Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-03T14:58:18.332Z Has data issue: false hasContentIssue false

Section II - Non-Neoplastic Hematologic Disorders of Blood and Bone Marrow

Published online by Cambridge University Press:  25 January 2024

Xiayuan Liang
Affiliation:
Children’s Hospital of Colorado
Bradford Siegele
Affiliation:
Children’s Hospital of Colorado
Jennifer Picarsic
Affiliation:
Cincinnati Childrens Hospital Medicine Center
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Janus, J, Moerschel, SK. Evaluation of anemia in children. Am Fam Physician. 2010;81:1465–71.Google Scholar
Kratz, A, Jhang, J. Disorder of hemoglobin synthesis. In: Proytcheva, MA, ed. Diagnostic pediatric hematopathology. Cambridge, UK: Cambridge University Press; 2011:5774.CrossRefGoogle Scholar
Perkins, S. Disorders of hemoglobin synthesis. In: Kjeldsberg, CR, Perkins, SL, eds. Practical diagnosis of hematologic disorders, 5th ed. Chicago, IL: American Society for Clinical Pathology Press; 2010:123–58.Google Scholar
Thomas, AE, Brin, BJ. Disorder of erythrocyte production. In Proytcheva, MA, ed. Diagnostic pediatric hematopathology. Cambridge, UK: Cambridge University Press; 2011:3856.Google Scholar
Elghetany, MT, Banki, K. Erythrocytic disorders. In: McPherson, RA, Pincus, MR, eds. Henry’s clinical diagnosis and management by laboratory methods, 21st ed. Philadelphia, PA: Saunders Elsevier; 2007:504–44.Google Scholar
Wilson, CS, Vergara-Lluri, ME, Brynes, RK. Evaluation of anemia, leukopenia, and thrombocytopenia. In: Jaffe, ES, Arber, DA, Campo, E, et al., eds. Hematopathology, 2nd ed. Philadelphia, PA: Elsevier; 2017:195234.Google Scholar
Kumar, V, Abbas, AK, Aster, JC. Red blood cell and bleeding disorders. In: Robbins and Cotran pathologic basis of disease, 9th ed. Philadelphia, PA: Saunders Elsevier; 2015:629–67.Google Scholar
Foucar, K. Aplastic and hypoplastic anemias and miscellaneous types of anemias. In: Kjeldsberg, CR, Perkins, SL, eds. Practical diagnosis of hematologic disorders, 5th ed. Chicago, IL: American Society for Clinical Pathology Press; 2010:4360.Google Scholar
Proytcheva, MA. Inherited bone marrow failure syndromes and acquired disorders associated with single peripheral blood cytopenia. In: Proytcheva, MA, ed. Diagnostic pediatric hematopathology. Cambridge, UK: Cambridge University Press; 2011:104–34.Google Scholar
Cotelingam, J, Ong, M, Veillon, D. Congenital dyserythropoetic anemia, type II. In: Gulati, G, Filicko-O’Hara, J, Krause, JR, eds. Case studies in hematology & coagulation. Chicago, IL: American Society for Clinical Pathology Press; 2012:82–3.Google Scholar
Perkins, S. Hereditary erythrocyte membrane defects. In: Kjeldsberg, CR, Perkins, SL, eds. Practical diagnosis of hematologic disorders, 5th ed. Chicago, IL: American Society for Clinical Pathology Press; 2010:93103.Google Scholar
Shelat, SG. Hemolytic anemia. In: Proytcheva, MA, ed. Diagnostic pediatric hematopathology. Cambridge, UK: Cambridge University Press; 2011:7589.Google Scholar
Gulati, G, O’Hara, JF, Krause, J. Hereditary elliptocytosis. In: Gulati, G, Filicko-O’Hara, J, Krause, JR, eds. Case studies in hematology & coagulation. Chicago, IL: American Society for Clinical Pathology Press; 2012:60–1.Google Scholar
Long, Z, Li, H, Du, Y, et al. Congenital sideroblastic anemia: advances in gene mutations and Pathophysiology. Gene. 2018;668:182–9.Google Scholar
Perkins, S. Hypochromic, microcytic anemias. In: Kjeldsberg, CR, Perkins, SL, eds. Practical diagnosis of hematologic disorders, 5th ed. Chicago, IL: American Society for Clinical Pathology Press; 2010:1729.Google Scholar
Bottomley, SS, Fleming, MD. Sideroblastic anemia: diagnosis and management. Hematol Oncol Clin North Am. 2014;28:653–70.CrossRefGoogle ScholarPubMed
Perkins, S. Glucose-6-phosphate dehydrogenase deficiency. In: Kjeldsberg, CR, Perkins, SL, eds. Practical diagnosis of hematologic disorders, 5th ed. Chicago, IL: American Society for Clinical Pathology Press; 2010:113–22.Google Scholar
World Health Organization. Updating the WHO G6PD classification of variants and the International Classification of Diseases, 11th Revision (ICD-11). Geneva, Switzerland: World Health Organization; 2019.Google Scholar
Caro, J, Martinez-Outschoorn, U. Iron deficiency anemia. In: Gulati, G, Filicko-O’Hara, J, Krause, JR, eds. Case studies in hematology & coagulation. Chicago, IL: American Society for Clinical Pathology Press; 2012:13.Google Scholar
