Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T19:39:44.099Z Has data issue: false hasContentIssue false

Stratigraphy and environmental reconstruction at the middle Wisconsinan Gilman Canyon formation type locality, Buzzard's Roost, southwestern Nebraska, USA

Published online by Cambridge University Press:  20 January 2017

William C. Johnson*
Affiliation:
Department of Geography, University of Kansas, Lawrence, KS 66045-7613, USA
Karen L. Willey
Affiliation:
Department of Geography, University of Kansas, Lawrence, KS 66045-7613, USA
Joseph A. Mason
Affiliation:
Department of Geography, University of Wisconsin, Madison, WI 53706-1491, USA
David W. May
Affiliation:
Department of Geography, University of Northern Iowa, Cedar Falls, IA 50614-0406, USA
*
*Corresponding author. Fax: +1 785 864 5378. E-mail address:wcj@ku.edu (W.C. Johnson).

Abstract

The middle Wisconsinan Gilman Canyon Formation at the Buzzard's Roost type locality in southwestern Nebraska was investigated to document the stratigraphy and to reconstruct the environmental and climate record. The Gilman Canyon Formation was subdivided into three loess units and three soils, with radiocarbon ages constraining it between about 40 ka and 25 ka. Stable carbon isotope ratios, magnetic susceptibility, and carbon content were used to define and characterize soils within both the Gilman Canyon Formation and underlying Illinoian Loveland Loess. At the height of soil development within the Gilman Canyon Formation, climate was supporting C4-dominated grassland, with July temperatures equal to or exceeding those of today. Soil-forming intervals within the Loveland Loess, including the Sangamon Soil, also exhibited relative increases in C4 biomass. Climate, as recorded in the Gilman Canyon Formation, is corroborated by regional proxy data. The formation accumulated during MIS 3, and concurrent soil formation coincided with a summer insolation maximum.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbot, M.B., and Stafford, T.W. Radiocarbon geochemistry of modern and ancient Arctic lake systems, Baffin Island, Canada. Quaternary Research 45, (1996). 300311.CrossRefGoogle Scholar
Arbogast, A.F., and Johnson, W.C. Late-Quaternary Landscape Response to Environmental Change in South-Central Kansas. Association of American Geographers Annals 88, (1998). 126145.CrossRefGoogle Scholar
Berger, A., and Loutre, M.F. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 17, (1991). 549585.Google Scholar
Bettis, E.A. III, Mason, J.P., Swinehart, J.B., Miao, X., Hanson, P.R., Goble, R.J., Loope, D.B., Jacobs, P.M., and Roberts, H.M. Cenozoic eolian sedimentary systems of the USA mid-continent. Easterbrook, D.J. Quaternary Geology of the United States, INQUA 2003 Field Guide Volume. (2003). Desert Research Institute, Reno. 195218.Google Scholar
Bettis, E.A., Muhs, D.R., Roberts, H.M., and Wintle, A.G. Last Glacial loess in the conterminous USA. Quaternary Science Reviews 22, (2003). 19071946.CrossRefGoogle Scholar
Bond, G., Heinrich, H., Broecker, W., Labeyrie, L., McManus, J., Andrews, J., Huon, S., Jantschik, R., Clasen, S., Simet, C., Tedesco, K., Klas, M., Bonani, G., and Ivy, S. Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period. Nature 360, (1992). 245249.CrossRefGoogle Scholar
Bond, G., Broecker, W., Johnsen, S., McManus, J., Labeyrie, L., Jouzel, J., and Bonani, G. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365, (1993). 143147.CrossRefGoogle Scholar
Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., deMenocal, P., Priore, P., Cullen, H., Hajdas, I., and Bonani, G. A pervasive millennial-scale cycle in North Atlantic Holocene and Glacial Climates. Science 278, (1997). 12571266.CrossRefGoogle Scholar
