Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-20T14:33:17.444Z Has data issue: false hasContentIssue false

Mechanisms for Metastability in Hydrogenated Amorphous Silicon

Published online by Cambridge University Press:  17 March 2011

R. Biswas
Affiliation:
Department of Physics and Astronomy, Microelectronics Research Center and Ames Laboratory-USDOE, Iowa State University, Ames, Iowa 50011
Y.-P. Li
Affiliation:
Department of Physics and Astronomy, Microelectronics Research Center and Ames Laboratory-USDOE, Iowa State University, Ames, Iowa 50011
B.C. Pan
Affiliation:
Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
Get access

Abstract

We propose metastabilities in amorphous silicon fall into two classes. One class is the local changes of structure affecting a macroscopic fraction of sites. The other class is the metastable generation of dangling bonds with mid-gap states. The local metastability is explained by a new metastable state formed when H is flipped to the backside of the Si-H bond at monohydride sites. The dipole moment of this H-flip defect is larger and increases the infrared absorption. This H-flip defect accounts for large structural changes observed on light soaking including larger absorption and volume dilation. We propose a new model for the generation of metastable dangling bonds. The new ‘silicon network rebonding model’ involves breaking of weak silicon bonds and formation of isolated dangling bonds, through rebonding of the silicon network. Hydrogen motion is not involved in metastable defect formation. Defect formation proceeds by breaking weak silicon bonds and formation of dangling bond-floating bond pairs. The floating bonds migrate through the network and annihilate, producing isolated dangling bonds. This new model provides a new platform for understanding the atomistic origins of lightinduced degradation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Staebler, D. L., and Wronski, C. R., Appl. Phys. Lett. 31, 292 (1977).Google Scholar
[2] Stutzmann, M., Jackson, W. B., and Tsai, C. C., Phys. Rev. B 32, 23 (1985).Google Scholar
[3] Isoya, J., Yamasaki, S., Okushi, H., Matsuda, A., and Tanaka, K., Phys. Rev. B47, 7013 (1993).Google Scholar
[4] Brandt, M.S., Bayerl, M.S., Stutzmann, M., and Graff, C., J. Non. Cryst. Solids 227–230, 343 (1998).Google Scholar
[5] Fritzsche, H., Solid State Communications 94, 953 (1995).Google Scholar
[6] Yiping, Z., Dianlin, Z., Guanglin, K., Guangqin, P., and Xianbo, L., Phys. Rev. Lett. 78, 558 (1995).Google Scholar
[7] Masson, D. P., Ouhlal, A., Yelon, A., J. Non-Cryst. Sol. 190, 151 (1995); S. Sheng, E. Sacher, A. Yelon, H. M. Branz, and D. P. Masson, MRS Symp. Proc. 557, 359 (1999)Google Scholar
[8] Hari, P., Taylor, P.C., and Street, R. A., Mat. Res. Soc. Symp. Proc. 337, 329 (1994); J. Non-Cryst. Sol. 198-200, 52 (1996).Google Scholar
[9] Parman, C.E., Israeloff, N.E., and Kakalios, J., Phys. Rev. Lett. 69, 1097 (1992); J. Fan and J. Kakalios, Phil. Mag. B 69, 595 (1994).Google Scholar
[10] Han, D., Gotoh, T., Nishio, M., Sakamoto, T., Nonomura, S., Nitta, S., Wang, Q., Iwanickzko, E., Mat. Res. Soc. Symp. Proc. 505, 445 (1998).Google Scholar
[11] Gotoh, T., Nonomura, S., Nishio, M., Nitta, S., Kondo, M., and Matsuda, A., Appl. Phys. Lett. 72, 2978 (1998). S. Nonomura et al, MRS Symp. Proc. 557, 337 (1999).Google Scholar
[12] Branz, H., Solid State Comm. 105, 387 (1998). Phys. Rev. B 59, 5498 (1999).Google Scholar
[13] Biswas, R. and Li, Y.-P., Phys. Rev. Lett. 82, 2512 (1999).Google Scholar
[14] Biswas, R., and Pan, B.C., Appl. Phys. Lett. 72, 371 (1998).Google Scholar
[15] Biswas, R., Pan, B.C., Li, Q., and Yoon, Y., Phys. Rev. B 57, 2253 (1998).Google Scholar
[16] VandeWalle, C. and Street, R.A., Phys. Rev. B 49, 14766 (1994).Google Scholar
[17] Langford, A.A., Fleet, M.L., Nelson, B.P., Lanford, W.A., and Maley, N., Phys. Rev. B 45, 13367 (1992).Google Scholar
[18] Oguz, S., Anderson, D.A., Paul, W., and Stein, H.J., Phys. Rev. B 22, 880, (1980).Google Scholar
[19] Han, D., Baugh, J., Wang, Qi, and Wu, Y., MRS Symp. Proc. 557, 383 (1999).Google Scholar
[20] Pantelides, S., Phys. Rev. Lett. 58, 1344 (1987); Phys. Rev. B 36, 3479 (1987).Google Scholar
[21] Biswas, R. and Pan, B.C., to be published.Google Scholar