Foucar, K. Megaloblastic anemia. In: Kjeldsberg, CR, Perkins, SL, eds. Practical diagnosis of hematologic disorders, 5th ed. Chicago, IL: American Society for Clinical Pathology Press; 2010:6178.Google Scholar
Young, NS, Brown, KE. Parvovirus B19. N Engl J Med. 2004;350:586–97.Google Scholar
Hunt, KE. Paroxysmal nocturnal hemoglobinuria. In: Foucar, K, Reichard, KK, Wilson, CS, et al., eds. Diagnostic pathology blood and bone marrow, 1st ed. Manitoba, Canada: Amirsys; 2012:2.49–2.53.Google Scholar

References

Da Costa, L, Leblanc, T, Mohandas, N. Diamond-Blackfan anemia. Blood. 2020;136(11):1262–73. doi: 10.1182/blood.2019000947Google Scholar
Iolascon, A, Andolfo, I, Russo, R. Congenital dyserythropoietic anemias. Blood. 2020;136(11):1274–83. doi: 10.1182/blood.2019000948Google Scholar
Vlachos, A, Osorio, DS, Atsidaftos, E, et al. Increased prevalence of congenital heart disease in children with Diamond Blackfan anemia suggests unrecognized Diamond Blackfan anemia as a cause of congenital heart disease in the general population: a report of the Diamond Blackfan Anemia Registry. Circ Genom Precis Med. 2018;11(5):e002044. doi: 10.1161/CIRCGENETICS.117.002044CrossRefGoogle ScholarPubMed
Vlachos, A, Ball, S, Dahl, N, et al. Diagnosing and treating Diamond Blackfan anaemia: results of an international clinical consensus conference. Br J Haematol. 2008;142(6):859–76. doi: 10.1111/j.1365-2141.2008.07269.xGoogle Scholar
Glader, BE, Backer, K, Diamond, LK. Elevated erythrocyte adenosine deaminase activity in congenital hypoplastic anemia. N Engl J Med. 1983;309(24):1486–90. doi: 10.1056/NEJM198312153092404Google Scholar
Willig, TN, Pérignon, JL, Gustavsson, P, et al. High adenosine deaminase level among healthy probands of Diamond Blackfan anemia (DBA) cosegregates with the DBA gene region on chromosome 19q13. The DBA Working Group of Société d’Immunologie Pédiatrique (SHIP). Blood. 1998;92(11):4422–7.Google Scholar
Gastou, M, Rio, S, Dussiot, M, et al. The severe phenotype of Diamond-Blackfan anemia is modulated by heat shock protein 70. Blood Adv. 2017;1(22):1959–76. doi: 10.1182/bloodadvances.2017008078CrossRefGoogle ScholarPubMed
Moniz, H, Gastou, M, Leblanc, T, et al. Primary hematopoietic cells from DBA patients with mutations in RPL11 and RPS19 genes exhibit distinct erythroid phenotype in vitro. Cell Death Dis. 2012;3:e356. doi: 10.1038/cddis.2012.88CrossRefGoogle ScholarPubMed
Dutt, S, Narla, A, Lin, K, et al. Haploinsufficiency for ribosomal protein genes causes selective activation of p53 in human erythroid progenitor cells. Blood. 2011;117(9):2567–76. doi: 10.1182/blood-2010-07-295238Google Scholar
Yang, Z, Keel, SB, Shimamura, A, et al. Delayed globin synthesis leads to excess heme and the macrocytic anemia of Diamond Blackfan anemia and del(5q) myelodysplastic syndrome. Sci Transl Med. 2016;8(338):338ra67. doi: 10.1126/scitranslmed.aaf3006CrossRefGoogle ScholarPubMed
Orkin, SH, Fisher, DE, Ginsburg, D, et al., eds. Nathan and Oski’s hematology and oncology of infancy and childhood. 8th ed. Elsevier; 2015.Google Scholar
Means, RT. Pure red cell aplasia. Blood. 2016;128(21):2504–9. doi: 10.1182/blood-2016-05-717140Google Scholar
Levy, J, Espanol-Boren, T, Thomas, C, et al. Clinical spectrum of X-linked hyper-IgM syndrome. J Pediatr. 1997;131(1 Pt 1):4754. doi: 10.1016/s0022-3476(97)70123-9Google Scholar
Mäkitie, O, Juvonen, E, Dunkel, L, et al. Anemia in children with cartilage-hair hypoplasia is related to body growth and to the insulin-like growth factor system. J Clin Endocrinol Metab. 2000;85(2):563–8. doi: 10.1210/jcem.85.2.6339Google Scholar
Rodrigues, JM, Fernandes, HD, Caruthers, C, et al. Cohen syndrome: review of the literature. Cureus. 2018;10(9):e3330. doi: 10.7759/cureus.3330Google ScholarPubMed
Mansouri Nejad, SE, Yazdan Panah, MJ, Tayyebi Meibodi, N, et al. Griscelli syndrome: a case report. Iran J Child Neurol. 2014;8(4):72–5.Google ScholarPubMed
Kharkar, V, Pande, S, Mahajan, S, et al. Griscelli syndrome: a new phenotype with circumscribed pigment loss? Dermatol Online J. 2007;13(2):17.Google Scholar
Steward, CG, Groves, SJ, Taylor, CT, et al. Neutropenia in Barth syndrome: characteristics, risks, and management. Curr Opin Hematol. 2019;26(1):615. doi: 10.1097/MOH.0000000000000472Google Scholar
