Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T16:42:02.227Z Has data issue: false hasContentIssue false

Synthetic biology for the development of bio-based binders for greener construction materials

Published online by Cambridge University Press:  24 April 2019

Virginia Echavarri-Bravo
Affiliation:
School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK
Ian Eggington
Affiliation:
School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK
Louise E. Horsfall*
Affiliation:
School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK
*
Address all correspondence to Louise E. Horsfall at Louise.Horsfall@ed.ac.uk
Get access

Abstract

The development of more sustainable construction materials is a crucial step toward the reduction of CO2 emissions to mitigate climate change issues and minimize environmental impacts of the associated industries. Therefore, there is a growing demand for bio-based binders which are not only safer toward human and environmental health but also facilitate cleaner disposal of the construction materials and enable their compostability. Here, we summarize the most relevant bio-based polymers and molecules with applications in the construction sector. Due to the biologic nature of these materials, the existing biotechnologic processes, including synthetic biology, for their development and production have been evaluated.

Type
Synthetic Biology Prospectives
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.OECD/IEA: CO2 emissions from manufacturing industries and construction (% of total fuel combustion). Int. Energy Agency (2014). https://data.worldbank.org/indicator/EN.CO2.MANF.ZS (accessed January 27, 2018).Google Scholar
2.Du, Q., Lu, X., Li, Y., Wu, M., Bai, L., and Yu, M.: Carbon emissions in China's construction industry: calculations, factors and regions. Int. J. Environ. Res. Public Health 15, 1220 (2018).Google Scholar
3.Monahan, J. and Powell, J.C.: An embodied carbon and energy analysis of modern methods of construction in housing: a case study using a lifecycle assessment framework. Energy Build. 43, 179188 (2011).Google Scholar
4.Ansell, M.P., Ball, R.J., Lawrence, M., Maskell, D., Shea, A., and Walker, P.: Green composites for the built environment. In Green Compos (Elsevier, 2017), pp. 123148.Google Scholar
5.Hammond, G.P. and Jones, C.I.: Embodied energy and carbon in construction materials. Proc. Inst. Civ. Eng. Energy 161, 8798 (2008).Google Scholar
6.Akbarnezhad, A. and Xiao, J.: Estimation and minimization of embodied carbon of buildings: a review. Buildings 7, 5 (2017).Google Scholar
7.Pomponi, F. and Moncaster, A.: Scrutinising embodied carbon in buildings: the next performance gap made manifest. Renew. Sustain. Energy Rev. 81, 24312442 (2018).Google Scholar
8.World Steel Association: Steel and raw materials (2019).Google Scholar
9.Mayer, J., Bachner, G., and Steininger, K.W.: Macroeconomic implications of switching to process-emission-free iron and steel production in Europe. J. Clean. Prod. 210, 15171533 (2019).Google Scholar
10.Wang, N., Phelan, P.E., Harris, C., Langevin, J., Nelson, B., and Sawyer, K.: Past visions, current trends, and future context: a review of building energy, carbon, and sustainability. Renew. Sustain. Energy Rev. 82, 976993 (2018).Google Scholar
