Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T10:50:13.826Z Has data issue: false hasContentIssue false

First Record and Phylogenetic Significance of a Jurassic Diadematacean Sea Urchin from California

Published online by Cambridge University Press:  15 October 2015

Rich Mooi
Affiliation:
Department of Invertebrate Zoology and Geology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA,
Richard P. Hilton
Affiliation:
Department of Geology, Sierra College, 5000 Rocklin Road, Rocklin, CA 95677, USA,

Abstract

Although diadematacean sea urchins (diadematids, aspidodiadematids, and micropygids) likely diverged sometime during the Jurassic, the lack of fossils representing this group has greatly hampered progress in understanding their evolution. No unequivocal Jurassic diademataceans have been described previously from North America. We describe a new genus and species, Sierradiadema kristini, from a single fossil from the Middle Jurassic (Callovian) Colfax sequence of the Mariposa Formation exposed in the Middle Fork American River drainage of the northern Sierra Nevada, California. The specimen, although not complete, reveals details of the spination and tooth morphology often lacking in Jurassic diademataceans, along with test architecture that yields information concerning the relative timing of important events in the origins of the diadematids in particular. We explore this evolution with a phylogenetic analysis of relevant clades with Jurassic times of divergence, finding not only that Sierradiadema n. gen. is the earliest known member of a clade containing the extant Diadematidae, but that it will stimulate ongoing discussion of the putative Jurassic origins of all the diadematacean groups.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agassiz, A. 1879. Preliminary report on the Echini of the exploring expedition of H. M. S. “Challenger.” Proceedings of the American Academy of Arts and Sciences, 6:190212.Google Scholar
Agassiz, A. and Clark, H. L. 1908. Hawaiian and other Pacific Echini. The Salenidae, Arbaciadae, Aspidodiadematidae and Diadematidae. Memoirs of the Museum of Comparative Zoology, Harvard University, 34:47133.Google Scholar
Agassiz, L. 1835. Prodrome d'une monographie des radiaires ou échinodermes. Mémoires de la Société des Sciences naturelles de Neuchâtel, 1:168199.Google Scholar
Agassiz, L. 1838. Monographies d'Échinodermes vivants et fossiles. Première monographie: Des Salénies. Petitpierre, Neuchâtel, 32 p.CrossRefGoogle Scholar
Chandra, D. K. 1961. Geology and mineral deposits of the Colfax and Foresthill Quadrangles. California Division of Mines and Geology Special Paper 67, 50 p.Google Scholar
Claus, C. F. W. 1880. Grundzüge der Zoologie, 4th edition. N. G. Elwert'sche Universitätsbuchhandlung, Marburg and Leipzig, 522 p.Google Scholar
Day, H. W., Moores, E. M., and Tuminas, A. C. 1985. Structure and tectonics of the northern Sierra Nevada. Bulletins of the Geological Society of America, 96:436450.Google Scholar
Desor, E. 1855 –1858. Synopsis des échinides fossiles. Reinwald, Paris, 490 p.Google Scholar
Duncan, P. M. 1889. A revision of the genera and great groups of the Echinoidea. Journal of the Linnean Society of London, Zoology, 23:1311.CrossRefGoogle Scholar
Edleman, S. H. and Sharp, W. D. 1989. Terranes, early faults, and pre-Late Jurassic amalgamation of the western Sierra Nevada metamorphic belt, California. Bulletins of the Geological Society of America, 101:1,4201,433.2.3.CO;2>CrossRefGoogle Scholar
Ernst, W. G. 1983. Phanerozoic continental accretion and the metamorphic evolution of northern and central California. Tectonophysics, 100:287320.CrossRefGoogle Scholar
Ernst, W. G., Snow, C. A., and Scherer, H. H. 2008 a. Contrasting early and late Mesozoic petrotectonic evolution of northern California. Bulletins of the Geological Society of America, 120:179194.Google Scholar
Ernst, W. G., Snow, C. A., and Scherer, H. H. 2008 b. Mesozoic transpression, transtension, subduction and metallogenesis in northern and central California. Terra Nova, 20:394413.CrossRefGoogle Scholar
Fell, H. B. 1966. Diadematacea, p. U340–U366a. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology. Pt. U. Echinodermata 3. Geological Society of America and University of Kansas Press, Lawrence, Kansas.Google Scholar
Gabb, W. M. 1870. Descriptions of some secondary fossils from the Pacific States. American Journal of Conchology, 5:518.Google Scholar
Gray, J. E. 1825. An attempt to divide the Echinida, or sea eggs, into natural families. Annals of Philosophy, New Series, 10:423431.Google Scholar
