Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-26T02:20:42.401Z Has data issue: false hasContentIssue false

Large-Scale Hierarchical Self-Assembly Structures from Gold Nanoparticles

Published online by Cambridge University Press:  01 February 2011

Nam-Jung Kim
Affiliation:
kimna@missouri.edu, University of Missouri-Columbia, Mechanical & Aerospace, E2403D Lafferre Hall, columbia, MO, 65211, United States
Hao Li
Affiliation:
liha@missouri.edu, University of Missouri, Mechanical & Aerospace Engineering, columbia, MO, 65211, United States
Get access

Abstract

Metallic nanoparticles may form hierarchical dendrites in the presence of ionic surfactant through self-assembly upon solvent drying at room temperature. With nanoparticle density varying in the drying area on the supporting solid substrate, the morphology and relevant size of the dendrites evolve in different structures. At the region where the nanoparticle density is high, the large dendrite can develop with manifest crystal symmetry. At the low density region, many small sizes of compact crystals can be found, indicating that particle nucleation dominates over the long-range crystal growth. SEM image reveals the ordered stacking of gold nanoplates over the long dendrite branches, resembling the liquid crystal array. We present the possible physical origins to explain the various structures of the assembled dendrites during the solvent evaporation at the interface of solid and air.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Boettinger, W. J., Warren, J. A., Beckermann, C., and Karma, A., Annu. Rev. Mater. Res. 32, 163 (2002); J. D. Hunt, Mater. Sci. Eng. 65, 75 (1984).Google Scholar
2. Herlach, D. M., Mater. Sci. Eng. R12, 177 (1994); R. Willnecher, D. M. Herlach and B. Feuerbacher, Phys. Rev. Lett. 62, 2709 (1989); K. Eckler, R. F. Chochrane, D. M. Herlach and B. Feuerbacher, Phys. Rev. B 45, 5019 (1992).Google Scholar
3. Fang, J., Ma, X., Cai, H., Song, X. and Ding, B., Nanotechnology 17, 5841 (2006); J. Fang, H. You, P. Kong, Y. Yi, X. Song and B. Ding, Crystal Growth & Design 7 (5), 864 (2007); Y. Cheng, Y. Wang, D. Chen and F. Bao, J. Phys. Chem. B 109, 794 (2005); W. -T. Wu, W. Pang, G. Xu, L. Shi, Q. Zhu, Y. Wang and F. Lu, Nanotechnology 16, 2048 (2005).Google Scholar
4. Banfield, J. F., Welch, S. A., Zhang, H., Ebert, T. T. and Penn, R. L., Science 289, 751 (2000); Z. Tang, N. A. Kotov and M. Giersig, Science 297, 237 (2002).Google Scholar
5. Tian, Z. R., Liu, J., Voigt, J. A., Xu, H. and Mcdermott, M. J., Nano Lett. 3 (1), 89 (2003).Google Scholar