11.Paoli, L., Winkler, A., Guttová, A., Sagnotti, L., Grassi, A., Lackovičová, A., Senko, D., and Loppi, S.: Magnetic properties and element concentrations in lichens exposed to airborne pollutants released during cement production. Environ. Sci. Pollut. Res. 24, 1206312080 (2017).Google Scholar
12.Zhang, H., Chen, L., Tong, Y., Zhang, W., Yang, W., Liu, M., Liu, L., Wang, H., and Wang, X.: Impacts of supply and consumption structure on the mercury emission in China: an input-output analysis based assessment. J. Clean. Prod. 170, 96107 (2018).Google Scholar
13.Ip, K. and Miller, A.: Life cycle greenhouse gas emissions of hemp-lime wall constructions in the UK. Resour. Conserv. Recycl. 69, 19 (2012).Google Scholar
14.Nozahic, V. and Amziane, S.: Environmental, Economic and Social Context of Agro-Concretes. In Bio-Aggregate-Based Building Materials, edited by Amziane, S., Arnaud, L., and Challamel, N. (John Wiley & Sons, Inc., Hoboken, NJ, 2013), pp. 126.Google Scholar
15.Kinnane, O., Reilly, A., Grimes, J., Pavia, S., and Walker, R.: Acoustic absorption of hemp-lime construction. Constr. Build. Mater. 122, 674682 (2016).Google Scholar
16.Chabannes, M., Nozahic, V., and Amziane, S.: Design and multi-physical properties of a new insulating concrete using sunflower stem aggregates and eco-friendly binders. Mater. Struct. 48, 18151829 (2015).Google Scholar
17.Ferrero, B., Boronat, T., Moriana, R., Fenollar, O., and Balart, R.: Green composites based on wheat gluten matrix and posidonia oceanica waste fibers as reinforcements. Polym. Compos. 34, 16631669 (2013).Google Scholar
18.Pretot, S., Collet, F., and Garnier, C.: Life cycle assessment of a hemp concrete wall: impact of thickness and coating. Build. Environ. 72, 223231 (2014).Google Scholar
19.Arrigoni, A., Pelosato, R., Melià, P., Ruggieri, G., Sabbadini, S., and Dotelli, G.: Life cycle assessment of natural building materials: the role of carbonation, mixture components and transport in the environmental impacts of hempcrete blocks. J. Clean. Prod. 149, 10511061 (2017).Google Scholar
20.Mazhoud, B., Collet, F., Pretot, S., and Lanos, C.: Mechanical properties of hemp-clay and hemp stabilized clay composites. Constr. Build. Mater. 155, 11261137 (2017).Google Scholar
21.Escadeillas, G., Magniont, C., Amziane, S., and Nozahic, V.: Binders. In Bio-aggregate-based Building Materials (John Wiley & Sons, Inc., 2013), pp. 75116.Google Scholar
22.Ganesan, K., Rajagopal, K., and Thangavel, K.: Rice husk ash blended cement: assessment of optimal level of replacement for strength and permeability properties of concrete. Constr. Build. Mater. 22, 16751683 (2008).Google Scholar
23.Hemmila, V., Adamopoulos, S., Karlsson, O., and Kumar, A.: Development of sustainable bio-adhesives for engineered wood panels––a review. RSC Adv. 7, 3860438630 (2017).Google Scholar
24.Ji, X. and Guo, M.: Preparation and properties of a chitosan-lignin wood adhesive. Int. J. Adhes. Adhes. 82, 813 (2018).Google Scholar
25.Viikari, L., Hase, A., Qvintus-Leino, P., Kataja, K., Tuominen, S., and Gädda, L.: Lignin-based adhesives and a process for the preparation thereof. WO1998031763A1 (1998).Google Scholar
26.Viikari, L., Hase, A., Qvintus-Leino, P., Kataja, K., Tuominen, S., and Gädda, L.: Lignin-based adhesives for particle board manufacture. WO1998031764A1 (1998).Google Scholar
27.Mirnik, L., Kovačič, S., Huskić, M., Pahovnik, D., and Žagar, E.: Replacement of conventional dedusting agents with green alternatives in production of rock mineral wool insulation products. J. Appl. Polym. Sci. 133, 16 (2016).Google Scholar
