Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-13T12:00:59.088Z Has data issue: false hasContentIssue false

Noble gas ion beams in materials science for future applications and devices

Published online by Cambridge University Press:  08 September 2017

Alex Belianinov
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, USA; belianinova@ornl.gov
Matthew J. Burch
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, USA; burchmj@ornl.gov
Songkil Kim
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, USA; kims2@ornl.gov
Shida Tan
Affiliation:
Platform Engineering Group, Intel Corporation, USA; shida.tan@intel.com
Gregor Hlawacek
Affiliation:
Ion Beam Center, Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Germany; g.hlawacek@hzdr.de
Olga S. Ovchinnikova
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, USA; ovchinnikovo@ornl.gov
Get access

Abstract

Helium ion microscopy (HIM), enabled by a gas field ion source (GFIS), is an emerging imaging and nanofabrication technique compatible with many applications in materials science. The scanning electron microscope (SEM) has become ubiquitous in materials science for high-resolution imaging of materials. However, due to the fundamental limitation in focusing of electron beams, ion-beam microscopy is now being developed (e.g., at 20 kV the SEM beam diameter ranges from 0.5 to 1 nm, whereas the HIM offers 0.35 nm). The key technological advantage of the HIM is in its multipurpose design that excels in a variety of disciplines. The HIM offers higher resolution than the best available SEMs as well as the traditional gallium liquid-metal ion source (LMISs) focused ion beams (FIBs), and is capable of imaging untreated biological or other insulating samples with unprecedented resolution, depth of field, materials contrast, and image quality. GFIS FIBs also offer a direct path to defect engineering via ion implantation, three-dimensional direct write using gaseous and liquid precursors, and chemical-imaging options with secondary ion mass spectrometry. HIM covers a wide range of tasks that otherwise would require multiple tools or specialized sample preparation. In this article, we describe the underlying technology, present materials, relevant applications, and offer an outlook for the potential of FIB technology in processing materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kittel, C., Introduction to Solid State (Wiley, New York, 1966).Google Scholar
Koenraad, P.M., Flatté, M.E., Nat. Mater. 10, 91 (2011).CrossRefGoogle Scholar
Kalinin, S.V., Borisevich, A., Jesse, S., Nature 539, 485 (2016).Google Scholar
Notte, J., Hill, R., McVey, S., Farkas, L., Percival, R., Ward, B., Microsc. Microanal. 12, 126 (2006).Google Scholar
Joy, D.C., Helium Ion Microscopy: Principles and Applications (Springer, New York, 2013).Google Scholar
Jesse, S., Borisevich, A.Y., Fowlkes, J.D., Lupini, A.R., Rack, P.D., Unocic, R.R., Sumpter, B.G., Kalinin, S.V., Belianinov, A., Ovchinnikova, O.S., ACS Nano 10, 5600 (2016).CrossRefGoogle Scholar
