Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-15T14:35:36.764Z Has data issue: false hasContentIssue false

22 - The biosphere and the interactions between stratospheric ozone depletion and climate change

from Part II - Sustainable Development: Challenges and Opportunities

Published online by Cambridge University Press:  23 December 2021

Pak Sum Low
Affiliation:
Xiamen University Malaysia
Get access

Summary

Two global environmental problems are occurring in the atmosphere: changing dynamics of the stratospheric ozone layer and rapid climate change. The two problems and their interactions are discussed, especially from the viewpoint of the consequences for living organisms and the involvement of living organisms in the interactions.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adelhafidi, A., Babaghayou, I. M., Chabira, S. F. and Sebaa, M. (2015) Impact of solar radiation effects on the physicochemical properties of polyethylene (PE) plastic film. Procedia-Social and Behavioral Sciences, 195, 2,2102,217.CrossRefGoogle Scholar
Ajavon, A. L., Bornman, J. F., Maranion, B. A., Paul, N. D., Pizano, M., Newman, P. A., Pyle, J. A., Ravishankara, A. R. and Woodcock, A. A. (2015) Synthesis of the 2014 Reports of the Scientific, Environmental Effects, and Technology and Economic Assessment Panels of the Montreal Protocol. United Nations Environment Programme (UNEP), Nairobi, pp. 127. ISBN 978–9966-076–16-8.Google Scholar
Andrady, A. L., Pandey, K. K., Heikkilä, A. M., Redhwi, H. H. and Torikai, A. (2019) Interactive effects of solar UV radiation and climate change on material damage. Photochemical and Photobiological Sciences (In Press). DOI: 10.1039/C8PP90065E.Google Scholar
Arblaster, J. M., Meehl, G. A. and Karoly, D. J. (2011) Future climate change in the Southern Hemisphere: competing effects of ozone and greenhouse gases. Geophysical Research Letters, 38(2), L02701, DOI: 10.1029/2010GL045384.CrossRefGoogle Scholar
Assessment Report (2003) Environmental effects of ozone depletion and its interactions with climate change: 2002 assessment. Photochemical and Photobiological Sciences, 2, 172.Google Scholar
Bain, J. A., Rusch, P. and Kline, B. E. (1943) The effect of temperature upon ultraviolet carcinogenesis with wave lengths 2,800–3,400 Å. Cancer Research, 3, 610612.Google Scholar
Bais, A. F., McKenzie, R. L., Bernhard, G., Aucamp, P. J., Ilyas, M., Madronich, S. and Tourpali, K. (2015) Ozone depletion and climate change: impacts on UV radiation. Photochemical and Photobiological Sciences, 14(1), 1952.Google Scholar
Bais, A. F., Lucas, R. M., Bornman, J. F., Williamson, C. E., Sulzberger, B., Austin, A. T., Wilson, S. R., Andrady, A. L., Bernhard, G., McKenzie, R. L., Aucamp, P. J., Madronich, S., Neale, R. E., Yazar, S., Young, A. R., de Gruijl, F. R., Norval, M., Takizawa, Y., Barnes, P. W., Robson, T. M., Robinson, S. A., Ballaré, C. L., Flint, S. D., Neale, P. J., Hylander, S., Rose, K. C., Wängberg, S. Å., Häder, D.-P., Worrest, R. C., Zepp, R. G., Paul, N. D., Cory, R. M., Solomon, K. R., Longstreth, J., Pandey, K. K., Redhwi, H. H., Torikai, A. and Heikkila, A. M. (2018) Environmental effects of ozone depletion, UV radiation and interactions with climate change: update 2017, UNEP Environmental Effects Assessment Panel. Photochemical and Photobiological Sciences, 17(2), 127179.Google Scholar
Bais, A. F., Bernhard, G., McKenzie, R. L., Aucamp, P. J., Young, P. J., Ilyas, M., Jöckel, P. and Deushi, M. (2019) Ozone-climate interactions and effects on solar ultraviolet radiation. Photochemical and Photobiological Sciences (In Press). DOI: 10.1039/c8pp90059 k.Google Scholar