Kostmann, R. Infantile genetic agranulocytosis; agranulocytosis infantilis hereditaria. Acta Paediatr Suppl (Upps). 1956;45(Suppl 105):178.Google Scholar
Berliner, N, Horwitz, M, Loughran, TP. Congenital and acquired neutropenia. Hematology Am Soc Hematol Educ Program. 2004:6379. doi: 10.1182/asheducation-2004.1.63Google Scholar
Nanua, S, Murakami, M, Xia, J, et al. Activation of the unfolded protein response is associated with impaired granulopoiesis in transgenic mice expressing mutant Elane. Blood. 2011;117(13):3539–47. doi: 10.1182/blood-2010-10-311704Google Scholar
Proytcheva, MA, ed. Diagnostic pediatric hematopathology. Cambridge University Press; 2011.Google Scholar
Link, DC. Mechanisms of leukemic transformation in congenital neutropenia. Curr Opin Hematol. 2019;26(1):3440. doi: 10.1097/MOH.0000000000000479Google Scholar
Desplantes, C, Fremond, ML, Beaupain, B, et al. Clinical spectrum and long-term follow-up of 14 cases with G6PC3 mutations from the French Severe Congenital Neutropenia Registry. Orphanet J Rare Dis. 2014;9:183. doi: 10.1186/s13023-014-0183-8Google Scholar
Palmer, SE, Stephens, K, Dale, DC. Genetics, phenotype, and natural history of autosomal dominant cyclic hematopoiesis. Am J Med Genet. 1996;66(4):413–22. doi: 10.1002/(SICI)1096-8628(19961230)66:4<413::aid-ajmg5>3.0.CO;2-LGoogle Scholar
Hammond, WP, Price, TH, Souza, LM, et al. Treatment of cyclic neutropenia with granulocyte colony-stimulating factor. N Engl J Med. 1989;320(20):1306–11. doi: 10.1056/NEJM198905183202003Google Scholar
Skokowa, J, Dale, DC, Touw, IP, et al. Severe congenital neutropenias. Nat Rev Dis Primers. 2017;3:17032. doi: 10.1038/nrdp.2017.32Google Scholar
Lei, J, Mackey, MC. Understanding and treating cytopenia through mathematical modeling. Adv Exp Med Biol. 2014;844:279302. doi: 10.1007/978-1-4939-2095-2_14Google Scholar
Dale, DC, Mackey, MC. Understanding, treating and avoiding hematological disease: better medicine through mathematics? Bull Math Biol. 2015;77(5):739–57. doi: 10.1007/s11538-014-9995-xCrossRefGoogle ScholarPubMed
Brown, KL, Wekell, P, Osla, V, et al. Profile of blood cells and inflammatory mediators in periodic fever, aphthous stomatitis, pharyngitis and adenitis (PFAPA) syndrome. BMC Pediatr. 2010;10:65. doi: 10.1186/1471-2431-10-65Google Scholar
Medlej-Hashim, M, Loiselet, J, Lefranc, G, et al. [Familial Mediterranean fever (FMF): from diagnosis to treatment]. Sante. 2004;14(4):261–6.Google Scholar
Ballmaier, M, Germeshausen, M. Congenital amegakaryocytic thrombocytopenia: clinical presentation, diagnosis, and treatment. Semin Thromb Hemost. 2011;37(6):673–81. doi: 10.1055/s-0031-1291377Google Scholar
Germeshausen, M, Ballmaier, M. CAMT-MPL: congenital amegakaryocytic thrombocytopenia caused by MPL mutations – heterogeneity of a monogenic disorder – a comprehensive analysis of 56 patients. Haematologica. 2021;106(9):2439–48. doi: 10.3324/haematol.2020.257972Google Scholar
Seo, A, Ben-Harosh, M, Sirin, M, et al. Bone marrow failure unresponsive to bone marrow transplant is caused by mutations in. Blood. 2017;130(7):875–80. doi: 10.1182/blood-2017-02-768036Google Scholar
Steinberg, O, Gilad, G, Dgany, O, et al. Congenital amegakaryocytic thrombocytopenia-3 novel c-MPL mutations and their phenotypic correlations. J Pediatr Hematol Oncol. 2007;29(12):822–5. doi: 10.1097/MPH.0b013e318158152eCrossRefGoogle ScholarPubMed
Dokal, I, Vulliamy, T. Inherited bone marrow failure syndromes. Haematologica. 2010;95(8):1236–40. doi: 10.3324/haematol.2010.025619Google Scholar
Germeshausen, M, Ancliff, P, Estrada, J, et al. MECOM-associated syndrome: a heterogeneous inherited bone marrow failure syndrome with amegakaryocytic thrombocytopenia. Blood Adv. 2018;2(6):586–96. doi: 10.1182/bloodadvances.2018016501Google Scholar
Roberts, I, Murray, NA. Neonatal thrombocytopenia: causes and management. Arch Dis Child Fetal Neonatal Ed. 2003;88(5):F359–64. doi: 10.1136/fn.88.5.f359Google Scholar
Kaplan, RN, Bussel, JB. Differential diagnosis and management of thrombocytopenia in childhood. Pediatr Clin North Am. 2004;51(4):1109–40, xi. doi: 10.1016/j.pcl.2004.03.008Google Scholar
Albers, CA, Newbury-Ecob, R, Ouwehand, WH, et al. New insights into the genetic basis of TAR (thrombocytopenia-absent radii) syndrome. Curr Opin Genet Dev. 2013;23(3):316–23. doi: 10.1016/j.gde.2013.02.015Google Scholar