28.Santiago-Medina, F., Foyer, G., Pizzi, A., Caillol, S., and Delmotte, L.: Lignin-derived non-toxic aldehydes for ecofriendly tannin adhesives for wood panels. Int. J. Adhes. Adhes. 70, 239248 (2016).Google Scholar
29.Moubarik, A., Pizzi, A., Allal, A., Charrier, F., Khoukh, A., and Charrier, B.: Cornstarch–mimosa tannin–urea formaldehyde resins as adhesives in the particleboard production. Starch––Stärke 62, 131138 (2010).Google Scholar
30.Aggarwal, P., Singh, R.P., and Aggarwal, Y.: Use of nano-silica in cement based materials—a review. Cogent Eng. 2, 1078018 (2015).Google Scholar
31.Xu, Q., Ma, J., Zhou, J., Wang, Y., and Zhang, J.: Bio-based core–shell casein-based silica nano-composite latex by double-in situ polymerization: synthesis, characterization and mechanism. Chem. Eng. J. 228, 281289 (2013).Google Scholar
32.Belakroum, R., Gherfi, A., Bouchema, K., Gharbi, A., Kerboua, Y., Kadja, M., Maalouf, C., Mai, T.H., El Wakil, N., and Lachi, M.: Hygric buffer and acoustic absorption of new building insulation materials based on date palm fibers. J. Build. Eng. 12, 132139 (2017).Google Scholar
33.Le, A.T., Gacoin, A., Li, A., Mai, T.H., Rebay, M., and Delmas, Y.: Experimental investigation on the mechanical performance of starch–hemp composite materials. Constr. Build. Mater. 61, 106113 (2014).Google Scholar
34.Le, A.T., Gacoin, A., Li, A., Mai, T.H., and El Wakil, N.: Influence of various starch/hemp mixtures on mechanical and acoustical behavior of starch-hemp composite materials. Compos. Part B Eng. 75, 201211 (2015).Google Scholar
35.Bourdot, A., Moussa, T., Gacoin, A., Maalouf, C., Vazquez, P., Thomachot-Schneider, C., Bliard, C., Merabtine, A., Lachi, M., Douzane, O., Karaky, H., and Polidori, G.: Characterization of a hemp-based agro-material: influence of starch ratio and hemp shive size on physical, mechanical, and hygrothermal properties. Energy Build. 153, 501512 (2017).Google Scholar
36.Collet, F., Prétot, S., and Lanos, C.: Hemp-straw composites: thermal and hygric performances. Energy Procedia 139, 294300 (2017).Google Scholar
37.Kobayashi, Y., Saito, T., and Isogai, A.: Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators. Angew. Chemie. 126, 1056210565 (2014).Google Scholar
38.Yang, X. and Cranston, E.D.: Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties. Chem. Mater. 26, 60166025 (2014).Google Scholar
39.Claramunt, J., Ardanuy, M., García-Hortal, J.A., and Filho, R.D.T.: The hornification of vegetable fibers to improve the durability of cement mortar composites. Cem. Concr. Compos. 33, 586595 (2011).Google Scholar
40.Lee, K.-Y., Shamsuddin, S.R., Fortea-Verdejo, M., and Bismarck, A.: Manufacturing of robust natural fiber preforms utilizing bacterial cellulose as binder. J. Vis. Exp. 87, 18 (2014).Google Scholar
41.Lacoste, C., El Hage, R., Bergeret, A., Corn, S., and Lacroix, P.: Sodium alginate adhesives as binders in wood fibers/textile waste fibers biocomposites for building insulation. Carbohydr. Polym. 184, 18 (2018).Google Scholar
42.Palumbo, M., Formosa, J., and Lacasta, A.M.: Thermal degradation and fire behaviour of thermal insulation materials based on food crop by-products. Constr. Build. Mater. 79, 3439 (2015).Google Scholar
43.Collet, F., Prétot, S., Mazhoud, B., Bessette, L., and Lanos, C.: Comparing hemp composites made with mineral or organic binder on thermal, hygric and mechanical point of view. In First Int. Conf. Bio-based Build. Mater. ICBBM 2015, Clermont Ferrand, 21–24, 2015.Google Scholar
