Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T07:09:02.283Z Has data issue: false hasContentIssue false

Dynamo saturation down to vanishing viscosity: strong-field and inertial scaling regimes

Published online by Cambridge University Press:  13 February 2019

Kannabiran Seshasayanan
Affiliation:
Service de Physique de l’État Condensé, CNRS UMR 3680, CEA Saclay, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
Basile Gallet*
Affiliation:
Service de Physique de l’État Condensé, CNRS UMR 3680, CEA Saclay, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
*
Email address for correspondence: basile.gallet@cea.fr

Abstract

We present analytical examples of fluid dynamos that saturate through the action of the Coriolis and inertial terms of the Navier–Stokes equation. The flow is driven by a body force and is subject to global rotation and uniform sweeping velocity. The model can be studied down to arbitrarily low viscosity and naturally leads to the strong-field scaling regime for the magnetic energy produced above threshold: the magnetic energy is proportional to the global rotation rate and independent of the viscosity $\unicode[STIX]{x1D708}$. Depending on the relative orientations of global rotation and large-scale sweeping, the dynamo bifurcation is either supercritical or subcritical. In the supercritical case, the magnetic energy follows the scaling law for supercritical strong-field dynamos predicted on dimensional grounds by Pétrélis & Fauve (Eur. Phys. J. B, vol. 22, 2001, pp. 271–276). In the subcritical case, the system jumps to a finite-amplitude dynamo branch. The magnetic energy obeys a magneto-geostrophic scaling law (Roberts & Soward, Annu. Rev. Fluid Mech., vol. 4, 1972, pp. 117–154), with a turbulent Elsasser number of the order of unity, where the magnetic diffusivity of the standard Elsasser number appears to be replaced by an eddy diffusivity. In the absence of global rotation, the dynamo bifurcation is subcritical and the saturated magnetic energy obeys the equipartition scaling regime. We consider both the vicinity of the dynamo threshold and the limit of large distance from threshold to put these various scaling behaviours on firm analytical ground.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aubert, J. 2005 Steady zonal flows in spherical shell dynamos. J. Fluid Mech. 542, 5367.Google Scholar
Aubert, J., Gastine, T. & Fournier, A. 2017 Spherical convective dynamos in the rapidly rotating asymptotic regime. J. Fluid Mech. 813, 558593.Google Scholar
Calkins, M. A., Julien, K., Tobias, S. M. & Aurnou, J. M. 2015 A multiscale dynamo model driven by quasi-geostrophic convection. J. Fluid Mech. 780, 143166.Google Scholar
Calkins, M. A., Long, L., Nieves, D., Julien, K. & Tobias, S. M. 2016 Convection-driven kinematic dynamos at low Rossby and magnetic Prandtl numbers. Phys. Rev. Fluids 1, 083701.Google Scholar
Cameron, A. & Alexakis, A. 2016 Fate of alpha dynamos at large Rm. Phys. Rev. Lett. 117, 205101.Google Scholar
Campagne, A., Machicoane, N., Gallet, B., Cortet, P.-P. & Moisy, F. 2016 Turbulent drag in a rotating frame. J. Fluid Mech. 794, R5.Google Scholar
Cattaneo, F. & Hughes, D. W. 1996 Nonlinear saturation of the turbulent 𝛼 effect. Phys. Rev. E 54, 5.Google Scholar
Cattaneo, F. & Hughes, D. W. 2017 Dynamo action in rapidly rotating Rayleigh–Bénard convection at infinite Prandtl number. J. Fluid Mech. 825, 385411.Google Scholar
Courvoisier, A., Hughes, D. W. & Proctor, M. R. E. 2010 Self-consistent mean-field magnetohydrodynamics. Proc. R. Soc. Lond. A 466, 583601.Google Scholar
Dormy, E. 2016 Strong-field spherical dynamos. J. Fluid Mech. 789, 500513.Google Scholar
Dormy, E., Oruba, L. & Petitdemange, L. 2018 Three branches of dynamo action. Fluid Dyn. Res. 50, 1.Google Scholar
Fauve, S., Herault, J., Michel, G. & Pétrélis, F. 2017 Instabilities on a turbulent background. J. Stat. Mech. Theory Exp. 6, 064001.Google Scholar
Frisch, U., She, Z. S. & Sulem, P.-L. 1987 Large-scale flow driven by the anisotropic kinetic alpha effect. Physica D 28, 382392.Google Scholar
Gailitis, A., Lielausis, O., Dement’ev, S., Platacis, E., Cifersons, A., Gerbeth, G., Gundrum, T., Stefani, F., Christen, M., Hänel, H. & Will, G. 2000 Detection of a flow induced magnetic field eigenmode in the Riga dynamo facility. Phys. Rev. Lett. 84, 43654368.Google Scholar
Gallet, B., Berhanu, M. & Mordant, N. 2009 Influence of an external magnetic field on forced turbulence in a swirling flow of liquid metal. Phys. Fluids 21, 085107.Google Scholar
