Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T04:02:39.561Z Has data issue: false hasContentIssue false

Ruelle's transfer operator for random subshifts of finite type

Published online by Cambridge University Press:  19 September 2008

Thomas Bogenschütz
Affiliation:
Institut für Dynamische Systeme, Universität Bremen, Postfach 330440, 28334 Bremen, Germany
Volker Mathias Gundlach
Affiliation:
Institut für Dynamische Systeme, Universität Bremen, Postfach 330440, 28334 Bremen, Germany

Abstract

We consider a Ruelle—Perron—Frobenius type of selection procedure for probability measures that are invariant under random subshifts of finite type. In particular we prove that for a class of random functions this method leads to a unique probability exhibiting properties that justify the names Gibbs measure and equilibrium states. In order to do this we introduce the notion of bundle random dynamical systems and provide a theory for their invariant measures as well as give a precise definition of Gibbs measures.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Abramov, L. M. and Rokhlin, V. A.. The entropy of a skew product of measure-preserving transformations. Amer. Math. Soc. Transl. Ser. 2 48 (1966), 255265.Google Scholar
[2]Adler, R. and Weiss, B.. Similarity of Automorphisms of the Torus. Mem. Amer. Math. Soc. Vol. 8. American Mathematical Society: Providence, RI, 1970.Google Scholar
[3]Arnold, L. and Crauel, H.. Random dynamical systems. In Arnold, L., Crauel, H. and Eckmann, J.-P., eds. Lyapunov Exponents, Proceedings, Oberwolfach 1990. Springer Lecture Notes in Mathematics 1486. Springer: New York, Berlin, 1991. pp. 122.Google Scholar
[4]Arnold, L., Demetrius, L. and Gundlach, V. M.. Evolutionary formalism for products of positive random matrices. Ann. Appl. Probab. 4 (1994), 859901.CrossRefGoogle Scholar
[5]Birkhoff, G.. Extensions of Jentzsch's theorem. Trans. Amer. Math. Soc. 85 (1957), 219227.Google Scholar
[6]Bogenschütz, T.. Entropy, pressure, and a variational principle for random dynamical systems. Random & Computational Dynamics. 1 (1992), 99116.Google Scholar
[7]Bogenschütz, T.. Equilibrium states for random dynamical systems. PhD thesis. Universität Bremen, 1993.Google Scholar
[8]Bogenschütz, T. and Crauel, H.. The Abramov—Rokhlin formula. In Krengel, U., Richter, K. and Warstat, V., eds. Ergodic Theory and Related Topics III, Proceedings, Güstrow 1990. Springer Lecture Notes in Mathematics 1514. Springer: New York, Berlin, 1992. pp. 3235.Google Scholar
[9]Bogenschütz, T. and Gundlach, V. M.. Symbolic dynamics for expanding random dynamical systems. Random & Computational Dynamics. 1 (1992), 219227.Google Scholar
[10]Bowen, R.. Markov partitions for Axiom A diffeomorphisms. Amer. J. Math. 92 (1970), 725747.Google Scholar
[11]Bowen, R.. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Springer Lecture Notes in Mathematics 470. Springer: New York, Berlin, 1975.Google Scholar
[12]Castaing, C. and Valadier, M.. Convex Analysis and Measurable Multifunction. Springer Lecture Notes in Mathematics 580. Springer: New York, Berlin, 1977.CrossRefGoogle Scholar
[13]Crauel, H.. Lyapunov exponents and invariant measures of stochastic systems on manifolds. In Arnold, L. and Wihstutz, V., eds. Lyapunov Exponents, Proceedings, Bremen 1984. Springer Lecture Notes in Mathematics 1186. Springer: New York, Berlin, 1986. pp. 271291.Google Scholar
[14]Crauel, H.. Extremal exponents of random dynamical systems do not vanish. J. Dynam. Diff. Eq. 2 (1990), 245291.CrossRefGoogle Scholar
[15]Ferrero, P. and Schmitt, B.. Produits aléatoires d'opérateurs matrices de transfert. Probab. Theory Related Fields. 79 (1988), 227248.Google Scholar
[16]Gundlach, V. M.. Random homoclinic orbits. Report 315. Institute für Dynamische Systeme, Universität Bremen, 1994. Submitted.Google Scholar
[17]Gundlach, V. M.. Thermodynamic formalism for random subshifts of finite type. In preparation. 1993.Google Scholar
[18]Keane, M.. Strongly mixing g-measures. Invent. Math. 16 (1972), 309324.CrossRefGoogle Scholar
[19]Kifer, Y.. Equilibrium states for random expanding transformations. Random & Computational Dynamics. 1 (1992), 131.Google Scholar
[20]Kondah, A.. Les endomorphisms dilatants de l'intervalle et leurs perturbations aleatoires. PhD thesis. Université de Bourgogne, Dijon, 1991.Google Scholar
[21]Lasota, A. and Mackey, M.. Probabilistic Properties of Deterministic Systems. Cambridge University Press: Cambridge, 1985.Google Scholar
[22]Ledrappier, F.. Principe variationnel et systèmes dynamiques symboliques. Z. Wahrscheinlichkeitstheorie verw. Gebiete. 30 (1974), 185202.CrossRefGoogle Scholar
[23]Parry, W. and Pollicott, M.. Zeta Functions and the Periodic Orbit Structure of Hyperbolic Dynamics. Astérisque. Volume 187–188. Soc. Math. France: Paris, 1990.Google Scholar
[24]Rudin, W.. Functional Analysis. McGraw-Hill: New York, 1973.Google Scholar
[25]Ruelle, D.. Thermodynamic Formalism. Encyclopedia of Mathematics and its Applications. Volume 5. Addison-Wesley: Reading, MA, 1978.Google Scholar
[26]Sinai, Y. G.. Markov partitions and U-diffeomorphisms. Functional Anal. Appl. 2(1) (1968), 6489.Google Scholar
[27]Walters, P.. Ruelle's operator theorem and g-measures. Trans. Amer. Math. Soc. 214 (1975), 375387.Google Scholar
[28]Walters, P.. Invariant measures and equilibrium states for some mappings which expand distances. Trans. Amer. Math. Soc. 236 (1978), 121153.Google Scholar