44.Blok, R. and Teuffel, P. M.: Bio-Based Composite Bridge – Lessons Learned. Proc. IASS Annu. Symp. 2017 “Interfaces Archit. Eng. Sci., pp. 18, 2017.Google Scholar
45.Gu, J. and Catchmark, J.M.: Polylactic acid composites incorporating casein functionalized cellulose nanowhiskers. J. Biol. Eng. 7, 31 (2013).Google Scholar
46.Umemura, K., Inoue, A., and Kawai, S.: Development of new natural polymer-based wood adhesives I: dry bond strength and water resistance of konjac glucomannan, chitosan, and their composites. J. Wood Sci. 49, 221226 (2003).Google Scholar
47.Dahmen, J.: Soft futures: mushrooms and regenerative design. J. Arch. Educ. 71, 5764 (2017).Google Scholar
48.Remminghorst, U. and Rehm, B.H.A.: Bacterial alginates: from biosynthesis to applications. Biotechnol. Lett. 28, 17011712 (2006).Google Scholar
49.ChemSpider: Alginic acid. http://www.chemspider.com/Chemical-Structure.24589537.html (accessed February 23, 2019).Google Scholar
50.Gaytán, I., Peña, C., Núñez, C., Córdova, M.S., Espín, G., and Galindo, E.: Azotobacter vinelandii lacking the Na+-NQR activity: a potential source for producing alginates with improved properties and at high yield. World J. Microbiol. Biotechnol. 28, 27312740 (2012).Google Scholar
51.Szekalska, M., Puciłowska, A., Szymańska, E., Ciosek, P., and Winnicka, K.: Alginate: current use and future perspectives in pharmaceutical and biomedical applications. Int. J. Polym. Sci. 2016, 117 (2016).Google Scholar
52.Galindo, E., Peña, C., Núñez, C., Segura, D., and Espín, G.: Molecular and bioengineering strategies to improve alginate and polydydroxyalkanoate production by Azotobacter vinelandii. Microb. Cell Fact. 6, 7 (2007).Google Scholar
53.Segura, D., Guzmán, J., and Espín, G.: Azotobacter vinelandii mutants that overproduce poly-beta-hydroxybutyrate or alginate. Appl. Microbiol. Biotechnol. 63, 159163 (2003).Google Scholar
54.Núñez, C., Bogachev, A.V., Guzmán, G., Tello, I., Guzmán, J., and Espín, G.: The Na+-translocating NADH: ubiquinone oxidoreductase of Azotobacter vinelandii negatively regulates alginate synthesis. Microbiology 155, 249256 (2009).Google Scholar
55.Chen, W., Zhang, Y., Zhang, Y., Pi, Y., Gu, T., Song, L., Wang, Y., and Ji, Q.: CRISPR/Cas9-based Genome editing in Pseudomonas aeruginosa and cytidine deaminase-mediated base editing in Pseudomonas species. iScience 6, 222231 (2018).Google Scholar
56.Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., and Dorris, A.: Nanocelluloses: a new family of nature-based materials. Angew. Chemie Int. Ed. 50, 54385466 (2011).Google Scholar
57.Cavka, A., Guo, X., Tang, S.-J., Winestrand, S., Jönsson, L.J., and Hong, F.: Production of bacterial cellulose and enzyme from waste fiber sludge. Biotechnol. Biofuels 6, 25 (2013).Google Scholar
58.Tsouko, E., Kourmentza, C., Ladakis, D., Kopsahelis, N., Mandala, I., Papanikolaou, S., Paloukis, F., Alves, V., and Koutinas, A.: Bacterial cellulose production from industrial waste and by-product streams. Int. J. Mol. Sci. 16, 14832 (2015).Google Scholar
59.De France, K.J., Hoare, T., and Cranston, E.D.: Review of hydrogels and aerogels containing nanocellulose. Chem. Mater. 29, 46094631 (2017).Google Scholar
60.Kedzior, S.A., Dubé, M.A., and Cranston, E.D.: Cellulose nanocrystals and methyl cellulose as costabilizers for nanocomposite latexes with double morphology. ACS Sustain. Chem. Eng. 5, 1050910517 (2017).Google Scholar