Boutton, T.W. Stable carbon isotope ratios of soil organic matter and their use as indicators of vegetation and climate change. Boutton, T.W., and Yamasaki, S. Mass Spectrometry of Soils. (1996). Marcel Dekker, New York. 4782.Google Scholar
Boutton, T.W., Archer, S.R., and Nordt, L.C. Climate, CO2 and plant abundance. Nature 372, (1994). 625626.CrossRefGoogle Scholar
Boutton, T.W., Archer, S.R., Midwood, A.J., Zitzer, S.F., and Bol, R. δ 13C values of soil organic carbon and their use in documenting vegetation change in a subtropical savanna ecosystem. Geoderma 82, (1998). 541.CrossRefGoogle Scholar
Chen, T., Huifang, X., Xie, Q., Chen, J., Ji, J., and Lu, H. Characteristics and genesis of maghemite in Chinese loess and paleosols: mechanisms for magnetic susceptibility enhancement in paleosols. Earth and Planetary Science Letters 240, (2005). 790802.CrossRefGoogle Scholar
Clark, P.U., and Bartlein, P.J. Correlation of late Pleistocene glaciation in the western United States with North Atlantic Heinrich events. Geology 23, (1995). 483486.2.3.CO;2>CrossRefGoogle Scholar
Cole, D.R., and Monger, H.C. Influence of atmospheric CO2 on the decline of C4 plants during the last deglaciation. Nature 368, (1994). 533536.CrossRefGoogle Scholar
Condra, G.E., Reed, E.C., and Gordon, E.D. Correlation of the Pleistocene deposits of Nebraska. (1947). Nebraska Geological Survey Bulletin 15, Nebraska conservation and Survey Division, Lincoln.Google Scholar
Curry, R.B., and Follmer, L.R. The last interglacial–glacial transition in Illinois: 123–25 ka. Clark, P.U., and Lea, P.D. The Last Interglacial–Glacial Transition in North America. Geological Society of America Special Paper vol. 270, (1992). 7188.CrossRefGoogle Scholar
Curry, B.B., and Pavich, M.J. Absence of glaciation in Illinois during Marine Isotope Stages 3 through 5. Quaternary Research 46, (1996). 1926.CrossRefGoogle Scholar
Dearing, J.A., Hay, K.L., Baban, S.M.J., Huddleston, A.S., Wellington, E.M.H., and Loveland, P.J. Magnetic susceptibility of soil: an evaluation of conflicting theories using a national data set. Geophysical Journal International 127, (1996). 728734.CrossRefGoogle Scholar
Dorale, J.A., Edwards, L.A., Ito, E., and González, L.A. Climate and vegetation history of the mid continent from 75 to 25 ka: A speleothem record from Crevice Cave, Missouri, USA. Science 282, (1998). 18711874.CrossRefGoogle Scholar
Dreeszen, V.H. The stratigraphic framework of Pleistocene glacial and periglacial deposits in the Central Plains. Dort, W. Jr., and Jones, J.K. Pleistocene and Recent Environments of the Central Great Plains. (1970). University of Kansas Press, Lawrence. 922.Google Scholar
Evans, M.E., and Heller, F. Environmental Magnetism: Principles and Applications of Environmagnetics. (2003). Academic Press, Amsterdam. 299 Google Scholar
Fairbanks, R.G., Mortlock, R.A., Chiu, T.C., Cao, L., Kaplan, A., Guilderson, T.P., Fairbanks, T.W., Bloom, A.L., Grootes, P.M., and Nadeau, M.J. Radiocarbon calibration curve spanning 0–50,000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals. Quaternary Science Reviews 24, (2005). 17811796.CrossRefGoogle Scholar
Feggestad, A.J., Jacobs, P.M., Miao, X., and Mason, J.A. Stable carbon isotope record of Holocene environmental change in the Central Great Plains. Physical Geography 25, (2005). 170190.CrossRefGoogle Scholar
Feng, Z.-D., Johnson, W.C., Diffendal, R.F. Jr. Environments of Aeolian deposition in south-central Nebraska during the Last Glacial Maximum. Physical Geography 15, (1994). 249261.CrossRefGoogle Scholar
Feng, Z.-D., Johnson, W.C., Lu, Y.-C., Ward, P.A. III Climatic signals from loess-soil sequences in the Central Great Plains, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 110, (1994). 345358.CrossRefGoogle Scholar