Bagby, GC. Multifunctional Fanconi proteins, inflammation and the Fanconi phenotype. EBioMedicine. 2016;8:1011. doi: 10.1016/j.ebiom.2016.06.005Google Scholar
De Kerviler, E, Guermazi, A, Zagdanski, AM, et al. The clinical and radiological features of Fanconi’s anaemia. Clin Radiol. 2000;55(5):340–5. doi: 10.1053/crad.2000.0445Google Scholar
Schneider, M, Chandler, K, Tischkowitz, M, et al. Fanconi anaemia: genetics, molecular biology, and cancer – implications for clinical management in children and adults. Clin Genet. 2015;88(1):1324. doi: 10.1111/cge.12517Google Scholar
Auerbach, AD. Fanconi anemia and its diagnosis. Mutat Res. 2009;668(1–2):410. doi: 10.1016/j.mrfmmm.2009.01.013Google Scholar
Shimamura, A, Alter, BP. Pathophysiology and management of inherited bone marrow failure syndromes. Blood Rev. 2010;24(3):101–22. doi: 10.1016/j.blre.2010.03.002Google Scholar
Alter, BP, Giri, N, Savage, SA, et al. Malignancies and survival patterns in the National Cancer Institute inherited bone marrow failure syndromes cohort study. Br J Haematol. 2010;150(2):179–88. doi: 10.1111/j.1365-2141.2010.08212.xGoogle Scholar
Tönnies, H, Huber, S, Kuhl, JS, et al. Clonal chromosomal aberrations in bone marrow cells of Fanconi anemia patients: gains of the chromosomal segment 3q26q29 as an adverse risk factor. Blood. 2003;101(10):3872–4. doi: 10.1182/blood-2002-10-3243Google Scholar
Shimamura, A. Inherited bone marrow failure syndromes: molecular features. Hematology Am Soc Hematol Educ Program. 2006:6371. doi: 10.1182/asheducation-2006.1.63Google Scholar
Garcia, CK, Wright, WE, Shay, JW. Human diseases of telomerase dysfunction: insights into tissue aging. Nucleic Acids Res. 2007;35(22):7406–16. doi: 10.1093/nar/gkm644Google Scholar
Alter, BP. Cancer in Fanconi anemia, 1927–2001. Cancer. 2003;97(2):425–40. doi: 10.1002/cncr.11046Google Scholar
Dokal, I. Dyskeratosis congenita in all its forms. Br J Haematol. 2000;110(4):768–79. doi: 10.1046/j.1365-2141.2000.02109.xGoogle Scholar
Allenspach, EJ, Bellodi, C, Jeong, D, et al. Common variable immunodeficiency as the initial presentation of dyskeratosis congenita. J Allergy Clin Immunol. 2013;132(1):223–6. doi: 10.1016/j.jaci.2012.11.052Google Scholar
Hacia, JG, Novotny, EA, Mayer, RA, et al. Design of modified oligodeoxyribonucleotide probes to detect telomere repeat sequences in FISH assays. Nucleic Acids Res. 1999;27(20):4034–9. doi: 10.1093/nar/27.20.4034Google Scholar
Perner, S, Brüderlein, S, Hasel, C, et al. Quantifying telomere lengths of human individual chromosome arms by centromere-calibrated fluorescence in situ hybridization and digital imaging. Am J Pathol. 2003;163(5):1751–6. doi: 10.1016/S0002-9440(10)63534-1CrossRefGoogle ScholarPubMed
Poon, SS, Martens, UM, Ward, RK, et al. Telomere length measurements using digital fluorescence microscopy. Cytometry. 1999;36(4):267–78. doi: 10.1002/(sici)1097-0320(19990801)36:4<267::aid-cyto1>3.0.co;2-oGoogle Scholar
Vulliamy, T, Marrone, A, Szydlo, R, et al. Disease anticipation is associated with progressive telomere shortening in families with dyskeratosis congenita due to mutations in TERC. Nat Genet. 2004;36(5):447–9. doi: 10.1038/ng1346Google Scholar
Starokadomskyy, P, Escala Perez-Reyes, A, Burstein, E. Immune dysfunction in Mendelian disorders of POLA1 deficiency. J Clin Immunol. 2021;41(2):285–93. doi: 10.1007/s10875-020-00953-wGoogle Scholar
Smahi, A, Courtois, G, Vabres, P, et al. Genomic rearrangement in NEMO impairs NF-kappaB activation and is a cause of incontinentia pigmenti. The International Incontinentia Pigmenti (IP) Consortium. Nature. 2000;405(6785):466–72. doi: 10.1038/35013114Google Scholar
Piccolo, V, Russo, T, Di Pinto, D, et al. Poikiloderma with neutropenia and mastocytosis: a case report and a review of dermatological signs. Front Med (Lausanne). 2021;8:680363. doi: 10.3389/fmed.2021.680363Google Scholar
Huang, JN, Shimamura, A. Clinical spectrum and molecular pathophysiology of Shwachman-Diamond syndrome. Curr Opin Hematol. 2011;18(1):30–5. doi: 10.1097/MOH.0b013e32834114a5Google Scholar
Ginzberg, H, Shin, J, Ellis, L, et al. Shwachman syndrome: phenotypic manifestations of sibling sets and isolated cases in a large patient cohort are similar. J Pediatr. 1999;135(1):81–8. doi: 10.1016/s0022-3476(99)70332-xGoogle Scholar
