Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-19T13:13:44.996Z Has data issue: false hasContentIssue false

Parametric Analysis of Cemented Ultrahigh Molecular Weight Polyethylene (UHMWPE) Total Hip Acetabular Cups in a Quasi-Static Loading Model

Published online by Cambridge University Press:  22 February 2011

Thomas Mittlmeier
Affiliation:
Chirurgische Klinik und Poliklinik der Universität München, Klinikum Grosshadern, Marchioninistr. 15, D-8000 Munchen 70, FRG Labor für Biomechanik und Experimentelle Orthopädie, Orthopädische Klinik und Poliklinik der Universität München, Staatliche Orthopädische Klinik München, Harlachingerstr. 51, D-8000 Munchen 90, FRG
W. Plitza
Affiliation:
Chirurgische Klinik und Poliklinik der Universität München, Klinikum Grosshadern, Marchioninistr. 15, D-8000 Munchen 70, FRG Labor für Biomechanik und Experimentelle Orthopädie, Orthopädische Klinik und Poliklinik der Universität München, Staatliche Orthopädische Klinik München, Harlachingerstr. 51, D-8000 Munchen 90, FRG
H. Schmotzer
Affiliation:
Chirurgische Klinik und Poliklinik der Universität München, Klinikum Grosshadern, Marchioninistr. 15, D-8000 Munchen 70, FRG Labor für Biomechanik und Experimentelle Orthopädie, Orthopädische Klinik und Poliklinik der Universität München, Staatliche Orthopädische Klinik München, Harlachingerstr. 51, D-8000 Munchen 90, FRG
Get access

Abstract

Owing to the interest in ever increasing lifetimes for total hip prostheses, possible failure due to aseptic loosening of the acetabular component is an issue that may require increased attention. Mechanical factors, especially the deformation behavior of the material and the stress distribution at the implant-cement and the bone-cement interfaces, presumably play an essential role in total hip failure. Therefore the experimental model of the present work makes use of rosette strain gauge techniques to evaluate the deformation behavior of cemented polyethylene cups under quasi-static loading. Standard tests in UHMWPE beam specimens confirmed that the present method is a reliable tool for strain measurements in the polymer that was tested. On the other hand, the apparent elastic modulus of UHMWPE can be shown to be markedly dependent on the testing method, the geometry, and, owing to the visco-elastic properties, dependent on the strain rate. Thus in the present work a correlation between the measured strain and the ultimate strength was not attempted. Instead a parametric analysis quantifying the influence of the cup thickness and the cement distribution on the strain pattern was performed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Griss, P., Hackenbrock, M., Jäger, M., Preussner, B., Schäfer, T., Seebauer, R., van Eimeren, W., and Winkler, W. in Aktuelle Probleme in Chirugie und Orthopadie, Bd. 21, edited by Burri, C., Herfarth, Ch., and Jager, M. (Hans Huber Verlag, Bern-Stuttgart-Wien, 1982), p. 2933, 59–77.Google Scholar
2. Morscher, E., Schmassmann, A., Arch. Orthop. Traumat. Surg. 101, 137 (1983).Google Scholar
3. Semlitsch, M. and Willert, H.G., Med. & Biol. Eng. & Comput. 18, 511 (1980).Google Scholar
4. Schneider, R. in Aktuelle Probleme in Chirurgie und Orthopädie, Bd. 24, edited by Burri, C., Hergarth, Ch., and Jdger, M. (Hans Huber Verlag, Bern-Stuttgart-Wien, 1982).Google Scholar
5. Mittlmeier, T., Plitz, W., and Russe, W. in Application of Material Sciences to the Practice of Orthopedic Surgery (Martinus Nijhoff Publ., Den Haag, in press).Google Scholar
6. Salvati, E.A., Wright, T.M., Burstein, A.H., and Jacobs, B., J. Bone Joint Surg. 61–A, 1239 (1979).Google Scholar
7. Holz, U., Hemminger, W., and Gasse, H., Arch. Orthop. Traumat. Surg. 91, 121 (1978).Google Scholar
8. Pedersen, D.R., Crowninshield, R.D., Brand, R.A., and Johnston, R.C., J. Biomech. 15, 305 (1982).Google Scholar
9. Vasu, R., Carter, D.R., and Harris, W.H., J. Biomech. 15, 155 (1982; J. Biomech. Eng. Trans. ASME 105, 332 (1983); D.R. -Crter, R. Vasu, W.H. Harris, J. Biomech. 15, 165 (1982).Google Scholar
10. Gebauer, D., Winter, W., Hager, H., Biomed. Tech. 28, 297 (1983).Google Scholar
11. Plitz, W. (private communications; Dissertation, RWTH Aachen, 1984.Google Scholar
12. Pauwels, F., Gesammelte Abhandlungen zur funktionellen Anatomie des Bewegungsapparates (Springer Verlag, Berlin-Heidelberg-New York, 1965).Google Scholar
13. Dolfen, E. and Schmidt, H., Industie-Anz. Kunststoffe und Kunststoffverarbeitung 90, 2021 (1968).Google Scholar
14. Straschill, M., Seife-Ole-Fette-Wachse 98, 318, 349, 430, 498, 548 (1972); Schreyer, G. in Konstruieren mit Kunststoffen, (Carl Hanser Verlag, München, 1972), p.155.Google Scholar
15. Glücklich, D., Berichte des Instituts für Modellstatik der Universität Stuttgart, Nov. 4, 1975.Google Scholar
16. Bushelow, M., and Oh, I., presented at the 11th Ann. Meet. Soc. Biomat., San Diego, CA, 1985.Google Scholar