Follett, R.F., Paul, E.A., Leavitt, S.W., Halvorson, A.D., Lyon, D., and Peterson, G.A. Carbon isotope ratios of Great Plains soils and in wheat-fallow systems. Soil Science Society of America Journal 61, (1997). 10681077.CrossRefGoogle Scholar
Follmer, L.R., (1983). Sangamon and Wisconsinan pedogenesis in the Midwestern United States. In: Wright, H.E. (Ed.), Late Quaternary Environments of the United States. In: Porter, S.C. (Ed.), The Late Pleistocene, Vol. 1, University of Minnesota Press, Minneapolis., pp. 138-144.Google Scholar
Forman, S.L., and Pierson, J. Late Pleistocene luminescence chronology of loess deposition in the Missouri and Mississippi river valleys. United States. Palaeogeography, Palaeoclimatology, Palaeoecology 186, (2002). 2546.CrossRefGoogle Scholar
Forman, S.L., Bettis, E.A. III, Kemmis, T., and Miller, B.B. Chronologic evidence for multiple periods of loess deposition during the late Pleistocene in the Missouri and Mississippi River Valleys: Implications for the activity of the Laurentide Ice Sheet. Palaeogeography, Palaeoclimatology, Palaeoecology 93, (1992). 7183.CrossRefGoogle Scholar
Frankel, L., (1956). Pleistocene geology and paleoecology of parts of Nebraska and adjacent areas. PhD dissertation, University of Nebraska, Lincoln.Google Scholar
Fredlund, G.G. Late Quaternary pollen record from Cheyenne Bottoms, Kansas. Quaternary Research 43, (1995). 6779.CrossRefGoogle Scholar
Fredlund, G.G., and Tieszen, L.L. Phytolith and carbon isotope evidence for late Quaternary vegetation and climate change in the southern Black Hills, South Dakota. Quaternary Research 47, (1997). 206217.CrossRefGoogle Scholar
Fredlund, G.G., and Tieszen, L.L. Calibrating grass phytolith assemblages in climatic terms: application to late Pleistocene assemblages from Kansas and Nebraska. Palaeogeography, Palaeoclimatology, Palaeoecology 136, (1997). 199211.CrossRefGoogle Scholar
Fredlund, G.G., Johnson, W.C., Dort, W. Jr. A preliminary analysis of opal phytoliths from the Eustis ash pit, Frontier County, Nebraska. Dort, W. Jr. Nebraska Academy of Sciences, Institute for Tertiary–Quaternary Studies, TER-QUA Symposium Series 1. (1985). University of Nebraska, Lincoln. 147162.Google Scholar
Frye, J.C., and Leonard, A.B. Stratigraphy of the late Pleistocene loesses of Kansas. Journal of Geology 59, (1951). 287305.CrossRefGoogle Scholar
Frye, J.C., and Leonard, A.B. Pleistocene Geology of Kansas. State Geological Survey of Kansas (1952). 99 Google Scholar
Frye, J.C., Swineford, A., and Leonard, A.B. Correlation of Pleistocene deposits of the Central Great Plains with the glacial section. Journal of Geology 56, (1948). 501525.CrossRefGoogle Scholar
Genty, D., Blamart, D., Ouahdl, R., Gilmour, M., Baker, A., Jouzel, J., and Van-Exter, S. Precise dating of Dansgaard–Oeschger climate oscillations in western Europe from stalagmite data. Nature 421, (2003). 833837.CrossRefGoogle ScholarPubMed
Grimley, D.A., and Vepraskas, M.J. Magnetic susceptibility for use in delineating hydric soils. Soil Science Society of America Journal 64, (2000). 21742180.CrossRefGoogle Scholar
Grimley, D.A., Follmer, L.R., and McKay, E.D. Magnetic susceptibility and mineral zonations controlled by provenance in loess along the Illinois and central Mississippi River valleys. Quaternary Research 49, (1998). 2436.CrossRefGoogle Scholar
Grimley, D.A., Follmer, L.R., Hughes, R.E., and Solheid, P.A. Modern, Sangamon, and Yarmouth soil development in loess of unglaciated southwestern Illinois. Quaternary Science Reviews 22, (2003). 225244.CrossRefGoogle Scholar
Grimm, E.C., Jacobson, G.L. Jr., Watts, W.A., Hansen, B.C.S., and Maasch, K.A. A 50,000-year record of climatic oscillations from Florida and its correlation with the Heinrich Events. Science 261, (1993). 198200.CrossRefGoogle ScholarPubMed
Grüger, J. Studies on the late Quaternary vegetation history of northeastern Kansas. Geological Society of America Bulletin 84, (1973). 237250.2.0.CO;2>CrossRefGoogle Scholar