Aggett, PJ, Cavanagh, NP, Matthew, DJ, et al. Shwachman’s syndrome. A review of 21 cases. Arch Dis Child. 1980;55(5):331–47. doi: 10.1136/adc.55.5.331Google Scholar
Hashmi, SK, Allen, C, Klaassen, R, et al. Comparative analysis of Shwachman-Diamond syndrome to other inherited bone marrow failure syndromes and genotype-phenotype correlation. Clin Genet. 2011;79(5):448–58. doi: 10.1111/j.1399-0004.2010.01468.xGoogle Scholar
Kent, A, Murphy, GH, Milla, P. Psychological characteristics of children with Shwachman syndrome. Arch Dis Child. 1990;65(12):1349–52. doi: 10.1136/adc.65.12.1349Google Scholar
Kerr, EN, Ellis, L, Dupuis, A, et al. The behavioral phenotype of school-age children with shwachman diamond syndrome indicates neurocognitive dysfunction with loss of Shwachman-Bodian-Diamond syndrome gene function. J Pediatr. 2010;156(3):433–8. doi: 10.1016/j.jpeds.2009.09.026Google Scholar
Toiviainen-Salo, S, Durie, PR, Numminen, K, et al. The natural history of Shwachman-Diamond syndrome-associated liver disease from childhood to adulthood. J Pediatr. 2009;155(6):807–11.e2. doi: 10.1016/j.jpeds.2009.06.047CrossRefGoogle ScholarPubMed
Dror, Y, Freedman, MH. Shwachman-Diamond syndrome: An inherited preleukemic bone marrow failure disorder with aberrant hematopoietic progenitors and faulty marrow microenvironment. Blood. 1999;94(9):3048–54.Google Scholar
Hall, GW, Dale, P, Dodge, JA. Shwachman-Diamond syndrome: UK perspective. Arch Dis Child. 2006;91(6):521–4. doi: 10.1136/adc.2003.046151Google Scholar
Mack, DR, Forstner, GG, Wilschanski, M, et al. Shwachman syndrome: exocrine pancreatic dysfunction and variable phenotypic expression. Gastroenterology. 1996;111(6):1593–602. doi: 10.1016/s0016-5085(96)70022-7Google Scholar
Donadieu, J, Fenneteau, O, Beaupain, B, et al. Classification of and risk factors for hematologic complications in a French national cohort of 102 patients with Shwachman-Diamond syndrome. Haematologica. 2012;97(9):1312–9. doi: 10.3324/haematol.2011.057489Google Scholar
Dror, Y, Ginzberg, H, Dalal, I, et al. Immune function in patients with Shwachman-Diamond syndrome. Br J Haematol. 2001;114(3):712–7. doi: 10.1046/j.1365-2141.2001.02996.xGoogle Scholar
Myers, KC, Furutani, E, Weller, E, et al. Clinical features and outcomes of patients with Shwachman-Diamond syndrome and myelodysplastic syndrome or acute myeloid leukaemia: a multicentre, retrospective, cohort study. Lancet Haematol. 2020;7(3):e238e246. doi: 10.1016/S2352-3026(19)30206-6Google Scholar
Dror, Y, Donadieu, J, Koglmeier, J, et al. Draft consensus guidelines for diagnosis and treatment of Shwachman-Diamond syndrome. Ann N Y Acad Sci. 2011;1242:4055. doi: 10.1111/j.1749-6632.2011.06349.xGoogle Scholar
Dhanraj, S, Matveev, A, Li, H, et al. Biallelic mutations in. Blood. 2017;129(11):1557–62. doi: 10.1182/blood-2016-08-735431Google Scholar
Tan, S, Kermasson, L, Hoslin, A, et al. EFL1 mutations impair eIF6 release to cause Shwachman-Diamond syndrome. Blood. 2019;134(3):277–90. doi: 10.1182/blood.2018893404Google Scholar
Boocock, GR, Morrison, JA, Popovic, M, et al. Mutations in SBDS are associated with Shwachman-Diamond syndrome. Nat Genet. 2003;33(1):97101. doi: 10.1038/ng1062Google Scholar
Ng, CL, Waterman, DG, Koonin, EV, et al. Conformational flexibility and molecular interactions of an archaeal homologue of the Shwachman-Bodian-Diamond syndrome protein. BMC Struct Biol. 2009;9:32. doi: 10.1186/1472-6807-9-32Google Scholar
de Oliveira, JF, Sforça, ML, Blumenschein, TM, et al. Structure, dynamics, and RNA interaction analysis of the human SBDS protein. J Mol Biol. 2010;396(4):1053–69. doi: 10.1016/j.jmb.2009.12.039Google Scholar
Orelio, C, Verkuijlen, P, Geissler, J, et al. SBDS expression and localization at the mitotic spindle in human myeloid progenitors. PLoS One. 2009;4(9):e7084. doi: 10.1371/journal.pone.0007084Google Scholar
Orelio, C, Kuijpers, TW. Shwachman-Diamond syndrome neutrophils have altered chemoattractant-induced F-actin polymerization and polarization characteristics. Haematologica. 2009;94(3):409–13. doi: 10.3324/haematol.13733Google Scholar
Donadieu, J, Michel, G, Merlin, E, et al. Hematopoietic stem cell transplantation for Shwachman-Diamond syndrome: experience of the French neutropenia registry. Bone Marrow Transplant. 2005;36(9):787–92. doi: 10.1038/sj.bmt.1705141Google Scholar
