N., Gruverman, Alexei, Kingon, Angus I., and Streiffer, S. K., Appl. Phys. Lett. 88, 262907 (2006)Google Scholar
8. Maria, J. P., Cheek, K., Streiffer, S., Kim, S. H., Dunn, G., and Kingon, A., J. Am. Ceram. Soc. 84, 2436 (2001)Google Scholar
9. Thayer, R. L., Randall, C. A. and Trolier-McKinstry, S., J. Appl. Phys. 94, 1941 (2003).Google Scholar
10. ] Lu, J., Klenov, D. O. and Stemmer, S., Appl. Phys. Lett. 84, 957 (2004).Google Scholar
11. Lu, J. and Stemmer, S., Appl. Phys. Lett. 83, 2411 (2003).Google Scholar
12. Park, J., Lu, J., Stemmer, S. and York, R. A., J. Appl. Phys. 97, 084110 (2005).Google Scholar
13. Lu, J., Chen, Z., Taylor, T. R. and Stemmer, S., J. Vac. Sci. Technol. A 21, 1745 (2003).Google Scholar
14. Hong, Y. P., Ha, S., Lee, H. Y., Lee, Y. C., Ko, K. H., Kim, D. W., Hong, H. B. and Hong, K. S., Thin Solid Films, 419, 183 (2002).Google Scholar
15. Nino, J. C., Lanagan, M. T., Randall, C. A. and Kamba, S., Appl. Phys. Lett., 81, 4404 (2002).Google Scholar
16. Kamba, S., Porokhonskyy, V., Pashkin, A., Bovtun, V., Pezelt, J., Nino, J. C., Trolier-McKinstry, S., Lanagan, M. T. and Randall, C. A., Phys. Rev. B 66, 054106 (2002).Google Scholar
17. Kim, I.L., Choi, Y.W. and Tuller, H.L., Appl. Phys. Lett. 87,43509 (2005)Google Scholar
18. Levin, I., Amos, T.G., Nino, J.C., Vanderah, T.A., Randall, C.A. and Lanagan, M.T., J. Solid State Chem., 168, 69 (2002)Google Scholar