Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-19T07:17:01.070Z Has data issue: false hasContentIssue false

Photoluminescence and Raman scattering studies of GaN nanowires obtained by top-down and bottom-up approaches

Published online by Cambridge University Press:  07 February 2012

Toma Stoica
Affiliation:
Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, and Jülich-Aachen Research Alliance (JARA), D-52425 Jülich, Germany
Anna Haab
Affiliation:
Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, and Jülich-Aachen Research Alliance (JARA), D-52425 Jülich, Germany
David Griesche
Affiliation:
Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, and Jülich-Aachen Research Alliance (JARA), D-52425 Jülich, Germany
Martin Mikulics
Affiliation:
Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, and Jülich-Aachen Research Alliance (JARA), D-52425 Jülich, Germany
Friederich Limbach
Affiliation:
Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, and Jülich-Aachen Research Alliance (JARA), D-52425 Jülich, Germany Paul-Drude-Institute for Solid State Electronics, Hausvogteiplatz 5-7, 10117 Berlin, Germany
Timo Schumann
Affiliation:
Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, and Jülich-Aachen Research Alliance (JARA), D-52425 Jülich, Germany Paul-Drude-Institute for Solid State Electronics, Hausvogteiplatz 5-7, 10117 Berlin, Germany
Tobias Gotschke
Affiliation:
Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, and Jülich-Aachen Research Alliance (JARA), D-52425 Jülich, Germany Paul-Drude-Institute for Solid State Electronics, Hausvogteiplatz 5-7, 10117 Berlin, Germany
Eli Sutter
Affiliation:
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973
Raffaella Calarco
Affiliation:
Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, and Jülich-Aachen Research Alliance (JARA), D-52425 Jülich, Germany Paul-Drude-Institute for Solid State Electronics, Hausvogteiplatz 5-7, 10117 Berlin, Germany
Hilde Hardtdegen
Affiliation:
Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, and Jülich-Aachen Research Alliance (JARA), D-52425 Jülich, Germany
Detlev Grützmacher
Affiliation:
Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, and Jülich-Aachen Research Alliance (JARA), D-52425 Jülich, Germany
Get access

Abstract

We present comparative studies of optical properties of GaN nanowires (NWs) obtained by two different self-formation techniques: Plasma-Assisted Molecular Beam Epitaxy (PAMBE) growth; and plasma etching of GaN layers deposited by Metal-Organic Vapor Phase Epitaxy (MOVPE). The effects of the coalescence process on grown NW and plasma-induced defects in etched NWs have been studied by photoluminescence (PL) and Raman scattering. In MBE grown NWs, the coalescence-associated defects are extended toward the NW top for intermediate Ga flux. Using High Resolution Electron Microscopy of reactive plasma etching (RIE) NWs, it was found that NWs obtained with an optimal combination of inductive (ICP) and capacitive (RF) plasma are free of extended structural defects. The PL efficiency is strongly increased in plasma etched NWs. However, plasma-induced point defects have to be taken into account for explaining the changes of the PL spectra. Less plasma-induced degradation is observed for high ICP/RF power ratios.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Li, Y., Qian, F., Xiang, J., and Lieber, C.M., materials today 9, 18 (2006).Google Scholar
2. Meijers, R., Richter, T., Calarco, R., Stoica, T., Bochem, H.-P., Marso, M., Lueth, H., Journal of Crystal Growth 289, 381 (2006).Google Scholar
3. Calarco, R., Meijers, R. J., Debnath, R. K., Stoica, T., Sutter, E., and Lüth, H., Nano Letters 7, 2248 (2007).Google Scholar
4. Kim, B,-J., Jung, H., Kim, H.-Y., Bang, J., Kim, J., Thin Solid Films 517, 3859 (2009).Google Scholar
5. Youtsey, C., Romano, L. T., Molnar, R. J., Adesida, I., Appl. Phys. Lett. 74, 3537 (1999).Google Scholar
6. Yoshida, H., Urushido, T., Miyake, H. and Hiramatsu, K., Jpn. J. Appl. Phys. 40, L 1301 (2001).Google Scholar
7. Haab, A., Mikulics, M., Winden, A., Voigt, S., von der Ahe, M., Moers, J., Wirtz, K., Stoica, T., Grützmacher, D., and Hardtdegen, H., accepted for publication in phys. stat, sol .Google Scholar
8. Yoshimoto, M., Materials Science and Engineering B9192, 21 (2002).Google Scholar
9. Consonni, V., Knelangen, M., Jahn, U., Trampert, A., Geelhaar, L., and Riechert, H., Appl. Phys. Lett. 95, 241910 (2009).Google Scholar
10. Harima, H., J. Phys.: Condens. Matter 14, R967 (2002).Google Scholar