Gray, J. E. 1855. Catalogue of the Recent Echinida, or sea eggs, in the collection of the British Museum. Part I. Echinida Irregularia. Woodfall and Kinder, London, 69 p.Google Scholar
Graymer, R. W. 1999. A geologic excursion on the South Fork of the American River, from Lotus to Folsom Lake. Northern California Geological Society Fieldtrip, 5 p.Google Scholar
Graymer, R. W. and Jones, D. L. 1994. Tectonic implications of radiolarian cherts from the Placerville Belt, Sierra Nevada Foothills, California: Nevadan-age continental growth by accretion of multiple terranes. Bulletins of the Geological Society of America, 106:531540.Google Scholar
Greenstein, B. J. 1991. An integrated study of echinoid taphonomy: predictions for the fossil record of four echinoid families. Palaios, 6:519540.Google Scholar
Gregory, J. W. 1897. On the affinities of the Echinothuridae, and on Pedinothuria and Helikodiadema, two genera of Echinoidea. Quarterly Journal of the Geological Society, London, 53:112122.CrossRefGoogle Scholar
Hess, H. 1972. Eine Echinodermen-Fauna aus dem mittleren Dogger des Aargauer Jura. Schweizerische Palaontologische Abhandlungen, 92:187.Google Scholar
Hyatt, A. 1894. Trias and Jura in the western United States. Geological Society of America, 5:395434.CrossRefGoogle Scholar
Imlay, R. W. 1961. Late Jurassic ammonites from the western Sierra Nevada, California. United States Geologic Survey Professional Paper, 374D, 30 p.CrossRefGoogle Scholar
Irwin, W. P. 1972. Terranes of the western Paleozoic and Triassic belt in the southern Klamath Mountains, California. United States Geological Survey Professional Paper 800C, p. 103111.Google Scholar
Jackson, R. T. 1912. Phylogeny of the Echini, with a revision of the Paleozoic species. Memoirs of the Boston Society of Natural History, 7:1490.Google Scholar
Jensen, M. 1981. Morphology and classification of Euechinoidea Bronn, 1860—a cladistic analysis. Videnskabelige Meddelelsar Dansk Naturhistoriske Forening i Kjobenhavn, 143:799.Google Scholar
Keeping, W. 1878. On Pelanechinus, a new genus of sea-urchin from the Coral Rag. Quarterly Journal of the Geological Society of London, 34:924930.CrossRefGoogle Scholar
Kroh, A. and Smith, A. B. 2010. Phylogeny and classification of post-Palaeozoic echinoids. Journal of Systematic Palaeontology, 8:147212.CrossRefGoogle Scholar
Kroh, A. and Mooi, R. 2013. World Echinoidea Database. Accessed through: World Register of Marine Species at http://www.marinespecies.org/aphia.php?p=taxdetailsandid=689372 on June 13, 2013.Google Scholar
Lambert, J. and Savin, L. 1905. Note sure quelques échinides des diverse régions. Révision des échinides fossiles du département de l'Isère. Bulletin de la Société de Statistique des Sciences Naturelles et des Arts Industriels du Département de l'Isère (4ème Series), 8:202211.Google Scholar
Latreille, P. A. 1825. Familles naturelles du régne animal. J. B. Baillière, Paris, 570 p.Google Scholar
Lindgren, W. 1900. Description of the Colfax quadrangle. United States Geological Survey Geological Atlas Colfax Folio 66, 10 p.Google Scholar
Miller, A. K. 1929. Ancylocidaris, a new echinoid genus from the Sundance of west-central Wyoming. American Journal of Science, 18:334336.CrossRefGoogle Scholar
Mooi, R., Constable, H., Lockhart, S., and Pearse, J. S. 2004. Echinothurioid phylogeny and the phylogenetic significance of Kamptosoma (Echinoidea: Echinodermata). Deep-Sea Research II, 51:1,9031,919.CrossRefGoogle Scholar
Mortensen, T. 1903 a. The Danish Ingolf-Expedition 1895–1896. Volume 4, Number 2. Echinoidea. Part I. Bianco Luno, Copenhagen, 198 p.Google Scholar
Mortensen, T. 1903 b. Chaetodiadema granulatum n. g., n. sp., a new diadematid from the Gulf of Siam. Videnskabelige Meddelelser fra Danks naturhistorisk Forening i Kobenhavn, 1903:14.Google Scholar
Mortensen, T. 1939. New Echinoida (Aulodonta). Preliminary Notice. Videnskabelige Meddelelser fra Danks naturhistorisk Forening i Kobenhavn 103:547550.Google Scholar
Mortensen, T. 1940. A monograph of the Echinoidea. III (1) Aulodonta. C. A. Reitzel, Copenhagen, 369 p.Google Scholar
Peters, W. K. H. 1853. Über die an der Küste von Mossambique beobachteten Seeigel und insobesondere über die Gruppe der Diademen, von welcher hier ein Auszug folgt. Miscellanea Berolinensia Preussischen Akademie der Wissenschaften, 1853:484488.Google Scholar
Peters, W. K. H. 1855. Über ber die an der Küste von Mossambique beobachteten Seeigel und insobesondere über die Gruppe der Diadema . Koenig Akademie der Wissenschaft Berlin, Abhandlung, 1854:101119.Google Scholar