Holliday, V.T. Stratigraphy and paleoenvironments of late Quaternary valley fills on the Southern High Plains. Geological Society of America (1995). 186 Google Scholar
Huang, Y., Street-Perrott, F.A., Metcalfe, S.E., Brenner, M., Moreland, M., and Freeman, K.H. Climate change as the dominant control on glacial–interglacial variations in C3 and C4 plant abundance. Science 293, (2001). 16471651.CrossRefGoogle ScholarPubMed
Izett, G.A., Wilcox, R.E., (1982). Map showing localities and inferred distributions of Huckleberry Ridge, Mesa Falls, and Lava Creek ash beds (Pearlette family ash beds) of Pliocene and Pleistocene age in the western United States and southern Canada . U.S. Geological Survey Miscellaneous Investigations Map I-1325, 1 sheet.Google Scholar
Johnson, W.C. Age determination on the Gilman Canyon Formation and Brady paleosol in Kansas. American Quaternary Association Program and Abstracts (1990). 21 Google Scholar
Johnson, W.C. Surficial geology and stratigraphy of Phillips County, Kansas, with emphasis on the Quaternary Period. Kansas Geological Survey Technical (1993). 1 Google Scholar
Johnson, W.C., (1996). Stratigraphic investigations of a possible late-Quaternary fault system at the Bone Cove site on Harlan County Lake, Harlan County, Nebraska . Kansas Geological Survey Open-file Report 96-33.Google Scholar
Johnson, W.C., and Willey, K.L. Isotopic and rock magnetic expression of environmental change at the Pleistocene–Holocene transition in the Central Great Plains. Quaternary International 67, (2000). 89106.CrossRefGoogle Scholar
Kitchen, L., (1987). Nitrate-N profiles of fine to medium textured sediments of the unsaturated zone of southeastern and south central Nebraska . MS thesis, University of Nebraska, Lincoln.Google Scholar
King, J.E. Late Pleistocene palynology and biogeography of the western Missouri Ozarks. Ecological Monographs 43, (1973). 539565.CrossRefGoogle Scholar
Krueger, J.P. Development of oriented lakes in the eastern rain basin region of south-central Nebraska. (1986). M.A. thesis, University of Nebraska, Lincoln. 115 Google Scholar
Kukla, G.J. Correlations between loesses and deep-sea sediments. Geologiska Foreningen I Stockholm Ferhandingar 92, (1970). 148180.CrossRefGoogle Scholar
Kukla, G.J. Pleistocene land–sea correlations, I, Europe. Earth Science Reviews 13, (1977). 307374.CrossRefGoogle Scholar
Kunze, G.W., and Dixon, J.B. Pretreatment for mineralogical analysis. Klute, A.L. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods: Agronomy Monograph 9. (1986). American Society of Agronomy, 91100.Google Scholar
Kuzila, M.S., (1988). Genesis and morphology of soils in and around large depressions in Clay County, Nebraska . PhD dissertation, University of Nebraska, Lincoln., 199 p.Google Scholar
Kuzila, M.S., and Lewis, D.T. Properties and genesis of loessial soils across a south-central Nebraska basin. Soil Science Society of America Journal 57, (1993). 155161.CrossRefGoogle Scholar
Leigh, D.S. Roxana silt of the Upper Mississippi Valley: lithology, source, and paleoenvironment. Geological Society of America Bulletin 106, (1994). 430442.2.3.CO;2>CrossRefGoogle Scholar
Leigh, D.S., and Knox, J.C. AMS radiocarbon age of the Upper Mississippi Valley Roxana Silt. Quaternary Research 39, (1993). 282289.CrossRefGoogle Scholar
Leonard, A.B. Stratigraphic zonations of the Peoria loess in Kansas. Journal of Geology 59, (1951). 323332.CrossRefGoogle Scholar
Leonard, A.B. Illinoian and Wisconsinan molluscan faunas in Kansas. (1952). University of Kansas Paleontological Contributions, Mollusca (art. 4). 38 Google Scholar
Maat, P.W., and Johnson, W.C. Thermolumescence and new 14C age estimates for late Quaternary loesses in southwestern Nebraska. Geomorphology 17, (1996). 115128.CrossRefGoogle Scholar