Hlawacek, G., Gölzhäuser, A., Helium Ion Microscopy (Springer, Switzerland, 2016).CrossRefGoogle ScholarPubMed
Lehtinen, O., Kotakoski, J., Krasheninnikov, A., Keinonen, J., Nanotechnology 22, 175306 (2011).Google Scholar
Ziegler, J.F., J. Appl. Phys. 85, 1249 (1999).Google Scholar
Garashchuk, S., Jakowski, J., Wang, L., Sumpter, B.G., J. Chem. Theory Comput. 9, 5221 (2013).Google Scholar
Ievlev, A., Jakowski, J., Burch, M., Iberi, V., Hysmith, H., Joy, D.C., Sumpter, B.G., Belianinov, A., Unocic, R.R., Ovchinnikova, O., Nanoscale (forthcoming), doi: 10.1039/C7NR04417H.Google Scholar
Ziegler, J.F., Ziegler, M.D., Biersack, J.P., Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010).Google Scholar
Biersack, J., Eckstein, W., Appl. Phys. A 34, 73 (1984).CrossRefGoogle Scholar
Ullrich, M., Burenkov, A., Ryssel, H., Nucl. Instrum. Methods Phys. Res. B 228, 373 (2005).CrossRefGoogle Scholar
Timilsina, R., Tan, S., Livengood, R., Rack, P., Nanotechnology 25, 485704 (2014).Google Scholar
Everhart, T.E., Thornley, R.F.M., J. Sci. Instrum. 37, 246 (1960).Google Scholar
Hlawacek, G., Veligura, V., van Gastel, R., Poelsema, B., J. Vac. Sci. Technol. B 32 , 020801 (2014).Google Scholar
Orloff, J., Swanson, L., Utlaut, M., High Resolution Focused Ion Beams: FIB and Its Applications: The Physics of Liquid Metal Ion Sources and Ion Optics and Their Application to Focused Ion Beam Technology (Springer, New York, 2003).Google Scholar
Hanssen, J.L., Hill, S.B., Orloff, J., McClelland, J.J., Nano Lett. 8, 2844 (2008).Google Scholar
Ji, Q., Jiang, X., King, T.-J., Leung, K.-N., Standiford, K., Wilde, S., J. Vac. Sci. Technol. B 20, 2717 (2002).Google Scholar
Bischoff, L., Ultramicroscopy 103, 59 (2005).Google Scholar
Winston, D., Cord, B.M., Ming, B., Bell, D., DiNatale, W., Stern, L., Vladar, A., Postek, M., Mondol, M., Yang, J., J. Vac. Sci. Technol. B 27, 2702 (2009).Google Scholar
Rahman, F., McVey, S., Farkas, L., Notte, J.A., Tan, S., Livengood, R.H., Scanning 34, 129 (2012).Google Scholar
Aramaki, F., Kozakai, T., Matsuda, O., Takaoka, O., Sugiyama, Y., Oba, H., Aita, K., Yasaka, A., “Photomask Repair Technology by Using Gas Field Ion Source,” Proc. SPIE Photomask Next Gener. Lithogr. Mask Technol. XIX 8441, (SPIE, Bellingham, WA, 2013) p. 84410D.Google Scholar
Gonzalez, C.M., Timilsina, R., Li, G., Duscher, G., Rack, P.D., Slingenbergh, W., van Dorp, W.F., De Hosson, J.T., Klein, K.L., Wu, H.M., J. Vac. Sci. Technol. B 32, 021602 (2014).Google Scholar
Stanford, M.G., Lewis, B.B., Iberi, V., Fowlkes, J.D., Tan, S., Livengood, R., Rack, P.D., Small 12, 1816 (2016).Google Scholar
Wu, H., Stern, L., Ferranti, D.C., Xia, D., Phaneuf, M.W., Proc. 39th Int. Symp. Testing Fail. Anal. (ASM International, Materials Park, OH, 2013) pp. 118122.Google Scholar
Rahman, F.F., Notte, J.A., Livengood, R.H., Tan, S., Ultramicroscopy 126, 10 (2013).CrossRefGoogle Scholar
Wei, D., Huynh, C., Ribbe, A., Microsc. Microanal. 21, 1409 (2015).Google Scholar
Pekin, T.C., Allen, F.I., Minor, A.M., J. Microsc. 264 (1), 59 (2016).Google Scholar