Philip, G. M. 1963 a. A new regular echinoid from the Jurassic of Wyoming, U.S.A. Journal of Paleontology, 37:1,1101,115.Google Scholar
Philip, G. M. 1963 b. A new genus of regular echinoid from the lower Eocene of British Somaliland. Journal of Paleontology 37:1,1041,109.Google Scholar
Philip, G. M. 1965. The Tertiary echinoids of south-eastern Australia. III, Stirodonta, Aulodonta and Camarodonta (1). Proceedings of the Royal Society of Victoria, 78:181196.Google Scholar
Pomel, A. 1883. Classification méthodique et genera des Échinides vivantes et fossiles. Thèses présentées à la Faculté des Sciences de Paris pour obtenir le Grade de Docteur ès Sciences Naturelles 503, Adolphe Jourdan, Alger, 131 p.CrossRefGoogle Scholar
Pomel, A. 1887. Paléontologie ou descriptions des animaux fossiles de l'Algérie: 2, Echinodermes. Publications du Service de la Carte géologique de l'Algérie, 344 p.Google Scholar
Saucède, T., Mooi, R., and David, B. 2007. Phylogeny and origin of Jurassic irregular echinoids (Echinodermata: Echinoidea). Geology Magazine, 144:333359.Google Scholar
Schweickert, R. A., Hanson, R. E., and Girty, G. H. 1999. Accretionary tectonics of the western Sierra Nevada metamorphic belt. Geologic Field Trips in Northern California. California Division of Mines and Geology Special Publication 119, p. 3379.Google Scholar
Sharp, W. D. 1988. Pre-Cretaceous crustal evolution in the Sierra Nevada region, California, p. 823886. In Ernst, W. G. (ed.), Metamorphism and Crustal Evolution of the Western United States, Volume VII. Prentice Hall, New York.Google Scholar
Smith, A. B. 1981. Implications of lantern morphology for the phylogeny of post-Palaeozoic echinoids. Palaeontology, 24:779801.Google Scholar
Smith, A. B. and Wright, C. W. 1990. British Cretaceous echinoids. Part 2. Echinothurioida, Diadematoida and Stirodonta (1, Calycina). Monograph of the Palaeontographical Society, London, 583:101198.Google Scholar
Smith, A. B., Pisani, D., Mackenzie-Dodds, J., Stockley, B., Webster, B. L., and Littlewood, D. T. J. 2006. Testing the molecular clock: molecular and paleontological estimates of divergence times in the Echinoidea (Echinodermata). Molecular Biology and Evolution, 23:1,8321,851.CrossRefGoogle ScholarPubMed
Smith, A. B. 2007. Intrinsic versus extrinsic biases in the fossil record: contrasting the fossil record of echinoids in the Triassic and early Jurassic using sampling data, phylogenetic analysis, and molecular clocks. Paleobiology, 33:310323.Google Scholar
Smith, A. B. and Kroh, A. (eds.). 2011. The Echinoid Directory. World Wide Web electronic publication. http://www.nhm.ac.uk/research-curation/projects/echinoid-directory (accessed June 12, 2013).Google Scholar
Smith, A. B. and Crame, J. A. 2012. Echinoderm faunas from the Lower Cretaceous (Aptian–Albian) of Alexander Island, Antarctica. Palaeontology, 55:305324.Google Scholar
Smith, J. P. 1910. Geologic record of California. Journal of Geology, 18:216227.CrossRefGoogle Scholar
Snow, C. A. 2006. On the Jurassic tectonic evolution of California. Unpublished Ph.D. dissertation, Stanford University, 155 p.Google Scholar
Snow, C. A. 2007. Petrographic evolution and melt modeling of the Peñon Blanco arc, central Sierra Nevada foothills, California. Bulletins of the Geological Society of America, 199:1,0141,024.CrossRefGoogle Scholar
Swofford, D. L. 1998. PAUP∗. Phylogenetic Analysis Using Parsimony (∗and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
Thuy, B., Gale, A. S., and Reich, M. 2011. A new echinoderm Lagerstätte from the Pliensbachian (Early Jurassic) of the French Ardennes. Swiss Journal of Palaeontology, 130:173185.CrossRefGoogle Scholar
Tuminas, A. C. 1983. Structural and stratigraphic relations in the Grass Valley-Colfax area of the northern Sierra Nevada foothills, California. Unpublished Ph.D. dissertation, University of California, Davis, 415 p.Google Scholar
Tuminas, A. C. and Moores, E. M. 1982. Sedimentology and possible paleotectonic setting of a Late Jurassic flysch sequence in the western foothills of the northern Sierra Nevada, California. Geological Society of America Abstracts with Program, 14:241.Google Scholar
Vadet, A. 1999. La classification des oursins reguliers du Lias et du Jura. Bulletin de la Société Academique de Boulonnais, 4:7083.Google Scholar
Wilson, E. and Crick, W. D. 1889. The Lias Marlstone of Tilton, Leicestershire. Geological Magazine, 6:337342.CrossRefGoogle Scholar