Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-09-23T03:29:32.086Z Has data issue: false hasContentIssue false

Origin of the multi-exponential decay dynamics in light-emitting silicon nanocrystals

Published online by Cambridge University Press:  01 February 2011

Cécile Reynaud
Affiliation:
LFP (CEA-CNRS URA 2453), Service des Photons Atomes et Molécules, DSM, CEA-Saclay, France
Olivier Guillois
Affiliation:
LFP (CEA-CNRS URA 2453), Service des Photons Atomes et Molécules, DSM, CEA-Saclay, France
Nathalie Herlin-Boime
Affiliation:
LFP (CEA-CNRS URA 2453), Service des Photons Atomes et Molécules, DSM, CEA-Saclay, France
Gilles Ledoux
Affiliation:
LPCML, UMR CNRS 5620, Université Claude Bernard Lyon I, Villeurbanne, France Institute of Solid State Physics, University of Jena, and MPI for Astronomy, Heidelberg, Germany
Friedrich Huisken
Affiliation:
Institute of Solid State Physics, University of Jena, and MPI for Astronomy, Heidelberg, Germany
Get access

Abstract

Light-emitting silicon nanocrystals (nc-Si) have attracted much interest due to their importance for optoelectronic devices. Electron hole recombination in a quantum confined system is generally considered as the theoretical frame explaining the photoluminescence (PL) origin. However, there is still a living debate, in particular regarding the PL decay dynamics. The decay is not single exponential and decay curves described by a stretched exponential law were systematically reported for all types of nanocrystalline silicon. The origin of this multi-exponential decay is often attributed to migration effects of the excitons between nanocrystals. In contrast to these approaches, the absence of carrier hopping has been demonstrated experimentally in porous silicon. In order to elucidate this question, specific samples were prepared, consisting in deposits made from gas phase grown silicon nanocrystals with different particle density. The nanoparticles were synthesized by laser pyrolysis of silane in a gas flow reactor, extracted as a supersonic beam, size-selected, and deposited downstream as films of variable densities by changing the deposition time. The nanoparticle number densities were determined by atomic force microscopy. Time-resolved photoluminescence measurements on these films were carried out as a function of the film density and at different PL wavelengths. The reported results showed photoluminescence properties independent of the film density. Even in the very low density film (∼4*109 particles/cm2) where nanoparticles are completely isolated from each other, the decay kinetics corresponds to a multi-exponential law. This means that exciton migration alone cannot explain the stretched exponential decay. Its origin must be linked to an intrinsic characteristic of the nc-Si particle. In this paper, the experimental results are described in more details and compared to the theoretical predictions available in the frame of the quantum confinement model. Then, the possible origins of the multi-exponential character of the decay dynamics is discussed, and the particular properties of the PL in indirect band-gap semiconductors emphasized.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2. Lehmann, V. and Gösele, U., Appl. Phys. Lett. 58, 856 (1991).Google Scholar
3. Chen, X., Henderson, B., O'Donnel, K. P., Appl. Phys. Lett. 60, 2672 (1992).Google Scholar
4. Bustarret, E., Mihalcescu, I., Ligeon, M., Romestain, R., Vial, J. C., Madeore, F., J. Lumin. 57, 105 (1993).Google Scholar
5. Pavesi, L., Ceschini, M., Phys. Rev. B 48, 17625 (1993).Google Scholar
6. Mihalcescu, I., Vial, J. C., Romestain, R., J. Appl. Phys. 80, 2402 (1996).Google Scholar
7. Linnros, J., Lalic, N., Galeckas, A., Grivickas, V., J. Appl. Phys. 86, 6128 (1999).Google Scholar
8. Ledoux, G., Guillois, O., Huisken, F., Kohn, B., Paillard, V., Porterat, D., Reynaud, C., Phys. Rev. B 62, 15942 (2000).Google Scholar
9. Priolo, F., Franzo, G., Pacifici, D., Vinciguerra, V., Iacona, F., Irrera, A., J. Appl. Phys. 89, 264 (2001).Google Scholar
10. Amans, D., Guillois, O., Ledoux, G., Porterat, D., Reynaud, C., J. Appl. Phys. 91, 5334 (2002).Google Scholar
11. Huisken, F., Ledoux, G., Guillois, O., Reynaud, C., Adv. Mater. 14, 1861 (2002).Google Scholar
12. Suzuki, K., Bley, G., Neukirch, U., et al., Solid State Commun. 105, 571 (1998).Google Scholar
13. Nishikawa, N., Miyake, Y., Watanabe, E., et al., J. Non-Cryst. Solids 222, 221 (1997).Google Scholar
14. Lormes, W., Hundhausen, M., Ley, L., J. Non-Cryst. Solids 227–230, 570 (1998).Google Scholar
15. Dulieu, B., Wery, J., Lefrant, S., Bullot, J., Phys. Rev. B 57, 9118 (1998).Google Scholar
16. Kurita, A., Matsumoto, K., Shibata, Y., Kushida, T., J. Lumin. 76, 295 (1998).Google Scholar
17. Kuskovsky, I., Neumark, G. F., Bondarev, V. N., Pikhitsa, P. V., Phys. Rev. Lett. 80, 2413 (1998).Google Scholar
18. Huber, D. L., J. Lumin. 86, 95 (2000);Google Scholar
Garcia-Adeva, J., Huber, D. L., J. Lumin. 92, 65 (2000).Google Scholar
19. Chen, R., J. Lumin. 102–103, 510 (2003).Google Scholar
20. Heitmann, J., Müller, F., Xi, L., Zacharias, M., Kovalev, D., Eichhorn, F., Phys. Rev. B 69, 195309 (2004).Google Scholar
21. Mihalcescu, I., Vial, J. C., Romestain, R., Phys. Rev. Lett. 80, 3392 (1998).Google Scholar
22. Suemoto, T., Tanaka, K. and Nakajima, A., J. Phys. Soc. Jpn. 63, 190 (1994).Google Scholar
23. Delerue, C., Allan, G. and Lannoo, M., Phys. Rev. B 48, 11024 (1993).Google Scholar
24. Hybertsen, M. S., Phys. Rev. Lett. 72, 1514 (1994)Google Scholar
25. Delerue, C., Allan, G. and Lannoo, M., Phys. Rev. B 64, 193402 (2001).Google Scholar
26. Allan, G., Delerue, C., and Niquet, Y. M., Phys. Rev. B 63, 205301 (2001)Google Scholar
27. Ehbrecht, M., Huisken, F., Phys. Rev. B 59, 2975 (1999).Google Scholar
28. Guillois, O., Herlin-Boime, N., Reynaud, C., Ledoux, G., Huisken, F., J. Appl. Phys. 95, 3677 (2004)Google Scholar
29. Ledoux, G., Gong, J., Huisken, F., Guillois, O., Reynaud, C., Appl. Phys. Lett. 80, 4834 (2002).Google Scholar
30. Hofmeister, H., Huisken, F., Kohn, B., Eur. Phys. J. D 9, 137 (1999).Google Scholar
31. Delerue, C. and Lannoo, M., Nanostructures: theory and modeling, Series Nanosciences and nanotechnology, Springer-Verlag Berlin Heidelberg New-York (2004)Google Scholar
32. Crooker, S. A., Hollingsworth, J. A., Tretiak, S. and Klimov, V. I., Phys. Rev. Lett. 89, 186802 (2002).Google Scholar