Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-12T13:01:17.530Z Has data issue: false hasContentIssue false

Experimental Analysis and Crystallographic Model of Plastic Deformation after a Change of Loading Path in Mild Steel Polycrystals

Published online by Cambridge University Press:  15 February 2011

T. Hoc
Affiliation:
Laboratoire de Mécanique des Sols, Structures et Matériaux, UMR 8579, Ecole Centrale Paris, Grande Voie des Vignes, 92295 Ch&tenay-Malabry cedex, France
C. Rey
Affiliation:
Laboratoire de Mécanique des Sols, Structures et Matériaux, UMR 8579, Ecole Centrale Paris, Grande Voie des Vignes, 92295 Ch&tenay-Malabry cedex, France
Get access

Abstract

Strain localization in mild steel submitted to a sequential loading paths is investigated at macroscopic, mesoscopic and microscopic scales. The experimental results demonstrate that the morphology of the localization and the nominal load-displacement curves depend on the microstructural anisotropy. A crystalline model using a finite element code is proposed. The anisotropy is described by a hardening matrix whose terms correspond to dislocation-dislocation interactions and depend on the evolution of the dislocation densities on the activated slip systems during the sequential tests. The strain localization predicted by this model fits with the experimental observation and allows us to assume that localization is correlated to the saturation on the activated slip systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Asaro, R.J.. Acta metal., 27:445453, 1979.Google Scholar
2 Pierce, D.. J. Mech. Phys. Solids, 31:133153, 1983.Google Scholar
3 Deve, H., Harren, S., McCullough, C., and Asaro, R.J.. Acta Metal., 36(2):341365, 1988.Google Scholar
4 Rauch, E.F. and Thuillier, S.. Archives of Metallurgy, 38:167177, 1993.Google Scholar
5 Schmitt, J.H., Shen, E.L., and Raphanel, J.L.. Int. Jour. of Plasticity, 10(5):535551, 1994.Google Scholar
6 Wagoner, R.H. and Laukonis, J.H.. Metal. Trans. A, 14:1487, 1983.Google Scholar
7 Korbel, A. and Martin, P.. Acta Metal., 36(9):25752586, 1988.Google Scholar
8 Rey, C. and Viaris, P.. Mater. Sci. Eng. A, A234–23:1007, 1997.Google Scholar
9 Fernandes, J.V. and Schmitt, J.H.. Phil. Mag., 48(6):841870, 1983.Google Scholar
10 Hoc, T., Rey, C. and Lesegno, P. Viaris de Scripta Mat. to be published.Google Scholar
11 Thuillier, S. Thèse Institut National Polytechnique de Grenoble, 6 novembre 1992, France.Google Scholar
12 Pilvin, P. Int. Seminar Mécamat ”the inelastic Behaviour of Solids”, Oytana, c. et al. ed. Besancon, September 1988, p155.Google Scholar
13 Hoc, T. Thèse Ecole Centrale Paris, 8 september 1999, France.Google Scholar