Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T17:43:51.165Z Has data issue: false hasContentIssue false

Effects of In-Situ DC-Bias on the Composition, Microstructures and Dielectric Properties of RF Magnetron Reactive Sputtered (Ba,Sr)TiO3 Films

Published online by Cambridge University Press:  10 February 2011

Wen-Hao Chan
Affiliation:
Dept of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan, R.O.C.
Hui-Ling Shen
Affiliation:
Present address: Lead Data Inc., Fu Kou Hsiang, Hsinchu, 303, Taiwan, R.O.C.
Lih-Hsin Chou
Affiliation:
Dept of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan, R.O.C.
Jinn-Lung Wang
Affiliation:
Chemical Systems Research Division, Chung-Shan Institute of Science and Technology, Lung-Tan, 325 Taiwan, R.O.C.
Jyi-Ching Tsai
Affiliation:
Chemical Systems Research Division, Chung-Shan Institute of Science and Technology, Lung-Tan, 325 Taiwan, R.O.C.
Get access

Abstract

Thin films of (Ba,Sr)TiO3 (BST) have been prepared by rf magnetron reactive sputtering using single alloy target, and in-situ negative DC-bias. Post annealing was applied to the asdeposited films at 620°C for 2 hours in 1 atm oxygen atmosphere. Thin film microstructures and grain sizes were studied and calculated by means of X-ray diffraction, while the film composition was analyzed by Electron Probe X-ray Microanalyzer (EPMA). The dielectric constant of the films was also studied. As the applied DC-bias increased, the dielectric constant increased from 176 to 912, the x-ray diffraction patterns became more intense and narrower, and the (Ba+Sr)/Ti molar ratio increased from 0.70 to 0.83. In-situ DC-bias was observed to be a feasible fabrication process to increase the grain size and relative permittivity of sputtered BST films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ichinose, N. and Ogiwara, T., Jpn. J. Appl. Phys., 32, 4115 (1993).Google Scholar
2. Watton, R., Ferroelectrics, 91, 87 (1989).Google Scholar
3. Whatmore, R. W., Ferroelectrics, 118, 241 (1991).Google Scholar
4. Robert, E. F. and Miller, J. E., SPIE Infrared Imaging system, 1689, 379 (1992).Google Scholar
5. Ichinose, N. and Ogiwara, T., Jpn. J. Appl. Phys., 34, 5198 (1995).Google Scholar
6. Park, S. O., Hwang, C. S., Cho, H. J., Kang, C. S., Kang, H. K., Leen, S. I. and Lee, M. Y., Jpn. J. Appl. Phys., 35, 1548(1996).Google Scholar
7. Hou, S. Y, Kwo, J., Werder, R. K., Shmuiovich, J. and O'Bryan, H. M. Mat. Res. Soc. Symp. Proc., 343, 457 (1994).Google Scholar
8. Horikawa, T., Mikami, N., Makita, T., Tanimura, J., Kataoka, M., Sato, K. and Nunoshita, M., Jpn. J. Appl. Phys., 32, 4126 (1993).Google Scholar
9. Makita, T., Horikawa, T., Kuroki, H., Kataoka, M., Tanimura, J., Mikami, N., Sato, K. and Nunoshita, M., Mat. Res. Soc. Symp. Proc., 284, 529 (1993).Google Scholar
10. Moulson, A. J. and Herbert, J. M., Electroceramics, (CHAPMAN & HALL, New York, 1990), p.244.Google Scholar
11. Kuroiwa, T., Tsunemine, Y., Horikawa, T., Makita, T., Tanimura, J., Mikami, N. and Sato, K., Jpn. J. Appl. Phys., 33 5188 (1994).Google Scholar
12. W Lee, J., Park, I. K., Jang, G. E. and Kim, H. G., Jpn. J. Appl. Phys., 34, 196 (1995).Google Scholar
13. Ross, F. M., Tersoff, J. and.Tromp, R. M., Phys Rev. Lett., 80, 984 (1998)Google Scholar
14. Kulwicki, B. M., Patent, U. S., No. 5 314 651 (24 May 1994).Google Scholar
15. Arlt, G., Hennings, D. and With, G. de, J. Appl. Phys., 58, 1619 (1985)Google Scholar
16. Ishikawa, K., Phys. Rev., B37, 5852 (1998)Google Scholar
17. Uchino, K., Sadanaga, E. and Hirose, T., J. Am. Ceram. Soc., 72, 1555 (1989)Google Scholar