Bancroft, B. A., Baker, N. J. and Blaustein, A. R. (2007) Effects of UVB radiation on marine and freshwater organisms: a synthesis through meta-analysis. Ecology Letters, 10(4), 332345.Google Scholar
Bandoro, J., Solomon, S., Donohoe, A., Thompson, D. W. and Santer, B. D. (2014) Influences of the Antarctic ozone hole on Southern Hemispheric summer climate change. Journal of Climate, 27(16), 6,2456,264.CrossRefGoogle Scholar
Bornman, J. F., Barnes, P. W., Robinson, S. A., Ballaré, C. L., Flint, S. D. and Caldwell, M. M. (2015) Solar ultraviolet radiation and ozone depletion-driven climate change: effects on terrestrial ecosystems. Photochemical and Photobiological Sciences, 14(1), 88107.Google Scholar
Bornman, J. F., Barnes, P. W., Robson, T. M., Robinson, S. A., Jansen, M. A. K., Ballaré, C. L. and Flint, S. D. (2019) Linkages between stratospheric ozone, UV radiation and climate change and their implications for terrestrial ecosystems. Photochemical and Photobiological Sciences, 18(3), 681716. DOI: 10.1039/C8PP90061b.Google Scholar
Chipperfield, M. P., Bekki, S., Dhomse, S., Harris, N. R., Hassler, B., Hossaini, R., Steinbrecht, W., Thiéblemont, R. and Weber, M. (2017) Detecting recovery of the stratospheric ozone layer. Nature, 549, 211218.Google Scholar
Dillon, F. M., Chludil, H. D. and Zavala, J. A. (2017) Solar UV-B radiation modulates chemical defenses against Anticarsia gemmatalis larvae in leaves of field-grown soybean. Phytochemistry, 141, 2736.Google Scholar
Duc, H. N., Rivett, K., MacSween, K. and Le-Anh, L. (2017) Association of climate drivers with rainfall in New South Wales, Australia, using Bayesian model averaging. Theoretical and Applied Climatology, 127(1–2), 169185.Google Scholar
Dykes, L. and Rooney, L. W. (2007) Phenolic compounds in cereal grains and their health benefits. Cereal Foods World, 52(3), 105111.Google Scholar
Freeman, R. G. and Knox, J. M. (1964) Influence of temperature on ultraviolet injury. Archives of Dermatology, 89, 858864.Google Scholar
Gillet, N. P. and Thompson, D. J. W. (2003) Simulation of recent southern hemisphere climate change. Science, 302, 273275.Google Scholar
Greco, A., Ferrari, F. and Maffezzoli, A. (2017) UV and thermal stability of soft PVC plasticized with cardanol derivatives. Journal of Cleaner Production, 164, 757764.Google Scholar
Hansen, J., Nazarenko, L., Ruedy, R., Sato, M., Willis, J., Del Genio, A., Koch, D., Lacis, A., Lo, K., Menon, S., Novakov, T., Perlwitz, J., Russell, G., Schmidt, G. A. and Tausnev, N. (2004) Earth’s energy imbalance: Confirmation and implications. Science, 308(5,727), 1,4311,435.Google Scholar
Harrison, J. W. and Smith, R. E. (2009) Effects of ultraviolet radiation on the productivity and composition of freshwater phytoplankton communities. Photochemical and Photobiological Sciences, 8(9), 1,2181,232.Google Scholar
IPCC (2018) Summary for policymakers. In Masson-Delmotte, V., Zhai, P., Pörtner, H. O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M. and Waterfield, T. (eds.), Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. World Meteorological Organization, Geneva, Switzerland.Google Scholar
Lim, E. P., Hendon, H. H., Arblaster, J. M., Delage, F., Nguyen, H., Min, S. K. and Wheeler, M. C. (2016a) The impact of the Southern Annular Mode on future changes in Southern Hemisphere rainfall. Geophysical Research Letters., 43(13), 7,1607,167.CrossRefGoogle Scholar
