Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-13T23:23:57.895Z Has data issue: false hasContentIssue false

Apparent digestibility, rumen fermentation and nitrogen balance in Tibetan and fine-wool sheep offered forage-concentrate diets differing in nitrogen concentration

Published online by Cambridge University Press:  20 May 2015

J. W. ZHOU
Affiliation:
State Key Laboratory of Grassland and Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China International Centre for Tibetan Plateau Ecosystem Management, Lanzhou University, Lanzhou 730000, People's Republic of China
J. D. MI
Affiliation:
International Centre for Tibetan Plateau Ecosystem Management, Lanzhou University, Lanzhou 730000, People's Republic of China School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
A. A. DEGEN
Affiliation:
Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of Negev, Beer Sheva 84105, Israel
X. S. GUO
Affiliation:
International Centre for Tibetan Plateau Ecosystem Management, Lanzhou University, Lanzhou 730000, People's Republic of China School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
H. C. WANG
Affiliation:
State Key Laboratory of Grassland and Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China International Centre for Tibetan Plateau Ecosystem Management, Lanzhou University, Lanzhou 730000, People's Republic of China
L. M. DING
Affiliation:
International Centre for Tibetan Plateau Ecosystem Management, Lanzhou University, Lanzhou 730000, People's Republic of China School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
Q. QIU
Affiliation:
School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
R. J. LONG*
Affiliation:
State Key Laboratory of Grassland and Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China International Centre for Tibetan Plateau Ecosystem Management, Lanzhou University, Lanzhou 730000, People's Republic of China School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
*
*To whom all correspondence should be addressed. Email: longrj@lzu.edu.cn

Summary

A comparative study of the effect of dietary nitrogen (N) content [Low: 11·0; Medium-Low (MLow): 16·7; Medium-High (Mhigh): 23·1; High: 29·2 N g/kg dry matter (DM)] on apparent digestibilities, rumen fermentation and N balance was conducted in coarse wool Tibetan sheep and Gansu Alpine fine-wool sheep at Wushaoling in the northeast of the Qinghai-Tibetan Plateau. It was hypothesized that responses would differ between breeds and that responses would favour Tibetan over fine-wool sheep at low N intakes. Eight wethers [four Tibetan sheep and four fine-wool sheep, 20–24 months old; body weight ± standard deviation was 52 ± 3·2 kg] were used in two concurrent 4 × 4 Latin square designs. Dry matter, organic matter, neutral detergent fibre and acid detergent fibre digestibilities were higher in Tibetan than fine-wool sheep when fed the Low, MLow and High N diets while N retention was higher when the animals were fed the Low and MLow N diets. Tibetan sheep had a higher rumen pH than fine-wool sheep; however, total volatile fatty acids were similar between breeds. Molar proportions of acetate were higher but propionate and butyrate lower in Tibetan than fine-wool sheep. In addition, Tibetan sheep had higher concentrations of ruminal free amino acid-N and soluble protein-N than fine-wool sheep. Plasma and saliva urea-N concentrations were higher in Tibetan than fine-wool sheep when supplied with the Low N diet. It was concluded that Tibetan sheep were better able to cope with low N feed than fine-wool sheep because of the higher N retention and higher DM and fibre digestibilities with Low and MLow diets.

