Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-07T05:44:46.870Z Has data issue: false hasContentIssue false

M

Published online by Cambridge University Press:  05 May 2023

J. F. Cade
Affiliation:
University of Melbourne
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Critical Care Compendium
1001 Topics in Intensive Care & Acute Medicine
, pp. 291 - 329
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliography

Arsenian, MA. Magnesium and cardiovascular disease. Progr Cardiovasc Dis 1993; 35: 271.Google Scholar
Casscells, W. Magnesium and myocardial infarction. Lancet 1994; 343: 807.Google Scholar
Chernow, B, Bamberger, S, Stoiko, M, et al. Hypomagnesemia in patients in postoperative intensive care. Chest 1989; 95: 391.CrossRefGoogle ScholarPubMed
Cholst, IN, Steinberg, SF, Tropper, PJ, et al. The influence of hypermagnesemia on serum calcium and parathyroid hormone levels in human subjects. N Engl J Med 1984; 310: 1221.CrossRefGoogle ScholarPubMed
Connolly, E, Worthley, LIG. Intravenous magnesium. Crit Care Resusc 1999; 1: 162.Google ScholarPubMed
Hughes, R, Goldkorn, A, Masoli, M, et al. Use of isotonic nebulised magnesium sulphate as an adjuvant to salbutamol in treatment of severe asthma in adults: randomised placebo-controlled trial. Lancet 2003; 361: 2114.Google Scholar
ISIS-4 (Fourth International Study of Infarct Survival) Collaborative Group. ISIS-4: A randomised factorial trial assessing early oral captopril, oral mononitrate, and intravenous magnesium sulphate in 58 050 patients with suspected acute myocardial infarction. Lancet 1995; 345: 669.CrossRefGoogle Scholar
Lucas, MJ, Leveno, KJ, Cunningham, FG. A comparison of magnesium sulfate with phenytoin for the prevention of eclampsia. N Engl J Med 1995; 333: 201.Google Scholar
Mackay, JD, Bladon, PT. Hypomagnesaemia due to proton-pump inhibitor therapy: a clinical case series. Q J Med 2010; 103: 387.Google Scholar
Magnesium in Coronaries (MAGIC) Trial Investigators. Early administration of intravenous magnesium to high-risk patients in the Magnesium in Coronaries (MAGIC) trial: a randomized controlled trial. Lancet 2002; 360: 1189.Google Scholar
Magpie Trial Collaborative Group. Do women with pre-eclampsia, and their babies, benefit from magnesium sulphate? The Magpie Trial: a randomized placebo controlled trial. Lancet 2002; 359: 1877.CrossRefGoogle Scholar
McLean, RM. Magnesium and its therapeutic uses. Am J Med 1994; 96: 63.Google Scholar
Nadler, JL, Rude, RK. Disorders of magnesium metabolism. Endocrinol Metab Clin North Am 1995; 24: 623.Google Scholar
Noronha, JL, Matuschak, GM. Magnesium in critical illness: metabolism, assessment, and treatment. Intens Care Med 2002; 28: 667.Google Scholar
Silverman, RA, Osborn, H, Runge, J, et al. IV magnesium sulfate in the treatment of acute severe asthma: a multicenter randomized controlled trial. Chest 2002; 122: 489.Google Scholar
Teo, KK, Yusuf, S, Collins, R, et al. Effects of intravenous magnesium in suspected acute myocardial infarction: overview of randomized trials. BMJ 1991; 303: 1499.Google Scholar
Weisinger, JR, Bellorin-Font, E. Magnesium and phosphorus. Lancet 1998; 352: 391.Google Scholar
Westermaier, T, Stetter, C, Vince, GH, et al. Prophylactic intravenous magnesium sulfate for treatment of aneurysmal subarachnoid hemorrhage: a randomized, placebo-controlled, clinical study. Crit Care Med 2010; 38: 1284.Google Scholar
Whang, R, Whang, D, Ryan, M. Refractory potassium depletion: a consequence of magnesium deficiency. Arch Intern Med 1992; 152: 40.Google Scholar
Woods, KL, Fletcher, S, Roffe, C, et al. Intravenous magnesium sulphate in suspected acute myocardial infarction: results of the second Leicester Magnesium Intervention Trial (LIMIT–2). Lancet 1992; 339: 1553.CrossRefGoogle ScholarPubMed
Wu, J, Carter, A. Magnesium: the forgotten electrolyte. Aust Prescriber 2007; 30: 102.Google Scholar