Maher, B.A., and Thompson, R. Paleorainfall reconstructions from pedogenic magnetic susceptibility variations in the Chinese loess and paleosols. Quaternary Research 44, (1995). 383391.CrossRefGoogle Scholar
Mandel, R.D., Bettis, E.A. III Late Quaternary landscape evolution and stratigraphy in eastern Nebraska. Diffendal, R.F. Jr., and Flowerday, C.A. Geologic Field Trips in Nebraska and Adjacent Parts of Kansas and South Dakota; Guidebook 10. (1995). Conservation and Survey Division, University of Nebraska. 7790.Google Scholar
Markewich, H.W., Wysocki, D.A., Pavich, M.J., Rutledge, E.M., Millard, H.T., Rich, F.J., Maat, P.B., Rubin, M., and McGeehin, J.P. Paleopedology plus TL, 10Be, and 14C dating as tools in stratigraphic and paleoclimatic investigations, Mississippi River Valley, U.S.A.. Quaternary International 51/52, (1998). 143167.CrossRefGoogle Scholar
Martin, C.W. Radiocarbon ages on late Pleistocene loess stratigraphy of Nebraska and Kansas, Central Great Plains. Quaternary Science Reviews 12, (1993). 179188.CrossRefGoogle Scholar
Mason, J.A., and Kuzila, M.S. Episodic Holocene loess deposition in central Nebraska. Quaternary International 67, (2000). 119131.CrossRefGoogle Scholar
Mason, J.A., Jacobs, P.M., Hanson, P.R., Miao, X.D., and Goble, R.J. Sources and paleoclimatic significance of Holocene Bignell Loess, Central Great Plains, USA. Quaternary Research 60, (2003). 330339.CrossRefGoogle Scholar
May, D.W., and Holen, S.R. Radiocarbon ages of soils and charcoal in late Wisconsinan loess, south-central Nebraska. Quaternary Research 39, (1993). 5558.CrossRefGoogle Scholar
May, D.W., and Holen, S.R. Eolian and soil stratigraphy at a Paleoindian site along the South Platte River Valley, Nebraska U.S.A.. Geoarchaeology 18, (2003). 145159.CrossRefGoogle Scholar
May, D.W., and Souders, V.L. Radiocarbon ages for the Gilman Canyon formation in Dawson County, Nebraska. Nebraska Academy of Sciences Proceedings (1988). 4748. (abst) Google Scholar
Miao, X., Mason, J.A., Goble, R.J., and Hanson, P.R. Loess record of dry climate and Aeolian activity in the early-to mid-Holocene, Central Great Plains, North America. The Holocene 15, (2005). 339346.CrossRefGoogle Scholar
Muhs, D.R., Aleinikoff, J.N., Stafford, T.W. Jr., Kihl, R., Been, J., Mahan, S.A., and Cowherd, S. Late Quaternary loess in northeastern Colorado: Part I—Age and paleoclimatic significance. Geological Society of America Bulletin 111, (1999). 18611875.2.3.CO;2>CrossRefGoogle Scholar
Muhs, D.R., Swinehart, J.B., Loope, D.B., Aleinikoff, J.N., and Been, J. 200,000 years of climatic change recorded in eolian sediments of the High Plains of eastern Colorado and western Nebraska. Lageson, D.R., Lester, A.P., and Trudgill, B.D. Colorado and Adjacent Areas, Geological Society of America Field Guide 1. (1999). 7191.Google Scholar
Muhs, D.R., Bettis, E.A. III Geochemical variations in Peoria Loess of western Iowa indicate paleowinds of midcontinental North America during last glaciation. Quaternary Research 53, (2000). 4961.CrossRefGoogle Scholar
Muhs, D.R., Bettis, E.A. III, and Been, J. Impact of climate and parent material on chemical weathering in loess-derived soils of the Mississippi River Valley. Soil Science Society of America Journal 65, (2001). 17611777.CrossRefGoogle Scholar
National Oceanic and Atmospheric Administration, n.d. Climatology of the United States No. 85: Divisional normals and standard deviations of temperature, precipitation, and heating and cooling degree days (1971). –(2000). U.S. Department of Commerce, .Google Scholar
Nordt, L.C., Boutton, T.W., Hallmark, C.T., and Waters, M.R. Late Quaternary vegetation and climate changes in central Texas based on the isotopic composition of organic carbon. Quaternary Research 41, (1994). 109120.CrossRefGoogle Scholar