Cesaro, S, Pillon, M, Sauer, M, et al. Long-term outcome after allogeneic hematopoietic stem cell transplantation for Shwachman-Diamond syndrome: a retrospective analysis and a review of the literature by the Severe Aplastic Anemia Working Party of the European Society for Blood and Marrow Transplantation (SAAWP-EBMT). Bone Marrow Transplant. 2020;55(9):1796–809. doi: 10.1038/s41409-020-0863-zGoogle Scholar
Cesaro, S, Oneto, R, Messina, C, et al. Haematopoietic stem cell transplantation for Shwachman-Diamond disease: a study from the European Group for blood and marrow transplantation. Br J Haematol. 2005;131(2):231–6. doi: 10.1111/j.1365-2141.2005.05758.xCrossRefGoogle ScholarPubMed
Pearson, HA, Lobel, JS, Kocoshis, SA, et al. A new syndrome of refractory sideroblastic anemia with vacuolization of marrow precursors and exocrine pancreatic dysfunction. J Pediatr. 1979;95(6):976–84. doi: 10.1016/s0022-3476(79)80286-3Google Scholar
Berthold, F, Fuhrmann, W, Lampert, F. Fatal aplastic anaemia in a child with features of Dubowitz syndrome. Eur J Pediatr. 1987;146(6):605–7. doi: 10.1007/BF02467366Google Scholar
Walters, TR, Desposito, F. Aplastic anemia in Dubowitz syndrome. J Pediatr. 1985;106(4):622–3. doi: 10.1016/s0022-3476(85)80089-5Google Scholar
Harper, RG, Orti, E, Baker, RK. Bird-beaded dwarfs (Seckel’s syndrome). A familial pattern of developmental, dental, skeletal, genital, and central nervous system anomalies. J Pediatr. 1967;70(5):799804. doi: 10.1016/s0022-3476(67)80334-2Google Scholar
Resnick, IB, Kondratenko, I, Togoev, O, et al. Nijmegen breakage syndrome: clinical characteristics and mutation analysis in eight unrelated Russian families. J Pediatr. 2002;140(3):355–61. doi: 10.1067/mpd.2002.122724Google Scholar
Patel, BJ, Barot, SV, Kuzmanovic, T, et al. Distinctive and common features of moderate aplastic anaemia. Br J Haematol. 2020;189(5):967–75. doi: 10.1111/bjh.16460Google Scholar
Maciejewski, JP, Sloand, EM, Nunez, O, et al. Recombinant humanized anti-IL-2 receptor antibody (daclizumab) produces responses in patients with moderate aplastic anemia. Blood. 2003;102(10):3584–6. doi: 10.1182/blood-2003-04-1032Google Scholar
Young, NS, Kaufman, DW. The epidemiology of acquired aplastic anemia. Haematologica. 2008;93(4):489–92. doi: 10.3324/haematol.12855Google Scholar
Shimano, KA, Narla, A, Rose, MJ, et al. Diagnostic work-up for severe aplastic anemia in children: Consensus of the North American Pediatric Aplastic Anemia Consortium. Am J Hematol. 2021;96(11):1491–504. doi: 10.1002/ajh.26310Google Scholar
Young, NS, Tisdale, JF. High-dose cyclophosphamide for treatment of aplastic anemia. Ann Intern Med. 2002;137(6):549–50; author reply 549–50. doi: 10.7326/0003-4819-137-6-200209170-00030Google Scholar
Moormeier, JA, Rubin, CM, Le Beau, MM, et al. Trisomy 6: a recurring cytogenetic abnormality associated with marrow hypoplasia. Blood. 1991;77(6):1397–8.Google Scholar
Ohga, S, Ohara, A, Hibi, S, et al. Treatment responses of childhood aplastic anaemia with chromosomal aberrations at diagnosis. Br J Haematol. 2002;118(1):313–9. doi: 10.1046/j.1365-2141.2002.03582.xGoogle Scholar

References

Hoffmann, K, Dreger, CK, Olins, AL, et al. Mutations in the gene encoding the lamin B receptor produce an altered nuclear morphology in granulocytes (Pelger-Huët anomaly). Nat Genet. 2002;31(4):410–4. doi: 10.1038/ng925Google Scholar
Borovik, L, Modaff, P, Waterham, HR, et al. Pelger-Huet anomaly and a mild skeletal phenotype secondary to mutations in LBR. Am J Med Genet A. 2013;161A(8):2066–73. doi: 10.1002/ajmg.a.36019Google Scholar
Chitayat, D, Gruber, H, Mullen, BJ, et al. Hydrops-ectopic calcification-moth-eaten skeletal dysplasia (Greenberg dysplasia): prenatal diagnosis and further delineation of a rare genetic disorder. Am J Med Genet. 1993;47(2):272–7. doi: 10.1002/ajmg.1320470226Google Scholar
Oosterwijk, JC, Mansour, S, van Noort, G, et al. Congenital abnormalities reported in Pelger-Huët homozygosity as compared to Greenberg/HEM dysplasia: highly variable expression of allelic phenotypes. J Med Genet. 2003;40(12):937–41. doi: 10.1136/jmg.40.12.937Google Scholar
Waterham, HR, Koster, J, Mooyer, P, et al. Autosomal recessive HEM/Greenberg skeletal dysplasia is caused by 3 beta-hydroxysterol delta 14-reductase deficiency due to mutations in the lamin B receptor gene. Am J Hum Genet. 2003;72(4):1013–7. doi: 10.1086/373938Google Scholar