Gallet, B., Herault, J., Laroche, C., Pétrélis, F. & Fauve, S. 2012 Reversals of a large-scale field generated over a turbulent background. Geophys. Astrophys. Fluid Dyn. 106, 468492.Google Scholar
Gallet, B. 2015 Exact two-dimensionalization of rapidly rotating large-Reynolds-number flows. J. Fluid Mech. 783, 412447.Google Scholar
Gilbert, A. D. & Sulem, P.-L. 1989 On inverse cascades in alpha effect dynamos. Geophys. Astrophys. Fluid Dyn. 51, 243261.Google Scholar
Gómez-Pérez, N. & Heimpel, M. 2007 Numerical models of zonal flow dynamos: an application to the ice giants. Geophys. Astrophys. Fluid Dyn. 101, 371388.Google Scholar
Hughes, D. W. & Cattaneo, F. 2016 Strong-field dynamo action in rapidly rotating convection with no inertia. Phys. Rev. E 93, 061101(R).Google Scholar
Le Bars, M., Cébron, D. & Le Gal, P. 2015 Flows driven by libration, precession, and tides. Annu. Rev. Fluid Mech. 47, 163193.Google Scholar
Moffatt, H. K. 1972 An approach to a dynamic theory of dynamo action in a rotating conducting fluid. J. Fluid Mech. 53, 385399.Google Scholar
Monchaux, R., Berhanu, M., Bourgoin, M., Moulin, M., Odier, Ph., Pinton, J.-F., Volk, R., Fauve, S., Mordant, N., Pétrélis, F., Chiffaudel, A., Daviaud, F., Dubrulle, B., Gasquet, C., Marié, L. & Ravelet, F. 2007 Generation of magnetic field by dynamo action in a turbulent flow of liquid sodium. Phys. Rev. Lett. 98, 044502.Google Scholar
Morin, J., Dormy, E., Schrinner, M. & Donati, J.-F. 2011 Weak- and strong-field dynamos: from the Earth to the stars. Mon. Not. R. Astron. Soc. 418, 133137.Google Scholar
Nunez, A., Pétrélis, F. & Fauve, S. 2001 Saturation of a Ponomarenko type fluid dynamo. In Dynamo and Dynamics, pp. 6774. Kluwer Academic Publishers.Google Scholar
Oruba, L. & Dormy, E. 2014 Predictive scaling laws for spherical rotating dynamos. Geophys. J. Intl 198 (2), 828847.Google Scholar
Pétrélis, F. & Fauve, S. 2001 Saturation of the magnetic field above the dynamo threshold. Eur. Phys. J. B 22, 271276.Google Scholar
Pétrélis, F., Mordant, N. & Fauve, S. 2007 On the magnetic fields generated by experimental dynamos. Geophys. Astrophys. Fluid Dyn. 101, 289323.Google Scholar
Plumley, M., Calkins, M. A., Julien, K. & Tobias, S. M. 2018 Self-consistent single mode investigations of the quasi-geostrophic convection-driven dynamo model. J. Plasma Phys. 84, 4.Google Scholar
Ponty, Y. & Plunian, F. 2011 Transition from large-scale to small-scale dynamo. Phys. Rev. Lett. 106, 154502.Google Scholar
Roberts, G. O. 1972 Dynamo action of fluid motions with two-dimensional periodicity. Phil. Trans. R. Soc. Lond. A 271, 411454.Google Scholar
Roberts, P. H. & Soward, A. M. 1972 Magnetohydrodynamics of the Earth’s core. Annu. Rev. Fluid Mech. 4, 117154.Google Scholar
Roberts, P. H. 1978 Magnetoconvection in a rapidly rotating fluid. In Rotating Fluids in Geophysics (ed. Roberts, P. H. & Soward, A. M.), pp. 421435. Academic Press.Google Scholar
Roberts, P. H. 1988 Future of dynamo theory. Geophs. Astrophys. Fluid Dyn. 44, 331.Google Scholar
Roberts, P. H. & Soward, A. M. 1992 Dynamo theory. Annu. Rev. Fluid Mech. 24, 459512.Google Scholar
Schaeffer, N., Jault, D., Nataf, H.-C. & Fournier, A. 2017 Turbulent geodynamo simulations: a leap towards Earth’s core. Geophys. J. Intl 211, 129.Google Scholar
Schrinner, M., Petitdemange, L. & Dormy, E. 2012 Dipole collapse and dynamo waves in global direct numerical simulations. Astrophys. J. 752, 121.Google Scholar
Seshasayanan, K. & Alexakis, A. 2016 Turbulent 2.5-dimensional dynamos. J. Fluid Mech. 799, 246264.Google Scholar
Seshasayanan, K., Gallet, B. & Alexakis, A. 2017 Transition to turbulent dynamo saturation. Phys. Rev. Lett. 119, 204503.Google Scholar
Sivashinsky, G. & Yakhot, V. 1985 Negative viscosity effect in large-scale flows. Phys. Fluids 28, 10401042.Google Scholar
Soward, A. M. 1974 A convection-driven dynamo. I. The weak-field case. Phil. Trans. R. Soc. Lond. A 275, 611646.Google Scholar
Stieglitz, R. & Müller, U. 2001 Experimental demonstration of a homogeneous two-scale dynamo. Phys. Fluids 13, 561564.Google Scholar
Tilgner, A. 2008 Dynamo action with wave motion. Phys. Rev. Lett. 100, 128501.Google Scholar
Vainshtein, S. I. & Cattaneo, F. 1992 Nonlinear restrictions on dynamo action. Astrophys. J. 393, 165171.Google Scholar
Yadav, R. K., Gastine, T., Christensen, U. R., Wolk, S. J. & Poppenharger, K. 2016 Approaching a realistic force balance in geodynamo simulations. Proc. Natl Acad. Sci. USA 113 (43), 1206512070.Google Scholar