Ode, D.J., Tieszen, L.L., and Lerman, J.C. The seasonal contribution of C3 and C4 plant species primary production in a mixed prairie. Ecology 61, 6 (1980). 13041311.CrossRefGoogle Scholar
O'Leary, M.H. Carbon isotopes in photosynthesis. Bioscience 38, (1988). 328336.CrossRefGoogle Scholar
Oviatt, C.G., Karlstrom, E.T., and Ranson, M.D. Pleistocene loess, buried soils, and thermoluminescence dates in an exposure near Milford Lake, Geary County, Kansas. Geological Society of America Abstracts with Program 20, (1988). 125126.Google Scholar
Pye, K., Winspear, N.R., and Zhou, L.P. Thermoluminescence age of loess and associated sediments in central Nebraska, U.S.A.. Palaeogeography, Palaeoclimatology, Palaeoecology 118, (1995). 7387.CrossRefGoogle Scholar
Reed, E.C., and Dreeszen, V.H. Revision of the classification of the Pleistocene deposits of Nebraska. Nebraska Geological Survey Bulletin vol. 23, (1965). University of Nebraska Conservation and Survey Division, Lincoln.Google Scholar
Reed, E.C., Dreszen, V.H., Drew, J.V., Souder, V.L., Elder, J.A., and Boellstorff, J.D. Evidence of multiple glaciations in the glacial–periglacial area of eastern Nebraska. Midwestern Friends of the Pleistocene 17th Annual Meeting Guidebook. (1966). University of Nebraska, Lincoln. 25 Google Scholar
Roberts, H.M., Muhs, D.R., Wintle, A.G., Duller, G.A.T., Bettis, E.A. III Unprecedented last-glacial mass accumulation rates determined by luminescence dating of loess from western Nebraska. Quaternary Research 59, (2003). 411419.CrossRefGoogle Scholar
Rousseau, D.-D., and Kukla, G. Late Pleistocene climate record in the Eustis loess section, Nebraska, based on land snail assemblages and magnetic susceptibility. Quaternary Research 42, (1994). 176187.CrossRefGoogle Scholar
Ruhe, R.V., and Olson, C.G. Clay-mineral indicators of glacial and non-glacial sources of Wisconsinan loesses in southern Indiana, U.S.A.. Geoderma 24, (1980). 283297.CrossRefGoogle Scholar
Schultz, C.B. The Pleistocene mammals of Nebraska. Lugn, A.L., Schultz, C.B. The Geology and Mammalian Fauna of the Pleistocene of Nebraska, University of Nebraska State Museum, Bulletin 41 (1), (1934). Lincoln, 357393.Google Scholar
Schultz, C.B. The stratigraphic distribution of vertebrate fossils in the Quaternary eolian deposits in the mid-continent region of North America. Schultz, C.B., and Frye, J.C. Loess and Related Eolian Deposits of the World. (1968). University of Nebraska Press, Lincoln. 115138.Google Scholar
Schultz, C.B., and Martin, L.D. Quaternary mammalian sequence in the Central Great Plains. Dort, W. Jr., and Jones, J.K. Pleistocene and Recent Environments of the Central Great Plains. (1970). University of Kansas Press, Lawrence. 341353.Google Scholar
Schultz, C.B., and Stout, T.M. Pleistocene loess deposits of Nebraska. American Journal of Science 243, (1945). 231244. (671–689) CrossRefGoogle Scholar
Schultz, C.B., and Stout, T.M. Pleistocene mammals and terraces in the Great Plains. Geological Society of America Bulletin 59, (1948). 553589. (622–624) Google Scholar
Schultz, C.B., and Tanner, L.G. Medial Pleistocene fossil vertebrate localities in Nebraska. University of Nebraska State Museum Bulletin 4, (1957). 5981.Google Scholar
Schultz, C.B., Lueninghoener, G.C., and Frankforter, W.D. A graphic resume of the Pleistocene of Nebraska (with notes on the fossil mammalian remains). Bulletin of the University of Nebraska State Museum 3, (1951). 141.Google Scholar
Schulze, E.D., Ellis, R., Schulze, W., and Trimborn, P. Diversity, metabolic types and δ 13C carbon isotope ratios in the grass flora of Nambia in relation to growth form, precipitation and habitat conditions. Oecologia 106, (1996). 352369.CrossRefGoogle Scholar