Lim, E. P., Hendon, H. H., Arblaster, J. M., Chung, C., Moise, A. F., Hope, P., Young, G. and Zhao, M. (2016b) Interaction of the recent 50 year SST trend and La Niña 2010: amplification of the Southern Annular Mode and Australian springtime rainfall. Climate Dynamics, 47(7–8), 2,2732,291.Google Scholar
Llabrés, M., Agustí, S., Fernández, M., Canepa, A., Maurin, F., Vidal, F. and Duarte, C. M. (2013) Impact of elevated UVB radiation on marine biota: a meta-analysis. Global Ecology and Biogeography, 22(1), 131144.Google Scholar
Lubin, D., Arrigo, K. R. and van Dijken, G. L. (2004) Increased exposure of Southern Ocean phytoplankton to ultraviolet radiation. Geophysical Research Letters, 31, LO9304, DOI: 10.1029/2004GLO19633.Google Scholar
Lucas, R. M., Yazar, S., Young, A. R., Norval, M., de Gruijl, F. R., Takizawa, Y., Rhodes, L. E., Sinclair, C. A. and Neale, R. E. (2019) Human health in relation to exposure to solar ultraviolet radiation under changing stratospheric ozone and climate. Photochemical and Photobiological Sciences, 18(3), 641680. DOI: 10.1039/C8PP90060D.Google Scholar
Mazza, C. A., Zavala, J., Scopel, A. L. and Ballaré, C. L. (1999) Perception of solar UVB radiation by phytophagous insects: behavioral responses and ecosystem implications. Proceedings of the National Academy of Sciences of the United States of America, 96, 980985.Google Scholar
McKenzie, R. L., Aucamp, P. J., Bais, A. F., Björn, L. O., Ilyas, M. and Madronich, S. (2011) Ozone depletion and climate change: impacts on UV radiation. Photochemical and Photobiological Sciences, 10, 182198.CrossRefGoogle ScholarPubMed
Newman, P. A., Oman, L. D., Douglass, A. R., Fleming, E. L., Frith, S. M., Hurwitz, M. M., Kawa, S. R., Jackman, C. H., Krotkov, N. A., Nash, E. R. and Nielsen, J. E. (2009) What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated? Atmospheric Chemistry and Physics, 9(6), 2,1132,128.Google Scholar
Peng, S., Liao, H., Zhou, T. and Peng, S. (2017) Effects of UVB radiation on freshwater biota: a meta-analysis. Global Ecology and Biogeography, 26(4), 500510.Google Scholar
Polvani, L. M., Waugh, D. W., Correa, G. J. and Son, S.-W. (2011) Stratospheric ozone depletion: the main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. Journal of Climate, 24(3), 795812.Google Scholar
Robinson, S. A. and Erickson, D. J. (2015) Not just about sunburn: the ozone hole’s profound effect on climate has significant implications for Southern Hemisphere ecosystems. Global Change Biology, 21(2), 515527.Google Scholar
Rosenfield, J. E., Douglass, A. R. and Considine, D. B. (2002) The impact of increasing carbon dioxide on ozone recovery. Journal of Geophysical Research: Atmospheres, 107(D6), 4049. DOI: 10.1029/2001JD000824.Google Scholar
Shindell, D. T., Rind, D. and Lonergan, P. (1998) Increased polar stratospheric ozone losses and delayed eventual recovery owing to increased greenhouse-gas concentrations. Nature, 392, 589592.Google Scholar
Smith, R. C., Prézelin, B. B., Baker, K. S., Bidigare, R. R., Boucher, N. P., Coley, T., Karentz, D., MacIntyre, S., Matlick, H. A., Menzies, D., Ondrusek, M., Wan, Z. and Waters, K. J. (1992) Ozone depletion: ultraviolet radiation and phytoplankton biology in Antarctic waters. Science, 255, 952959.CrossRefGoogle ScholarPubMed
Thompson, D. W. and Solomon, S. (2002) Interpretation of recent Southern Hemisphere climate change. Science, 296(5,569), 895899.Google Scholar
Thompson, D. W., Solomon, S., Kushner, P. J., England, M. H., Grise, K. M. and Karoly, D. J. (2011) Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nature Geoscience, 4(11), 741749.CrossRefGoogle Scholar