Type
Animal Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agle, M., Hristov, A. N., Zaman, S., Schneider, C., Ndegwa, P. M. & Vaddella, V. K. (2010). Effect of dietary concentrate on rumen fermentation, digestibility and nitrogen losses in dairy cows. Journal of Dairy Science 93, 42114222.CrossRefGoogle ScholarPubMed
AOAC (1990). Official Methods of Analysis. 15th edn.Arlington, VA: Association of Official Analytical Chemists.Google Scholar
Bach, A., Yoon, I. K., Stern, M. D., Jung, H. G. & Chester-Jones, H. (1999). Effects of type of carbohydrate supplementation to lush pasture on microbial fermentation in continuous culture. Journal of Dairy Science 82, 153160.CrossRefGoogle ScholarPubMed
Broderick, G. A. (2003). Effects of varying dietary protein and energy levels on the production of lactating dairy cows. Journal of Dairy Science 86, 13701381.CrossRefGoogle ScholarPubMed
Cantalapiedra-Hijar, G., Yáñez-Ruiz, D. R., Martín-García, A. I. & Molina-Alcaide, E. (2009). Effects of forage: concentrate ratio and forage type on apparent digestibility, ruminal fermentation, and microbial growth in goats. Journal of Animal Science 87, 622631.CrossRefGoogle ScholarPubMed
Cao, Y., Takahashi, T. & Horiguchi, K. (2009). Effects of addition of food by-products on the fermentation quality of a total mixed ration with whole crop rice and its digestibility, preference, and rumen fermentation in sheep. Animal Feed Science and Technology 151, 111.CrossRefGoogle Scholar
Carro, M. D., Cantalapiedra-Hijar, G., Ranilla, M. J. & Molina-Alcaide, E. (2012). Urinary excretion of purine derivatives, microbial protein synthesis, nitrogen use, and ruminal fermentation in sheep and goats fed diets of different quality. Journal of Animal Science 90, 39633972.CrossRefGoogle ScholarPubMed
Cheng, P. (1984). Livestock Breeds of China. Animal Production and Health Paper 46 (E, F, S,). Rome: FAO.Google Scholar
Dan, R. F., Long, R. J., Zhang, H. T., Zhang, X. & Ding, X. Z. (2009). Analysis of rumen bacterial flora of Tibetan sheep with seasonal shift. Chinese Journal of Animal Nutrition 21, 798802.Google Scholar
De Barbieri, I., Hegarty, R. S., Oddy, V. H., Barnett, M. C., LI, L. & Nolan, J. V. (2014). Sheep of divergent genetic merit for wool growth do not differ in digesta kinetics while on restricted intakes. Animal Production Science 54, 12431247.CrossRefGoogle Scholar
Erwin, E. S., Marco, G. J. & Emery, E. (1961). Volatile fatty acid analysis of blood and rumen fluid by gas chromatography. Journal of Dairy Science 44, 17681774.CrossRefGoogle Scholar
Felix, T. L., Murphy, T. A. & Loerch, S. C. (2012). Effects of dietary inclusion and NaOH treatment of dried distillers grain with solubles on ruminal metabolism of feedlot cattle. Journal of Animal Science 90, 49514961.CrossRefGoogle ScholarPubMed
Fimbres, H., Kawas, J. R., Hernández-Vidal, G., Picón-Rubio, J. F. & Lu, C. D. (2002). Nutrient intake, digestibility, mastication and ruminal fermentation of lambs fed finishing ration with various forage levels. Small Ruminant Research 43, 275281.CrossRefGoogle Scholar
Fitzsimons, C., Kenny, D. A., Deighton, M. H., Fahey, A. G. & McGee, M. (2013). Methane emissions, body composition, and rumen fermentation traits of beef heifers differing in residual feed intake. Journal of Animal Science 91, 57895800.CrossRefGoogle ScholarPubMed
Fu, C. J., Felton, E. E., Lehmkuhler, J. W. & Kerley, M. S. (2001). Ruminal peptide concentration required to optimize microbial growth and efficiency. Journal of Animal Science 79, 13051312.CrossRefGoogle ScholarPubMed
Grant, R. J. & Mertens, D. R. (1992). Influence of buffer pH and raw corn starch addition on in vitro fibre digestion kinetics. Journal of Dairy Science 75, 27622768.CrossRefGoogle ScholarPubMed
Hervás, G., Ranilla, M. J., Mantecón, A. R., Tejido, M. L. & Frutos, P. (2005). Comparison of sheep and red deer rumen fluids for assessing nutritive value of ruminant feedstuffs. Journal of the Science of Food and Agriculture 85, 24952502.CrossRefGoogle Scholar
Hoffman, P. C., Esser, N. M., Bauman, L. M., Denzine, S. L., Engstrom, M. & Chester-Jones, H. (2001). Short communication: effect of dietary protein on growth and nitrogen balance of Holstein heifers. Journal of Dairy Science 84, 843847.CrossRefGoogle ScholarPubMed
