Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-21T18:48:17.675Z Has data issue: false hasContentIssue false

Thin Film Silicon Photovoltaic Technology – From Innovation to Commercialization

Published online by Cambridge University Press:  01 February 2011

Subhendu Guha
Affiliation:
sguha@uni-solar.com, United Solar Ovonic LLC, Troy, Michigan, United States
Jeffrey Yang
Affiliation:
jyang@uni-solar.com, United Solar Ovonic LLC, 1100 West Maple Road, Troy, Michigan, 48084, United States
Get access

Abstract

The last decade has witnessed tremendous progress in the science and technology of thin film silicon (amorphous and nanocrystalline) photovoltaic. The shipment of solar panels using this technology was about 200 MW in 2009; based on announcement of new or expanded production capacity, the shipment is projected to grow ten-times in the next 3-5 years. The key factor that will determine the wide-scale acceptance of the products will be the cost of solar electricity achieved using this technology. Efficiency of solar modules and throughput of production equipment will play a key role. In this paper, we discuss our roadmap to improve the product efficiency and machine throughput.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Mints, Paula, Navigant Consulting (Private Communication).Google Scholar
2 Gregg, A., Parker, T., and Swenson, R., Proc. of the 31st IEEE Photovoltaic Specialists Conf. 1587 (2005).Google Scholar
3 Yang, J., Banerjee, A., and Guha, S., Sol. Energy Mater. Sol. Cells 78, 597 (2003).Google Scholar
4 Guha, S., Proc. of the 31st IEEE Photovoltaic Specialists Conf. 12 (2005).Google Scholar
5 Banerjee, A. and Guha, S., J. Appl. Phys. 69, 1030 (1991).Google Scholar
6 Banerjee, A., Yang, J., Hoffman, K., and Guha, S., Appl. Phys. Lett. 65, 472 (1994).Google Scholar
7 Yablonovitch, E. and Cody, G. D., IEEE Trans. Electron Devices ED-29, 300 (1982).Google Scholar
8 Yablonovitch, E., J. Opt. Soc. Am. 72, 899 (1982).Google Scholar
9 Yang, J., Yan, B., Yue, G., and Guha, S., Mater. Res. Soc. Symp. Proc. 1153, 247 (2009).Google Scholar
10 Sopori, B., Madjdpour, J., Zhang, Y., Chen, W., Guha, S., Yang, J., Banerjee, A., and Hegedus, S., Mater. Res. Soc. Symp. Proc. 557, 755 (1999).Google Scholar
11 Yan, B., Yue, G., Jiang, C.-S., Yan, Y., Owens, J. M., Yang, J., and Guha, S., Mater. Res. Soc. Symp. Proc. E1101, on line at www.mrs.org.Google Scholar
12 Yue, G., Sivec, L., Owens, J. M., Yan, B., Yang, J., and Guha, S., Appl. Phys. Lett. 95, 263501 (2009).Google Scholar
13 Haase, C. and Stiebig, H., Prog. Photovolt: Res. Appl. 14, 629 (2006).Google Scholar
14 Sai, H., Kanamori, Y., and Kondo, M., Mater. Res. Soc. Symp. Proc. 1153, 29 (2009).Google Scholar
15 Pillai, S., Catchpole, K. R., Trupke, T., and Green, M. A., J. Appl. Phys. 101, 093105 (2007).Google Scholar
16 Zhou, D. and Biswas, R., J. Appl. Phys. 103, 093102 (2008).Google Scholar
17 Schropp, R. I. and Zeman, M., Amorphous and microcrystalline solar cells: modeling, materials, and device technology, Kluwer Academic Publishers (1998).Google Scholar
18 Zeman, M., Isabella, O., Jaeger, K., Solntsev, S., Lyang, R., Santbergen, R., and Krc, J., Mater. Res. Soc. Symp. Proc. 1245, A3.3 (2010).Google Scholar
19 Curtins, H., Wyrsch, N., and Shah, A., Electron Lett. 23, 228 (1987).Google Scholar
20 Yan, B., Yang, J., Guha, S., and Gallagher, A., Mater. Res. Soc. Symp. Proc. 557, 115 (1999).Google Scholar
21 Xu, X., Beglau, D., Ehlert, S., Li, Y., Su, T., Yue, G., Yan, B., Lord, K., Banerjee, A., Yang, J., Guha, S., Hugger, P.G., and Cohen, J.D., Mater. Res. Soc. Symp. Proc. 1153, 99 (2009).Google Scholar
22 Yan, B., Yue, G., Yang, J., Guha, S., Williamson, D.L., Han, D., and Jiang, C.-S., Appl. Phys. Lett. 85, 1955 (2004).Google Scholar
23 Yan, B., Yue, G., Yang, J., and Guha, S., CD of Proc. of the 33rd IEEE Photovoltaic Specialists Conf., paper No. 257 (2008).Google Scholar
24 Yue, G., Sivec, L., Yan, B., Yang, J., and Guha, S., Mater. Res. Soc. Symp. Proc. 1245, A21.1 (2010).Google Scholar
25 Xu, X., Su, T., Ehlert, S., Bobela, D., Beglau, D., Pietka, G., Li, Y., Zhang, J., Yue, G., Yan, B., DeMaggio, G., Worrel, C., Lord, K., Banerjee, A., Yang, J., and Guha, S., Mater. Res. Soc. Symp. Proc. 1245, A2.1 (2010).Google Scholar
26 Teplin, C. W., Alberi, K., Romero, M. J., Reedy, R. C., Young, D. L., Martin, I. T., Shub, M., Iwaniczko, E., Beall, C. L., Stradins, P., and Branz, H. M., Mater. Res. Soc. Symp. Proc. 1245, A5.10 (2010).Google Scholar
27 Guha, S., Optoelectronics 5, 201 (1990).Google Scholar
28 Zhao, H., Ozturk, B., Schiff, E., Yan, B., Yang, J., and Guha, S., Mater. Res. Soc. Symp. Proc. 1245, A3.2 (2010).Google Scholar
29 Hreniak, D., Gluchowski, P., Strek, W., Bettinelli, M., Kozlowska, A., and Kozlowski, M., Mater. Science-Poland 24, 405 (2006).Google Scholar