Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-03T22:33:37.344Z Has data issue: false hasContentIssue false

Ultrathin oxide film formation using radical oxygen in a UHV system

Published online by Cambridge University Press:  10 February 2011

K. Watanabe
Affiliation:
NEC Corporation, Silicon Systems Research Laboratories, 34 Miyukigaoka, Tsukuba, Ibaraki 305-8501, JAPANwatanabe@lbr.cl.nec.co.jp
S. Kimura
Affiliation:
NEC Corporation, Silicon Systems Research Laboratories, 34 Miyukigaoka, Tsukuba, Ibaraki 305-8501, JAPANwatanabe@lbr.cl.nec.co.jp
T. Tatsumi
Affiliation:
NEC Corporation, Silicon Systems Research Laboratories, 34 Miyukigaoka, Tsukuba, Ibaraki 305-8501, JAPANwatanabe@lbr.cl.nec.co.jp
Get access

Abstract

Radical oxidation at thickness of under 2.0 nm in an ultrahigh vacuum (UHV) system with an electron cyclotron resonance (ECR) plasma has been studied. The interface roughness and oxide density were evaluated by atomic force microscopy (AFM) and grazing incidence xray reflectrometry, respectively. We found the oxide thickness could be easily controlled at Tsub = 750°C when using radical oxygen at 5.0×10−3Torr. The interface roughness at a thickness of 1.8 nm, measured by the root mean square (RMS), was 0.11 nm. The density of the radical oxide fell as the oxide thickness decreased, especially at less than 2.0 nm. However, the density of the radical oxide annealed in molecular oxygen at 5×10−3Torr and Tsub = 750°C increased, without the oxide thickness increasing. We think that the first insertion of an oxygen atom into the first Si layer has a much higher energy barrier than that into a SiOx layer. The radical oxygen can pass through this higher energy barrier, and thus oxygen molecules fill the oxide layers. This mechanism means that we can control the oxide thickness and density separately at thickness of less than 2.0 nm through the radical oxidation time and the annealing time in molecular oxygen. We expect low-pressure radical oxidation to be the most suitable process for future ultrathin gate oxidation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Hasegawa, E., Akimoto, K., Tsuji, M., Kubota, T., and Ishitani, A., Ext. Abstr. 1993 Int. Conf. Solid State Devices and Materials, Makuhari, 86 (1993).Google Scholar
2 Hattori, T., Yamagishi, H., Koike, N., Imai, K., and Yamabe, K., Appl. Surf. Sci. 41/42, 416 (1993).10.1016/0169-4332(89)90094-9Google Scholar
3 Akimoto, K., Hasegawa, E., Tsukiji, M., Kubota, T., Kimura, S., and Ishitani, A., Ext. Abstr. 1993 The Jpn. Soc. of Appl. Phys. 645 (1993).Google Scholar
4 Hasegawa, E., Ishitani, A., Akimoto, K., Tsukiji, M., and Ohta, N., J. Electronchem. Soc. 142, 273 (1995).10.1149/1.2043901Google Scholar
5 Lai, L., Hevert, K. J., and Irene, E. A., J. Vac. Sci. Technol. B17, 53 (1999).10.1116/1.590516Google Scholar
6 Mishima, M., Yasui, T., Mizuniwa, T., Abe, M., and Ohmi, T., IEEE Trans. Semicond. Manufac. 2 (3), 65 (1989).Google Scholar
7 Ohmi, T., Miyashita, M., Itano, M., Imaoka, T., and Kawanabe, I., IEEE Trans. Electron Devices 39 (3), 537 (1992).10.1109/16.123475Google Scholar
8 Ohmi, K., Nakamura, K., Futatsuki, T., Makihara, K., and Ohmi, T., SSDM ‘93, 149 (1993).Google Scholar
9 Lin, H. C., Kan, E. C., Yamanaka, T., and Helms, C. R., Dig. Of Tech. Papers 1997 Symp. On VLSI Tech., Kyoto, 43 (1997).Google Scholar
10 Matsumoto, Y, and Uemura, Y., Jpn. J. Appl. Phys. Suppl. 2, 367 (1974).Google Scholar
11 Koga, J., Takagi, S., and Toriumi, A., IEDM Tech. Dig., 475 (1994).Google Scholar
12 Nagamine, M., Itoh, H., Satake, H., and Toriumi, A., IEDM 98-593 (1998).Google Scholar
13 Gelain, C., Cassuto, A., and Goff, P. Le, Oxid. Matals 3, 139 (1971).10.1007/BF00603483Google Scholar
14 Jellison, G. E. Jr., Opticals Materials 1, 151 (1992).10.1016/0925-3467(92)90022-FGoogle Scholar
15 Engel, T., Surf. Sci. Rep. 18 (4), 105 (1993).10.1016/0167-5729(93)90016-IGoogle Scholar
16 Watanabe, H., Kato, K., Uda, T., Fujita, K., and Ichikawa, M., Phys. Rev. Lett. 80, 345 (1998).10.1103/PhysRevLett.80.345Google Scholar
17 Todorov, S. S., and Fossum, E. R., Appl. Phys. Lett. 52, 48 (1988).10.1063/1.99313Google Scholar
18 Engstrom, J. R., Bonser, D. J., and Engel, T., Surf. Sci. 268, 238 (1992).10.1016/0039-6028(92)90966-AGoogle Scholar
19 Engstrom, J. R., Bonser, D. J., and Engel, T., Appl. Phys. Lett. 55, 2202 (1989).10.1063/1.102352Google Scholar