Hristov, A. & Broderick, G. A. (1994). In vitro determination of ruminal protein degradability using [15N] ammonia to correct for microbial nitrogen uptake. Journal of Animal Science 72, 13441354.CrossRefGoogle ScholarPubMed
Hristov, A. N., Ivan, M., Rode, L. M. & McAllister, T. A. (2001). Fermentation characteristics and ruminal ciliate protozoal populations in cattle fed medium- or high-concentrate barley-based diets. Journal of Animal Science 79, 515524.CrossRefGoogle ScholarPubMed
Huyen, N. T., Wanapat, M. & Navanukraw, C. (2012). Effect of Mulberry leaf pellet (MUP) supplementation on rumen fermentation and nutrient digestibility in beef cattle fed on rice straw-based diets. Animal Feed Science and Technology 175, 815.CrossRefGoogle Scholar
Ipharraguerre, I. R., Clark, J. H. & Freeman, D. E. (2005). Varying protein and starch in the diet of dairy cows. 1. Effect on ruminal fermentation and intestinal supply of nutrients. Journal of Dairy Science 88, 25372555.CrossRefGoogle Scholar
Kayouli, C., Jouany, J. P., Demeyer, D. I., Ali-Ali, Taoueb H. & Dardillat, C. (1993). Comparative studies on the degradation and mean retention time of solid and liquid phases in the forestomachs of dromedaries and sheep fed on low-quality roughages from Tunisia. Animal Feed Science and Technology 40, 343355.CrossRefGoogle Scholar
Keady, T. W. J. & Mayne, C. S. (2001). The effects of concentrate energy source on feed intake and rumen fermentation parameters of dairy cows offered a range of grass silages. Animal Feed Science and Technology 90, 117129.CrossRefGoogle Scholar
Kennedy, P. M. & Milligan, L. P. (1978). Transfer of urea from the blood to the rumen of sheep. British Journal of Nutrition 40, 149154.CrossRefGoogle Scholar
Kennedy, P. M. & Milligan, L. P. (1980). The degradation and utilization of endogenous urea in the gastrointestinal tract of ruminants: a review. Canadian Journal of Animal Science 60, 205221.CrossRefGoogle Scholar
Leng, R. A. & Nolan, J. V. (1984). Nitrogen metabolism in the rumen. Journal of Dairy Science 67, 10721089.CrossRefGoogle ScholarPubMed
Li, W. (2011). Industry conditions, development direction and countermeasures of Gansu Alpine fine-wool sheep. Journal of Domestic Animal Ecology 32, 8083.Google Scholar
Li, L., Oddy, V. H. & Nolan, J. V. (2008). Whole-body protein metabolism and energy expenditure in sheep selected for divergent wool production when fed above or below maintenance. Australian Journal of Australian Agriculture 48, 657665.CrossRefGoogle Scholar
Long, R. J. (2007). Functions of ecosystem in the Tibetan grassland. Chinese Science & Technology Review 25, 2628.Google Scholar
Long, R. J. & Ma, Y. S. (1996). Qinghai's yak production system. In Conservation and Management of Yak Genetic Diversity: Proceedings of a Workshop in ICIMOD, 29–31 October 1996, Kathmandu, Nepal (Eds Miller, D. J., Craig, S. R. & Rana, G. M.), pp. 105115. Kathmandu, Nepal: ICIMOD.Google Scholar
Long, R. J., Dong, S. K., Hu, Z. Z., Shi, J. J., Dong, Q. M. & Han, X. T. (2004). Digestibility, nutrient balance and urinary purine derivative excretion in dry yak cows fed oat hay at different levels of intake. Livestock Production Science 88, 2732.CrossRefGoogle Scholar
Long, R. J., Dong, S. K., Wei, X. H. & Pu, X. P. (2005). The effect of supplementary feeds on the bodyweight of yaks in cold season. Livestock Production Science 93, 197204.CrossRefGoogle Scholar
Long, R. J., Ding, L. M., Shang, Z. H. & Guo, X. H. (2008). The yak grazing system on the Qinghai-Tibetan Plateau and its status. Rangeland Journal 30, 241246.CrossRefGoogle Scholar
MacRae, J. C., Milne, J. A., Wilson, S. & Spence, A. M. (1979). Nitrogen digestion in sheep given poor-quality indigenous hill herbages. British Journal of Nutrition 42, 525534.CrossRefGoogle ScholarPubMed
Marini, J. C. & Van Amburgh, M. E. (2003). Nitrogen metabolism and recycling in Holstein heifers. Journal of Animal Science 81, 545552.CrossRefGoogle ScholarPubMed
Mehrez, A. Z., Ørskov, E. R. & McDonald, I. (1977). Rates of rumen fermentation in relation to ammonia concentration. British Journal of Nutrition 38, 437443.CrossRefGoogle ScholarPubMed