Tolvaj, L., Popescu, C. M., Molnar, Z. and Preklet, E. (2015) Effects of air relative humidity and temperature on photodegradation processes in beech and spruce wood. BioResources, 11(1), 296305.Google Scholar
Umeno, A., Horie, M., Murotomi, K., Nakajima, Y. and Yoshida, Y. (2016) Antioxidative and antidiabetic effects of natural polyphenols and isoflavones. Molecules, 21(6), 708. DOI:10.3390/molecules21060708.Google Scholar
UNFCCC (2019b) The Kyoto Protocol – Status of Ratification. https://unfccc.int/process/the-kyoto-protocol/status-of-ratificationGoogle Scholar
van der Leun, J. C. and de Gruijl, F. R. (2002) Climate change and skin cancer. Photochemical and Photobiological Sciences, 1, 324326.Google Scholar
van der Leun, J. C., Piacentini, R. D. and de Gruijl, F. R. (2008) Climate change and human skin cancer. Photochemical and Photobiological Sciences, 7(6), 730733.Google Scholar
Wargent, J. J. and Jordan, B. R. (2013) From ozone depletion to agriculture: understanding the role of UV radiation in sustainable crop production. New Phytologist, 197, 1,0581,076.CrossRefGoogle ScholarPubMed
Wijffels, S., Roemmich, D., Monselesan, D., Church, J. and Gilson, J. (2016) Ocean temperatures chronicle the ongoing warming of Earth. Nature Climate Change, 6(2), 116118.Google Scholar
Williamson, C., Zepp, R., Lucas, R., Madronich, S., Austin, A. R., Ballaré, C. L., Norval, M., Sulzberger, B., Bais, A., McKenzie, R., Robinson, S., Häder, D-P. , Paul, N. D. and Bornman, J. F. (2014) Solar ultraviolet radiation in a changing climate. Nature Climate Change, 4, 434441.Google Scholar
Williamson, C. E., Neale, P. J., Hylander, S. Rose, K. C., Figuero, F. L., Robinson, S. A., Häder, D.-P., Wängberg, S.-Å. and Worrest, R. C. (2019) The interactive effects of stratospheric ozone depletion, UV radiation, and climate change on aquatic ecosystems. Photochemical and Photobiological Sciences (In Press). DOI: 10.1039/c8pp90062 k.CrossRefGoogle Scholar
WMO (World Meteorological Organization) (2018) Executive Summary: Scientific Assessment of Ozone Depletion: 2018, World Meteorological Organization, Global Ozone Research and Monitoring Project – Report No. 58. Geneva, Switzerland.Google Scholar
Wu, G., Bornman, J. F., Bennett, S. J., Clarke, M. W., Fang, Z. and Johnson, S. K. (2017a) Individual polyphenolic profiles and antioxidant activity in sorghum grains are influenced by very low and high solar UV radiation and genotype. Journal of Cereal Science, 77, 1723.Google Scholar
Wu, Y., Yue, F., Xu, J. and Beardall, J. (2017b) Differential photosynthetic responses of marine planktonic and benthic diatoms to ultraviolet radiation under various temperature regimes. Biogeosciences, 14(22), 5,0295,037.Google Scholar
Xiao, X., De Bettignies, T., Olsen, Y. S., Agusti, S., Duarte, C. M. and Wernberg, T. (2015) Sensitivity and acclimation of three canopy-forming seaweeds to UVB radiation and warming. PloS One, 10(12), e0143031.CrossRefGoogle ScholarPubMed
Zavala, J. A., Mazza, C. A., Dillon, F. M., Chludil, H. D. and Ballaré, C. L. (2015) Soybean resistance to stink bugs (Nezara viridula and Piezodorus guildinii) increases with exposure to solar UV-B radiation and correlates with isoflavonoid content in pods under field conditions. Plant Cell Environment, 38(5), 920928.Google Scholar
Živkovic´, V., Arnold, M., Pandey, K. K., Richter, K. and Turkulin, H. (2016) Spectral sensitivity in the photodegradation of fir wood (Abies alba Mill.) surfaces: correspondence of physical and chemical changes in natural weathering. Wood Science and Technology, 50(5), 989–1,002.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×