61.Ng, H.-M., Sin, L.T., Bee, S.-T., Tee, T.-T., and Rahmat, A.R.: Review of nanocellulose polymer composite characteristics and challenges. Polym. Plast. Technol. Eng. 56, 687731 (2017).Google Scholar
62.Hubbe, M. A. and Rojas, O. J.: Colloidal stability and aggregation of lignocellulosic materials in aqueous suspension: a review. BioResources 3, 14191491 (2008).Google Scholar
63.Ben Mabrouk, A., Kaddami, H., Boufi, S., Erchiqui, F., and Dufresne, A.: Cellulosic nanoparticles from alfa fibers (Stipa tenacissima): extraction procedures and reinforcement potential in polymer nanocomposites. Cellulose 19, 843853 (2012).Google Scholar
64.Jiao, L., Su, M., Chen, L., Wang, Y., Zhu, H., and Dai, H.: Natural cellulose nanofibers as sustainable enhancers in construction cement. PLoS ONE 11, e0168422 (2016).Google Scholar
65.Koutinas, A.A., Vlysidis, A., Pleissner, D., Kopsahelis, N., Lopez Garcia, I., Kookos, I.K., Papanikolaou, S., Kwan, T.H., and Lin, C.S.K.: Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers. Chem. Soc. Rev. 43, 25872627 (2014).Google Scholar
66.Walker, K.T., Goosens, V.J., Das, A., Graham, A.E., and Ellis, T.: Engineered cell-to-cell signalling within growing bacterial cellulose pellicles. Microb. Biotechnol. 19 (2018).Google Scholar
67.Ahvazi, B., Cloutier, É, Wojciechowicz, O., and Ngo, T.-D.: Lignin profiling: a guide for selecting appropriate lignins as precursors in biomaterials development. ACS Sustain. Chem. Eng. 4, 50905105 (2016).Google Scholar
68.Fredheim, G.E. and Christensen, B.E.: Polyelectrolyte complexes: interactions between lignosulfonate and chitosan. Biomacromolecules 4, 232239 (2003).Google Scholar
69.Ernsberger, F.M. and France, W.G.: Portland cement dispersion by adsorption of calcium lignosulfonate. Ind. Eng. Chem. 37, 598600 (1945).Google Scholar
70.Wu, X.: Process for preparing ceramic products. Google Patents, US5656562A, 1997.Google Scholar
71.Major, B.J. and Radu, G.: Briquette binder composition. Google Patents, US6013116A, 2000.Google Scholar
72.Hüttermann, A., Nonninger, K., and Kharazipour, A.: Intermediate for the production of lignin polymerizates and their use in the production of derived timber products. WO1998031729A1, 1998.Google Scholar
73.Theng, D., El Mansouri, N.E., Arbat, G., Ngo, B., Delgado-Aguilar, M., Pelach, M.A., Fullana-i-Palmer, P., and Mutje, P.: Fiberboards made from corn stalk thermomechanical pulp and kraft lignin as a green adhesive. Bioresources 12, 23792393 (2017).Google Scholar
74.Hortling, B., Marjatta, R., and Jorma, S.: Investigation of the residual lignin in chemical pulps Part 1. Enzymatic hydrolysis of the pulps and fractionation of the products. Nord. Pulp Pap. Res. J. 05, 033037 (1990).Google Scholar
75.Yang, R. and Lai, Y.Z.: Characterization of the residual kraft pulp lignin in situ by sulfite treatments. J. Wood Chem. Technol. 29, 164177 (2009).Google Scholar
76.Harris, E.E.: Utilization of waste lignin current chemical research. Ind. Eng. Chem. 32, 10491052 (1940).Google Scholar
77.ChemSpider: Lignosulfonate chemical formula. http://www.chemspider.com/Chemical-Structure.57495231.html (accessed February 23, 2019).Google Scholar
78.Wang, W., Martin, J.C., Fan, X., Han, A., Luo, Z., and Sun, L.: Silica nanoparticles and frameworks from rice husk biomass. ACS Appl. Mater. Interfaces 4, 977981 (2012).Google Scholar