Molina-Alcaide, E., Martín García, A. I. & Aguilera, J. F. (2000). A comparative study of nutrient digestibility, kinetics of degradation and passage and rumen fermentation pattern in goats and sheep offered good-quality diets. Livestock Production Science 64, 215223.CrossRefGoogle Scholar
Norton, B. W., Murray, R. M., Entwistle, K. W., Nolan, J. V., Ball, F. M. & Leng, R. A. (1978). The nitrogen metabolism of sheep consuming Flinders grass (Iseilema spp.), Mitchell grass (Astrebla spp.) and mixed native pasture. Australian Journal of Agricultural Research 29, 595603.CrossRefGoogle Scholar
NRC (1985). Nutrient Requirements of Sheep, revised6th edn, Washington, D.C.: National Academy Press.Google Scholar
Oddy, V. H. (1999). Protein metabolism and nutrition in farm animals: an overview. In Proceedings of the 8th International Symposium on Protein Metabolism and Nutrition (Eds Lobley, G. E., White, A. & Macrae, J. C.), pp. 723. EAAP Publication No. 96. Wageningen, The Netherlands: Wageningen Academic Publishers.Google Scholar
Oosta, G. M., Mathewson, N. S. & Catravas, G. N. (1978). Optimization of Folin-Ciocalteu reagent concentration in an automated Lowry protein assay. Analytical Biochemistry 89, 3134.CrossRefGoogle Scholar
Perdok, H. & Leng, R. A. (1989). Rumen ammonia requirements for efficient digestion and intake of straw by cattle. In The Roles of Protozoa and Fungi in Ruminant Digestion (Eds Nolan, J. V., Leng, R. A. & Demeyer, D. J.), pp. 291293. Armidale, Australia: Penambul Books.Google Scholar
Preston, T. R. & Leng, R. A. (1987). Matching Ruminant Production Systems with Available Resources in the Tropics and Sub-tropics. Armidale, Australia: Penambul Books.Google Scholar
Reynolds, C. K. & Kristensen, N. B. (2008). Nitrogen recycling through the gut and the nitrogen economy of ruminants: an asynchronous symbiosis. Journal of Animal Science 86 (Supplement), E293E305.CrossRefGoogle ScholarPubMed
Satter, L. D. & Slyter, L. L. (1974). Effect of ammonia concentration on rumen microbial protein production in vitro. British Journal of Nutrition 32, 199208.CrossRefGoogle ScholarPubMed
Silanikove, N., Tagari, H. & Shkolnik, A. (1993). Comparison of rate of passage, fermentation rate and efficiency of digestion of high fiber diet in desert Bedouin goats compared to Swiss Saanan goats. Small Ruminant Research 12, 4560.CrossRefGoogle Scholar
Van Soest, P. J. (1994). Nutritional Ecology of the Rumen, 2nd edn.Ithaca, NY: Cornell University Press.CrossRefGoogle Scholar
Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.CrossRefGoogle ScholarPubMed
Varady, J., Tashenov, K. T., Boda, K., Fejes, J. & Kosta, K. (1979). Endogenous urea secretion into the sheep gastrointestinal tract. Physiologia Bohemoslovaca 28, 551559.Google ScholarPubMed
Wanapat, M. & Pimpa, O. (1999). Effect of ruminal NH3-N levels on ruminal fermentation, purine derivative, digestibility and rice straw intake in swamp buffaloes. Asian-Australasian Journal of Animal Science 12, 904907.CrossRefGoogle Scholar
Wang, T. X. (2012). Breeding status and perspective of Gansu Alpine Merino. Journal of Animal Science and Veterinary Medicine 31, 4650.Google Scholar
Wiener, G., Han, J. L. & Long, R. J. (2003). The Yak. 2nd edn.Bangkok, Thailand: RAP Publication.Google Scholar
Xin, G. S., Long, R. J., Guo, X. S., Irvine, J., Ding, L. M., Ding, L. L. & Shang, Z. H. (2011). Blood mineral status of grazing Tibetan sheep in Northeast of the Qinghai-Tibetan Plateau. Livestock Science 136, 102107.CrossRefGoogle Scholar
Xiong, B. H., Pang, Z. H. & Luo, Q. Y. (2009). Introduction of tables of feed composition and nutritive values in China (20th edition). Chinese Feed 21, 3035.Google Scholar
Zanton, G. I. & Heinrichs, A. J. (2009). Digestion and nitrogen utilization in dairy heifers limit-fed a low or high forage ration at four levels of nitrogen intake. Journal of Dairy Science 92, 20782094.CrossRefGoogle ScholarPubMed
Zhang, Y., Zhou, J. W., Guo, X. S., Cui, G. X., Ding, L. M., Wang, H. C., Li, L. W. & Long, R. J. (2012). Influences of dietary nitrogen and non-fibre carbohydrate levels on apparent digestibility, rumen fermentation and nitrogen utilization in growing yaks fed low quality forage based-diet. Livestock Science 147, 139147.CrossRefGoogle Scholar