Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T20:17:20.741Z Has data issue: false hasContentIssue false

Dielectric, ferroelectric, and piezoelectric properties of (001) BiScO3–PbTiO3 epitaxial films near the morphotropic phase boundary

Published online by Cambridge University Press:  03 March 2011

Juan C. Nino
Affiliation:
Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802
Susan Trolier-McKinstry
Affiliation:
Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

The dielectric, ferroelectric, and piezoelectric properties of (001) BiScO3–PbTiO3 epitaxial films near the morphotropic phase boundary were investigated. Epitaxial films, 1-μm thick, were grown on (100) SrRuO3/(100) LaAlO3 substrates by pulsed laser deposition from a BiScO3–PbTiO3 (40/60) ceramic target. The films had room temperature dielectric constant of 850, tanδ = 0.08, and maximum dielectric constant of 5530 at 455 °C. Well-saturated hysteresis loops with a remanent polarization of 42 μC/cm2 and a coercive field of 75 kV/cm were observed. The effective transverse piezoelectric coefficient e31,f was −12 C/m2. This result is quite encouraging for sensor and actuator device development because the observed piezoelectric properties are as good as (001) oriented Pb(Zr,Ti)O3 films (e31,f ∼ –12 C/m2) while the transition temperature is 100 °C higher.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Muralt, P.: J. Micromech. Microeng. 10 136 (2000).CrossRefGoogle Scholar
2Ramesh, R.Thin Film Ferroelectric Materials and Devices (Kluwer Academic, Dordrecht, The Netherlands, 1997).CrossRefGoogle Scholar
3Wolf, R.A. and Trolier-McKinstry, S.: J. Appl. Phys. (accepted 2003).Google Scholar
4Turner, R.C., Fuierer, P.A., Newnham, R.E. and Shrout, T.R.: Applied Acoustics, 41 299 (1994).CrossRefGoogle Scholar
5Eitel, R.E., Randall, C.A., Shrout, T.R., Rehrig, P.W., Hackenberger, W. and Park, S.E.: Jpn. J. Appl. Phys. 40 5999 (2001).CrossRefGoogle Scholar
6Park, S.E. and Shrout, T.R.: J. Appl. Phys. 82 1804 (1997).CrossRefGoogle Scholar
7Yoshimura, T. and Trolier-McKinstry, S.: Appl. Phys. Lett. 81 2065 (2002).CrossRefGoogle Scholar
8Chen, H.D., Udayakumar, K.R., Gaskey, C.J. and Cross, L.E.: Appl. Phys. Lett. 67 3411 (1995).CrossRefGoogle Scholar
9Seifert, A., Ledermann, N., Hiboux, S., Baborowski, J., Muralt, P. and Setter, N.: Integr. Ferro. 35 1889 (2001).Google Scholar
10Xu, F., Wolf, R.A., Yoshimura, T. and Trolier-McKinstry, S.Proc. 11th Int. Symp. Electrets, edited by Fleming, R.J. (IEEE, Piscataway, NJ, 2002), p. 386.CrossRefGoogle Scholar
11Haccart, T., Soyer, C., Cattan, E. and Remiens, D.: Ferroelectrics 254 185 (2001).CrossRefGoogle Scholar
12Kanno, I., Kotera, H., Wasa, K., Matsunaga, T., Kamada, T. and Takayama, R.: J. Appl. Phys. 93 4091 (2003).CrossRefGoogle Scholar
13Kim, D-J., Maria, J-P., Kingon, A.I. and Streiffer, S.K.: J. Appl. Phys. 93 5568 (2003).Google Scholar
14Woodward, D.I., Reaney, I.M., Eitel, R.E. and Randall, C.A.: J. Appl. Phys. 93 3313 (2003).CrossRefGoogle Scholar
15Randall, C.A., Eitel, R.E., Shrout, T.R., Woodward, D.I. and Reaney, I.M.: J. Appl. Phys. 93 9271 (2003).CrossRefGoogle Scholar
16Zheng, H., Reaney, I.M., Lee, W.E., Jones, N. and Thomas, H.: J. Am. Ceram. Soc. 85 2337 (2002).Google Scholar
17Bornand, V. and Trolier-McKinstry, S.: Thin Solid Films 370 70 (2000).CrossRefGoogle Scholar
18Yoshimura, T. and Trolier-McKinstry, S.: J. Cryst. Growth 229 445 (2001).CrossRefGoogle Scholar
19Maria, J.P., Hackenberger, W. and Trolier-McKinstry, S.: J. Appl. Phys., 84 5147 (1998).CrossRefGoogle Scholar
20Shepard, J.F.: Jr., P.J. Moses, and S. Trolier-McKinstry, Sens. Actuators A 71 133 (1998).CrossRefGoogle Scholar
21Shepard, J.F. Jr.Chu, F., Kanno, I. and Trolier-McKinstry, S.: J. Appl. Phys. 85 6711 (1999).CrossRefGoogle Scholar
22Cullity, B.D.Elements of X-ray Diffraction (Addison-Wesley, Reading, MA, 1978).Google Scholar
23Maria, J.P., Trolier-McKinstry, S., Schlom, D.G., Hawley, M.E. and Brown, G.W.: J. Appl. Phys. 83 4373 (1998).CrossRefGoogle Scholar
24Chrisley, D.B. and Hubler, G.K.Pulsed Laser Deposition of Thin Films (Wiley-Interscience, New York, 1994).Google Scholar
25Kighelman, Z., Damjanovic, D. and Setter, N.: J. Appl. Phys. 89 1393 (2001).Google Scholar
26Donnelly, N.J., Catalan, G., Morros, C., Bowman, R.M. and Gregg, J.M.: J. Appl. Phys. 91 6200 (2002).CrossRefGoogle Scholar
27Randall, C.A., Center for Dielectric Studies, The Pennsylvania State University (private communication, 2003).Google Scholar
28Dubois, M.A. and Muralt, P.: Sens. Actuators A 77 106 (1999).Google Scholar