79.Yuvakkumar, R., Elango, V., Rajendran, V., and Kannan, N.: High-purity nano silica powder from rice husk using a simple chemical method. J. Exp. Nanosci. 9, 272281 (2014).Google Scholar
80.Benitha Sandrine, U., Isabelle, V., Ton Hoang, M., and Chadi, M.: Influence of chemical modification on hemp–starch concrete. Constr. Build. Mater. 81, 208215 (2015).Google Scholar
81.Rode, C., Peuhkuri, R., Time, B., Svennberg, K., Ojanen, T., Mukhopadhyaya, P., Kumaran, M., and Dean, S.W.: Moisture buffer value of building materials. J. ASTM Int. 4, 112 (2007).Google Scholar
82.Manek, R.V., Builders, P.F., Kolling, W.M., Emeje, M., and Kunle, O.O.: Physicochemical and binder properties of starch obtained from Cyperus esculentus. AAPS PharmSciTech. 13, 379388 (2012).Google Scholar
83.ChemSpider: Amylopectin and amylose chemical structure. http://www.chemspider.com/Chemical-Structure.167339.html;http://www.chemspider.com/Chemical-Structure.388347.html (accessed February 23, 2019).Google Scholar
84.Arbenz, A. and Averous, L.: Chemical modification of tannins to elaborate aromatic biobased macromolecular architectures. Green Chem. 17, 26262646 (2015).Google Scholar
85.Efferth, T.: Biotechnology applications of plant callus cultures. Engineering 5, 5059 (2018).Google Scholar
86.Constabel, F.: Gerbstoffproduktion der Calluskulturen von Juniperus communis L. Planta 79, 5864 (1968).Google Scholar
87.Davies, M.E.: Polyphenol synthesis in cell suspension cultures of Paul's Scarlet rose. Planta 104, 5065 (1972).Google Scholar
88.Suvanto, J., Nohynek, L., Seppänen-Laakso, T., Rischer, H., Salminen, J.P., and Puupponen-Pimiä, R.: Variability in the production of tannins and other polyphenols in cell cultures of 12 Nordic plant species. Planta 246, 227241 (2017).Google Scholar
89.Klimek-Chodacka, M., Oleszkiewicz, T., Lowder, L.G., Qi, Y., and Baranski, R.: Efficient CRISPR/Cas9-based genome editing in carrot cells. Plant Cell Rep. 37, 575586 (2018).Google Scholar
90.Ikeuchi, M., Sugimoto, K., and Iwase, A.: Plant callus: mechanisms of induction and repression. Plant Cell 25, 31593173 (2013).Google Scholar
91.Audic, J.-L., Chaufer, B., and Daufin, G.: Non-food applications of milk components and dairy co-products: a review. Lait 83, 417438 (2003).Google Scholar
92.Turan, D., Gunes, G., and Kilic, A.: Perspectives of bio-nanocomposites for food packaging applications. In Bionanocomposites for Packaging Applications, edited by Jawaid, M. and Swain, S.K. (Springer International Publishing, Cham, 2018), pp. 132.Google Scholar
93.Ryder, K., Ali, M.A., Carne, A., and Billakanti, J.: The potential use of dairy by-products for the production of nonfood biomaterials. Crit. Rev. Environ. Sci. Technol. 47, 621642 (2017).Google Scholar
94.Guo, M. and Wang, G.: Milk protein polymer and its application in environmentally safe adhesives. Polymers (Basel) 8, 324 (2016).Google Scholar
95.Derksen, J.T.P., Cuperus, F.P., and Kolster, P.: Paints and coatings from renewable resources. Ind. Crops Prod. 3, 225236 (1995).Google Scholar
96.Rinaudo, M.: Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31, 603632 (2006).Google Scholar
97.Mati-Baouche, N., Elchinger, P.-H., de Baynast, H., Pierre, G., Delattre, C., and Michaud, P.: Chitosan as an adhesive. Eur. Polym. J. 60, 198212 (2014).Google Scholar
98.Dash, M., Chiellini, F., Ottenbrite, R.M., and Chiellini, E.: Chitosan––a versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci. 36, 9811014 (2011).Google Scholar