Belianinov, A., He, Q., Dziaugys, A., Maksymovych, P., Eliseev, E., Borisevich, A., Morozovska, A., Banys, J., Vysochanskii, Y., Kalinin, S.V., Nano Lett. 15, 3808 (2015).CrossRefGoogle Scholar
Yi, Y., Wu, C., Liu, H., Zeng, J., He, H., Wang, J., Nanoscale 7, 15711 (2015).Google Scholar
Ross, J.S., Klement, P., Jones, A.M., Ghimire, N.J., Yan, J., Mandrus, D., Taniguchi, T., Watanabe, K., Kitamura, K., Yao, W., Nat. Nanotechnol. 9, 268 (2014).Google Scholar
Yoon, K., Rahnamoun, A., Swett, J.L., Iberi, V., Cullen, D.A., Vlassiouk, I.V., Belianinov, A., Jesse, S., Sang, X., Ovchinnikova, O.S., ACS Nano 10, 8376 (2016).CrossRefGoogle Scholar
Emmrich, D., Beyer, A., Nadzeyka, A., Bauerdick, S., Meyer, J., Kotakoski, J., Gölzhäuser, A., Appl. Phys. Lett. 108, 163103 (2016).Google Scholar
Nanda, G., Hlawacek, G., Goswami, S., Watanabe, K., Taniguchi, T., Alkemade, P.F.A., Carbon 119, 419 (2017).Google Scholar
Azcatl, A., Qin, X., Prakash, A., Zhang, C., Cheng, L., Wang, Q., Lu, N., Kim, M.J., Kim, J., Cho, K., Nano Lett. 16, 5437 (2016).Google Scholar
Fox, D.S., Zhou, Y., Maguire, P., O’Neill, A., Ó’Coileáin, C., Gatensby, R., Glushenkov, A.M., Tao, T., Duesberg, G.S., Shvets, I.V., Nano Lett. 15, 5307 (2015).Google Scholar
Stanford, M.G., Pudasaini, P.R., Belianinov, A., Cross, N., Noh, J.H., Koehler, M.R., Mandrus, D.G., Duscher, G., Rondinone, A.J., Ivanov, I.N., Ward, T.Z., Rack, P.D., Sci. Rep. 6, 27276 (2016).Google Scholar
Iberi, V., Liang, L., levlev, A.V., Stanford, M.G., Lin, M.W., Li, X., Mahjouri-Samani, M., Jesse, S., Sumpter, B.G., Kalinin, S.V., Joy, D.C., Sci. Rep. 6, 30481 (2016).Google Scholar
Stanford, M.G., Pudasaini, P.R., Gallmeier, E.T., Cross, N., Liang, L., Oyedele, A., Duscher, G., Mahjouri-Samani, M., Wang, K., Xiao, K., Geohegan, D.B., Belianinov, A., Sumpter, B.G., Rack, P.D., Adv. Funct. Mater. 1702829 (2017), https://doi.org/10.1002/adfm.201702829.Google Scholar
Lin, Z., Carvalho, B.R., Kahn, E., Lv, R., Rao, R., Terrones, H., Pimenta, M.A., Terrones, M., 2D Mater. 3, 022002 (2016).Google Scholar
Belianinov, A., Iberi, V., Tselev, A., Susner, M.A., McGuire, M.A., Joy, D., Jesse, S., Rondinone, A.J., Kalinin, S.V., Ovchinnikova, O.S., ACS Appl. Mater. Interfaces 8, 7349 (2016).Google Scholar
Silvis-Cividjian, N., Hagen, C.W., Adv. Imaging Electron Phys. 143, 1 (2006).Google Scholar
Dubner, A., Wagner, A., Melngailis, J., Thompson, C., J. Appl. Phys. 70, 665 (1991).Google Scholar
Schmied, R., Fröch, J.E., Orthacker, A., Hobisch, J., Trimmel, G., Plank, H., Phys. Chem. Chem. Phys. 16, 6153 (2014).Google Scholar
Fowlkes, J.D., Winkler, R., Lewis, B.B., Stanford, M.G., Plank, H., Rack, P.D., ACS Nano 10 (6), 6163 (2016).CrossRefGoogle Scholar
Wu, H., Stern, L., Chen, J., Huth, M., Schwalb, C., Winhold, M., Porrati, F., Gonzalez, C., Timilsina, R., Rack, P., Nanotechnology 24, 175302 (2013).Google Scholar
Rotkina, L., Lin, J.-F., Bird, J., Appl. Phys. Lett. 83, 4426 (2003).Google Scholar
Gamo, K., Namba, S., Euro III-Vs Rev. 3, 41 (1990).Google Scholar
Matsui, S., Ichihashi, T., Mito, M., J. Vac. Sci. Technol. B 7, 1182 (1989).Google Scholar
Alkemade, P., Miro, H., Appl. Phys. A 117, 1727 (2014).Google Scholar