Serefiddin, F., Schwarcz, H.P., Ford, D.C., and Baldwin, S. Late Pleistocene paleoclimate in the Black Hills of South Dakota from isotope records in speleothems. Palaeogeography, Palaeoclimatology, Palaeoecology 203, (2004). 117.CrossRefGoogle Scholar
Shackleton, N.J., Fairbanks, R.G., Chiu, F., and Parrenin, T.-c. Absolute calibration of the Greenland time scale: implications for Antarctic time scales and for Δ14C. Quaternary Science Reviews 23, (2004). 15131522.CrossRefGoogle Scholar
Siegenthaler, U., Stocker, T.F., Monin, E., Lüthi, D., Schwander, J., Stauffer, B., Raynaud, D., Barnola, J-M., Fischer, H., Masson-Delmotte, V., and Jouzel, J. Stable-carboncycle–climate relationship during the Late Pleistocene. Science 310, (2005). 13131317.CrossRefGoogle ScholarPubMed
Smith, B.N., and Epstein, S. Two categories of 13C/12C ratios for higher plants. Plant Physiology 47, (1971). 380384.CrossRefGoogle Scholar
Souders, V.L., and Kuzila, M.S. A report on the geology and radiocarbon ages of four superimposed horizons at a site in the Republican River valley, Franklin County Nebraska. Proceedings of the Nebraska Academy of Sciences (1990). 65 Google Scholar
Stevenson, F.J., and Cole, M.A. Cycles of Soil: Carbon, Nitrogen, Phosphorus, Sulfur, Micronutrients. (1999). Wiley and Sons, New York. 427 Google Scholar
Street-Perrott, F.A., Huang, Y., Perrott, R.A., Eglinton, G., Barker, P., Khelifa, L.B., Harkness, D.D., and Olago, D.O. Impact of lower atmospheric carbon dioxide on tropical mountain ecosystems. Science 278, (1997). 14221426.CrossRefGoogle ScholarPubMed
Stuiver, M., and Grootes, P.M. GISP2 oxygen isotope ratios. Quaternary Research 53, (2000). 277284.CrossRefGoogle Scholar
Swineford, J.B., and Frye, J.C. Petrology of the Peoria Loess in Kansas. Journal of Geology 59, (1951). 306322.CrossRefGoogle Scholar
Terri, J.A., and Stowe, L.G. Climatic patterns and the distribution of C4 grasses in North America. Oecologia 23, (1976). 112.CrossRefGoogle Scholar
Thorp, J., Johnson, W.M., and Reed, E.C. Some post-Pliocene buried soils of the central United States. Journal of Soil Science 2, (1951). 119.CrossRefGoogle Scholar
Tobin, R.J. Ichnology of a late Pleistocene ichnofabric, Nebraska, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 215, (2004). 111123.CrossRefGoogle Scholar
Tobin, R.J. Taphonomy of ground squirrel remains in a Late Pleistocene ichnofabric, Nebraska, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 214, (2004). 125134.CrossRefGoogle Scholar
Voelker, A.H.L. workshop participants Global distribution of centennial-scale records for Marine Isotope Stage (MIS) 3: a database. Quaternary Science Reviews 21, (2002). 11851212.CrossRefGoogle Scholar
Wang, Y.J., Cheng, H., Edwards, R.L., An, Z.S., Wu, J.Y., Shen, C.C., and Dorale, J.A. A high-resolution absolute-dated late Pleistocene Monsoon Record form Hulu Cave. China. Science 294, (2001). 23452348.CrossRefGoogle Scholar
Wang, H., Hackley, K.C., Panno, S.V., Coleman, D.D., Liu, J.C., and Brown, J. Pyrolysis-combustion 14C dating of soil organic matter. Quaternary Research 60, (2003). 348355.CrossRefGoogle Scholar
Wells, P.V., and Stewart, J.D. Cordilleran-boreal taiga and fauna on the Central Great Plains of North America, 14,000–18,000 years ago. American Midland Naturalist 118, (1987). 94106.CrossRefGoogle Scholar
Wilman, H.B., and Frye, J.C. Pleistocene stratigraphy of Illinois. Illinois State Geological Survey Bulletin 94, (1970). 204 Google Scholar
Wunsch, C. Abrupt climate change: an alternative view. Quaternary Research 65, (2006). 191203.CrossRefGoogle Scholar
Zic, M., Negrini, R.M., and Wigand, P.E. Evidence of synchronous climate change across the Northern Hemisphere between the North Atlantic and the northwestern Great Basin, United States. Geology 30, (2002). 635638.2.0.CO;2>CrossRefGoogle Scholar