99.Mati-Baouche, N., De Baynast, H., Lebert, A., Sun, S., Lopez-Mingo, C.J.S., Leclaire, P., and Michaud, P.: Mechanical, thermal and acoustical characterizations of an insulating bio-based composite made from sunflower stalks particles and chitosan. Ind. Crops Prod. 58, 244250 (2014).Google Scholar
100.Tharanathan, R.N. and Kittur, F.S.: Chitin––the undisputed biomolecule of great potential. Crit. Rev. Food Sci. Nutr. 43, 6187 (2003).Google Scholar
101.Palpandi, C., Shanmugam, V., and Shanmugam, A.: Extraction of chitin and chitosan from shell and operculum of mangrove gastropod Nerita (Dostia) crepidularia Lamarck. Int. J. Med. Med. Sci. 93, 288313 (2009).Google Scholar
102.Thirunavukkarasu, N., Dhinamala, K., and Moses Inbaraj, R.: Production of chitin from two marine stomatopods Oratosquilla spp. (Crustacea). J. Chem. Pharm. Res. 3, 353359 (2011).Google Scholar
103.Gortari, M.C. and Hours, R.A.: Biotechnological processes for chitin recovery out of crustacean waste: a mini-review. Electron. J. Biotechnol. 16, no. 3. (2013).Google Scholar
104.Jin, B., Yin, P., Ma, Y., and Zhao, L.: Production of lactic acid and fungal biomass by Rhizopus fungi from food processing waste streams. J. Ind. Microbiol. Biotechnol. 32, 678686 (2005).Google Scholar
105.Ghaffar, T., Irshad, M., Anwar, Z., Aqil, T., Zulifqar, Z., Tariq, A., Kamran, M., Ehsan, N., and Mehmood, S.: Recent trends in lactic acid biotechnology: a brief review on production to purification. J. Radiat. Res. Appl. Sci. 7, 222229 (2014).Google Scholar
106.Farooq, U., Anjum, F.M., Zahoor, T., and Rahman, S.U.: Optimization of lactic acid production from cheap raw material: sugarcane molasses. Pakistan J. Bot. 44, 333338 (2012).Google Scholar
107.Riaz, S., Fatima, N., Rasheed, A., Riaz, M., Anwar, F., and Khatoon, Y.: Metabolic engineered biocatalyst: a solution for PLA based problems. Int. J. Biomater. 2018, 19 (2018).Google Scholar
108.Jung, Y.K. and Lee, S.Y.: Efficient production of polylactic acid and its copolymers by metabolically engineered Escherichia coli. J. Biotechnol. 151, 94101 (2011).Google Scholar
109.Selmer, T., Willanzheimer, A., and Hetzel, M.: Propionate CoA-transferase from Clostridium propionicum: cloning of the gene and identification of glutamate 324 at the active site. Eur. J. Biochem. 269, 372380 (2002).Google Scholar
110.Rehm, B.H.A. and Steinbüchel, A.: Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int. J. Biol. Macromol. 25, 319 (1999).Google Scholar
111.Yang, Z., Song, W., Cao, Y., Wang, C., Hu, X., Yang, Y., and Zhang, S.: The effect of laccase pretreatment conditions on the mechanical properties of binderless fiberboards with wheat straw. BioResources 12, 37073719 (2017).Google Scholar
112.Álvarez, C., Rojano, B., Almaza, O., Rojas, O.J., and Gañán, P.: Self-bonding boards from plantain fiber bundles after enzymatic treatment: adhesion improvement of lignocellulosic products by enzymatic pre-treatment. J. Polym. Environ. 19, 182188 (2011).Google Scholar
113.Widsten, P. and Kandelbauer, A.: Adhesion improvement of lignocellulosic products by enzymatic pre-treatment. Biotechnol. Adv. 26, 379386 (2008).Google Scholar
114.Rosini, E., Allegretti, C., Melis, R., Cerioli, L., Conti, G., Pollegioni, L., and D'Arrigo, P.: Cascade enzymatic cleavage of the [small beta]-O-4 linkage in a lignin model compound. Catal. Sci. Technol. 6, 21952205 (2016).Google Scholar