Swerdlow, S, Campo, E, Harris, N, et al., eds. WHO classification of tumors of haematopoietic and lymphoid tissues. Rev. 4th ed. IARC Press; 2017.Google Scholar
Wang, E, Boswell, E, Siddiqi, I, et al. Pseudo-Pelger-Huët anomaly induced by medications: a clinicopathologic study in comparison with myelodysplastic syndrome-related pseudo-Pelger-Huët anomaly. Am J Clin Pathol. 2011;135(2):291303. doi: 10.1309/AJCPVFY95MAOBKRSCrossRefGoogle ScholarPubMed
Kennedy, GA, Kay, TD, Johnson, DW, et al. Neutrophil dysplasia characterised by a pseudo-Pelger-Huet anomaly occurring with the use of mycophenolate mofetil and ganciclovir following renal transplantation: a report of five cases. Pathology. 2002;34(3):263–6. doi: 10.1080/0031302022013136Google Scholar
Gondo, H, Okamura, C, Osaki, K, et al. Acquired Pelger-Huët anomaly in association with concomitant tacrolimus and fluconazole therapy following allogeneic bone marrow transplantation. Bone Marrow Transplant. 2000;26(11):1255–7. doi: 10.1038/sj.bmt.1702682Google Scholar
van Hook, L, Spivack, C, Duncanson, FP. Acquired Pelger-Huet anomaly associated with Mycoplasma pneumoniae pneumonia. Am J Clin Pathol. 1985;84(2):248–51. doi: 10.1093/ajcp/84.2.248Google Scholar
Cicchitto, G, Parravicini, M, De Lorenzo, S, et al. Tuberculosis and Pelger-Huët anomaly. Case report. Panminerva Med. 1999;41(4):367–9.Google Scholar
Seri, M, Cusano, R, Gangarossa, S, et al. Mutations in MYH9 result in the May-Hegglin anomaly, and Fechtner and Sebastian syndromes. The May-Hegglin/Fechtner Syndrome Consortium. Nat Genet. 2000;26(1):103–5. doi: 10.1038/79063Google Scholar
Kelley, MJ, Jawien, W, Ortel, TL, et al. Mutation of MYH9, encoding non-muscle myosin heavy chain A, in May-Hegglin anomaly. Nat Genet. 2000;26(1):106–8. doi: 10.1038/79069Google Scholar
Noris, P, Spedini, P, Belletti, S, et al. Thrombocytopenia, giant platelets, and leukocyte inclusion bodies (May-Hegglin anomaly): clinical and laboratory findings. Am J Med. 1998;104(4):355–60. doi: 10.1016/s0002-9343(98)00062-xGoogle Scholar
Rodriguez, V, Nichols, WL, Charlesworth, JE, et al. Sebastian platelet syndrome: a hereditary macrothrombocytopenia. Mayo Clin Proc. 2003;78(11):1416–21. doi: 10.4065/78.11.1416CrossRefGoogle ScholarPubMed
Peterson, LC, Rao, KV, Crosson, JT, et al. Fechtner syndrome – a variant of Alport‘s syndrome with leukocyte inclusions and macrothrombocytopenia. Blood. 1985;65(2):397406.CrossRefGoogle ScholarPubMed
Heath, KE, Campos-Barros, A, Toren, A, et al. Nonmuscle myosin heavy chain IIA mutations define a spectrum of autosomal dominant macrothrombocytopenias: May-Hegglin anomaly and Fechtner, Sebastian, Epstein, and Alport-like syndromes. Am J Hum Genet. 2001;69(5):1033–45. doi: 10.1086/324267Google Scholar
Kunishima, S, Saito, H. Advances in the understanding of MYH9 disorders. Curr Opin Hematol. 2010;17(5):405–10. doi: 10.1097/MOH.0b013e32833c069cGoogle Scholar
Hsia, CC, Xenocostas, A. May-Hegglin anomaly. Blood. 2012;119(2):328. doi: 10.1182/blood-2010-12-325431Google Scholar
Sadaf, A, Ware, RE. Microscope diagnosis of MYH9-related thrombocytopenia. Blood. 2021;138(11):1000. doi: 10.1182/blood.2021012044CrossRefGoogle ScholarPubMed
Siddiqui, T. Ultrastructure of the May-Hegglin anomaly. J Pak Med Assoc. 1997;47(9):224–6.Google Scholar
Okita, JR, Frojmovic, MM, Kristopeit, S, et al. Montreal platelet syndrome: a defect in calcium-activated neutral proteinase (calpain). Blood. 1989;74(2):715–21.CrossRefGoogle ScholarPubMed
Chediak, MM. [New leukocyte anomaly of constitutional and familial character]. Rev Hematol. 1952;7(3):362–7.Google Scholar
Higashi, O. Congenital gigantism of peroxidase granules; the first case ever reported of qualitative abnormity of peroxidase. Tohoku J Exp Med. 1954;59(3):315–32. doi: 10.1620/tjem.59.315Google Scholar
Nagai, K, Ochi, F, Terui, K, et al. Clinical characteristics and outcomes of Chédiak-Higashi syndrome: a nationwide survey of Japan. Pediatr Blood Cancer. 2013;60(10):1582–6. doi: 10.1002/pbc.24637Google Scholar
Tchernev, VT, Mansfield, TA, Giot, L, et al. The Chediak-Higashi protein interacts with SNARE complex and signal transduction proteins. Mol Med. 2002;8(1):5664.Google Scholar
Antunes, H, Pereira, A, Cunha, I. Chediak-Higashi syndrome: pathognomonic feature. Lancet. 2013;382(9903):1514. doi: 10.1016/S0140-6736(13)60020-3Google Scholar
Lozano, ML, Rivera, J, Sánchez-Guiu, I, et al. Towards the targeted management of Chediak-Higashi syndrome. Orphanet J Rare Dis. 2014;9:132. doi: 10.1186/s13023-014-0132-6Google Scholar
Bain, BJ. Blood cells: a practical guide. John Wiley & Sons, Ltd; 2015.Google Scholar
Do, L, Pasalic, L. Lymphocytes in Sanfilippo syndrome display characteristic Alder-Reilly anomaly. Blood. 2019;134(14):1194. doi: 10.1182/blood.2019002412Google Scholar

References

Kumar, V, Abbas, AK, Aster, JC. Red blood cell and bleeding disorders. In: Robbins and Cotran pathologic basis of disease. 9th ed. Philadelphia, PA: Saunders Elsevier; 2015:629–67.Google Scholar
Wilson, CS, Vergara-Lluri, ME, Brynes, RK. Evaluation of anemia, leukopenia, and thrombocytopenia. In: Jaffe, ES, Arber, DA, Campo, E, et al., eds. Hematopathology. 2nd ed. Philadelphia, PA: Elsevier; 2017:195234.Google Scholar
Hunt, KE. Immune-mediated thrombocytopenia. In: Foucar, K, Reichard, KK, Wilson, CS, et al., eds. Diagnostic pathology blood and bone marrow. 1st ed. Manitoba, Canada: Amirsys; 2012:6.10–6.15.Google Scholar
Kumar, V, Abbas, AK, Aster, JC. Disease of the immune system. In: Robbins and Cotran pathologic basis of disease. 9th ed. Philadelphia, PA: Saunders Elsevier; 2015:185264.Google Scholar
Wilson, CS. Human immunodeficiency virus. In: Foucar, K, Reichard, KK, Wilson, CS, et al., eds. Diagnostic pathology blood and bone marrow. 1st ed. Manitoba, Canada: Amirsys; 2012:7.10–7.19.Google Scholar
Peterson, L. Lymphocytopenia. In: Kjeldsberg, CR, Perkins, SL, eds. Practical diagnosis of hematologic disorders. 5th ed. Chicago, IL: American Society for Clinical Pathology Press; 2010:271–6.Google Scholar
Knight, JA, Kjeldsberg, CR. Cerebrospinal, synovial, and serous body fluids. In: McPherson, RA, Pincus, MR, eds. Henry’s clinical diagnosis and management by laboratory methods. 21st ed. Philadelphia, PA: Saunders Elsevier; 2007:426–54.Google Scholar
Hutchison, RE, Abraham, NZ. Leukocytic disorders. In: McPherson, RA, Pincus, MR, eds. Henry’s clinical diagnosis and management by laboratory methods. 21st ed. Philadelphia, PA: Saunders Elsevier; 2007:545–98.Google Scholar
Kumar, V, Abbas, AK, Aster, JC. Neoplasia. In: Robbins and Cotran pathologic basis of disease. 9th ed. Philadelphia, PA: Saunders Elsevier; 2015:265340.;Google Scholar
Ohgami, RS, Arber, DA. Evaluation of the bone marrow after therapy. In: Jaffe, ES, Arber, DA, Campo, E, et al., eds. Hematopathology. 2nd ed. Philadelphia, PA: Elsevier; 2017:1065–87.Google Scholar
Pincus, MR, Abraham, NZ Jr. Interpreting laboratory results. In: McPherson, RA, Pincus, MR, eds. Henry’s clinical diagnosis and management by laboratory methods. 21st ed. Philadelphia, PA: Saunders Elsevier; 2007:7990.Google Scholar
Bain, BJ. Normal bone marrow. In: Jaffe, ES, Arber, DA, Campo, E, et al., eds. Hematopathology. 2nd ed. Philadelphia, PA: Elsevier; 2017:179–94.Google Scholar
Swerdlow, SH, Campo, E, Harris, NL, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues. Rev. 4th ed. Lyon, France: IARC Press; 2017.Google Scholar
Bain, BJ. Eosinophilia and chronic myeloid/lymphoid neoplasms with eosinophilia and rearrangement of PDGFRA, PDGFRB, FGFR1, or JAK2. In: Jaffe, ES, Arber, DA, Campo, E, et al., eds. Hematopathology. 2nd ed. Philadelphia, PA: Elsevier; 2017:931–53.Google Scholar
Foucar, K. Eosinophilia, . In: Kjeldsberg, CR, Perskins, SL, eds. Practical diagnosis of hematologic disorders. 5th ed. Chicago, IL: American Society for Clinical Pathology Press; 2010:203–11.Google Scholar
Rosenthal, NS. Bone marrow findings in inflammatory, infectious, and metabolic disorders. In: Jaffe, ES, Arber, DA, Campo, E, et al., eds. Hematopathology. 2nd ed. Philadelphia, PA: Elsevier; 2017:235–49.Google Scholar
Brunning, RD, Arber, DA. Bone marrow. In: Rosai, J, ed. Rosai and Ackerman’s surgical pathology. 10th ed. New York, NY: Mosby Elsevier; 2011:19272012.Google Scholar
Horvai, A. Bone, joints, and soft tissue tumors. In: Kumer, V, Abbas, AK, Aster, JC, eds. Robbins and Cotran pathologic basis of disease. 9th ed. Philadelphia, PA: Saunders Elsevier; 2015:1179–226.Google Scholar
Stark, A, Savarirayan, R. Osteopetrosis. Orphanet J Rare Dis. 2009;20;4:5. doi: 10.1186/1750-1172-4-5.Google Scholar
Palagano, E, Menale, C, Sobacchi, C, et al. Genetics of osteopetrosis. Curr Osteoporos Rep. 2018;16:13–25.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×