115.Felby, C., Hassingboe, J., and Lund, M.: Pilot-scale production of fiberboards made by laccase oxidized wood fibers: board properties and evidence for cross-linking of lignin. Enzyme Microb. Technol. 31, 736741 (2002).Google Scholar
116.Felby, C., Thygesen, L.G., Sanadi, A., and Barsberg, S.: Native lignin for bonding of fiber boards—evaluation of bonding mechanisms in boards made from laccase-treated fibers of beech (Fagus sylvatica). Ind. Crops Prod. 20, 181189 (2004).Google Scholar
117.Kharazipour, A., Mai, C., and Hüttermann, A.: Polyphenoles for compounded materials. Polym. Degrad. Stab. 59, 237243 (1998).Google Scholar
118.Widsten, P. and Kandelbauer, A.: Laccase applications in the forest products industry: a review. Enzym. Microb. Technol. 42, 293307 (2008).Google Scholar
119.Velásquez, J.A., Ferrando, F., and Salvadó, J.: Effects of kraft lignin addition in the production of binderless fiberboard from steam exploded Miscanthus sinensis. Ind. Crops Prod. 18, 1723 (2003).Google Scholar
120.Bernardi, D., DeJong, J.T., Montoya, B.M., and Martinez, B.C.: Bio-bricks: biologically cemented sandstone bricks. Constr. Build. Mater. 55, 462469 (2014).Google Scholar
121.Wong, L.S.: Microbial cementation of ureolytic bacteria from the genus Bacillus: a review of the bacterial application on cement-based materials for cleaner production. J. Clean. Prod. 93, 517 (2015).Google Scholar
122.Williams, S.L., Kirisits, M.J., and Ferron, R.D.: Influence of concrete-related environmental stressors on biomineralizing bacteria used in self-healing concrete. Constr. Build. Mater. 139, 611618 (2017).Google Scholar
123.Reddy, S.R.L., Manjusha, A., and Arun Kumar, M.: Bio cement – an eco friendly construction material. Int. J. Curr. Eng. Technol. 55, 22774106 (2015).Google Scholar
124.Sundaram, S. and Thakur, I.S.: Induction of calcite precipitation through heightened production of extracellular carbonic anhydrase by CO2 sequestering bacteria. Bioresour. Technol. 253, 368371 (2018).Google Scholar
125.Bhagat, C., Dudhagara, P., and Tank, S.: Trends, application and future prospectives of microbial carbonic anhydrase mediated carbonation process for CCUS. J. Appl. Microbiol. 124, 316335 (2018).Google Scholar
126.Kim, I.G., Jo, B.H., Kang, D.G., Kim, C.S., Choi, Y.S., and Cha, H.J.: Biomineralization-based conversion of carbon dioxide to calcium carbonate using recombinant carbonic anhydrase. Chemosphere 87, 10911096 (2012).Google Scholar
127.Schmieden, D.T., Basalo Vázquez, S.J., Sangüesa, H., Van Der Does, M., Idema, T., and Meyer, A.S.: Printing of patterned, engineered E. coli biofilms with a low-cost 3D printer. ACS Synth. Biol. 7, 13281337 (2018).Google Scholar
128.Padmaperuma, G., Kapoore, R.V., Gilmour, D.J., and Vaidyanathan, S.: Microbial consortia: a critical look at microalgae co-cultures for enhanced biomanufacturing. Crit. Rev. Biotechnol. 38, 690703 (2018).Google Scholar
129.Alwan, Z., Jones, P., and Holgate, P.: Strategic sustainable development in the UK construction industry, through the framework for strategic sustainable development, using Building Information Modelling. J. Clean. Prod. 140, 349358 (2017).Google Scholar
130.Glass, J., Greenfield, D., and Longhurst, P.: Editorial: circular economy in the built environment. Proc. Inst. Civ. Eng. Waste Resour. Manag. 170, 12 (2017).Google Scholar
131.UK GBC: Building Zero Carbon––the case for action (London, 2014).Google Scholar