Bibliography

Anderson, RP. Coeliac disease: current approach and future prospects. Intern Med J 2008; 38: 790.Google Scholar
Campbell, CB, Roberts, RK, Cowen, AE. The changing clinical presentation of coeliac disease in adults. Med J Aust 1977; 1: 89.CrossRefGoogle ScholarPubMed
Corsini, G, Gandolfi, E, Bonechi, I, et al. Postgastrectomy malabsorption. Gastroenterology 1966; 50: 358.CrossRefGoogle ScholarPubMed
Duggan, JM. Recent developments in our understanding of adult coeliac disease. Med J Aust 1997; 166: 312.Google Scholar
Duggan, JM. Coeliac disease: the great imitator. Med J Aust 2004; 180: 524.Google Scholar
Feighery, C. Coeliac disease. BMJ 1999; 319: 236.Google Scholar
Fisher, RL, ed. Malabsorption and nutritional status and support. Gastrenterol Clin North Am 1989; 18: 467.Google Scholar
Go, VLW, et al., eds. The Pancreas: Biology, Pathobiology and Diseases. New York: Raven Press. 1993.Google Scholar
Gosh, SK, Littlewood, JM, Goddard, D, et al. Stool microscopy in screening for steatorrhoea. J Clin Pathol 1977; 30: 749.Google Scholar
Green, PHR, Tall, AR. Drugs, alcohol and malabsorption. Am J Med 1979; 67: 1066.CrossRefGoogle ScholarPubMed
Marshak, RL, Lindner, AE. Malabsorption syndrome. Semin Roentgenol 1966; 1: 138.CrossRefGoogle Scholar
Matysiak-Budnik, T, Candalh, C, Dugave, C, et al. Alteration of the intestinal transport and processing of gliadin peptides in celiac disease. Gastroenterolgy 2003; 125: 696.Google Scholar
Mukherjee, R, Kelly, CO. Diseases producing malabsorption and maldigestion. In: Scientific American Medicine. Gastroenterology. Hamilton: Dekker Medicine. 2020.Google Scholar
Reeves, GEM. Coeliac disease: against the grain. Intern Med J 2004; 34: 521.Google Scholar
Rubio-Tapia, A, Herman, ML, Ludviggson, JF, et al. Severe sprue-like enteropathy associated with olmesartan. Mayo Clin Proc 2012; 87: 732.Google Scholar
Toouli, J, Biankin, AV, Oliver, MR, et al. Management of pancreatic exocrine insufficiency: Australasian Pancreatic Club recommendations. Med J Aust 2010; 193: 461.Google Scholar

Bibliography

Brown, GV, Good, MF. Prospects for a vaccine against malaria. Intern Med J 2002; 32: 129.Google Scholar
Iqbal, KM, Ahmed, N, Aziz, L. Malaria: its severe form and its management. Crit Care Shock 2000; 3: 69.Google Scholar
Kain, KC, Shanks, GD, Keystone, JS. Malaria chemoprophylaxis in the age of drug resistance. Clin Infect Dis 2001; 33: 226.Google Scholar
Knope, K, Doggett, SL, Jansen, CC, et al. Arborviral diseases and malaria: Annual report of the National Arborvirus and Malaria Advisory Committee. Communicable Diseases Intelligence. 2019; vol. 43.Google Scholar
Mai, NTH, Day, NPJ, Chuong, LV, et al. Post-malaria neurological syndrome. Lancet 1996; 348: 917.Google Scholar
Marks, M, Gupta-Wright, A, Doherty, JF, et al. Managing malaria in the intensive care unit. Br J Anaesth 2014; 113: 910.Google Scholar
Martens, P, Hall, L. Malaria on the move. Emerg Infect Dis 2000; 6: 2.Google Scholar
McCarthy, JS. Malaria prophylaxis: in war and peace. Med J Aust 2005; 182: 148.Google Scholar
Mer, M, Dunser, MW, Giera, R, et al. Severe malaria: current concepts and practical overview: what every intensivist should know. Intens Care Med 2020; 46: 907.Google Scholar
Miller, LH, Baruch, DI, Marsh, K, et al. The pathogenic basis of malaria. Nature 2002; 415: 673.Google Scholar
Trampuz, A, Jereb, M, Muzlovic, I, et al. Clinical review: severe malaria. Crit Care 2003; 7: 315.Google Scholar
White, NJ, Pukrittayakamee, S, Hien, TT, et al. Malaria. Lancet 2014; 383: 723.Google Scholar
Wyler, DJ. Malaria – resurgence, resistance, and research. N Engl J Med 1983; 308: 875.Google Scholar
Zucker, JR. Changing patterns of autochthonous malaria transmission in the United States. Emerg Infect Dis 1996; 2: 37.Google Scholar

Bibliography

Denborough, MA, Lovell, RR. Anaesthetic deaths in a family. Lancet 1960; 2: 45.Google Scholar
Hopkins, PM. Malignant hyperthermia: advances in clinical management and diagnosis. Br J Anaesth 2000; 85: 118.Google Scholar
Kolb, ME, Horne, ML, Martz, R. Dantrolene in human malignant hyperthermia: a multicenter study. Anesthesiology 1982; 56: 254.Google Scholar
MacLennon, DH, Phillips, MS. Malignant hyperthermia. Science 1992; 256: 789.Google Scholar
Nelson, TE, Flewellen, EH. The malignant hyperthermia syndrome. N Engl J Med 1983; 309: 416.Google Scholar
O’Keefe, S, Nelson, P, Davis, M. Malignant hyperthermia. In: Riley, R, ed. Australasian Anaesthesia. Melbourne: ANZCA. 2017; p 263.Google Scholar
Rosenberg, H, Antognini, JF, Muldoon, S. Testing for malignant hyperthermia. Anesthesiology 2002; 96: 232.CrossRefGoogle ScholarPubMed
Urwyler, A, Deufel, T, McCarthy, T, et al. European Malignant Hyperthermia Group: guidelines for molecular genetic detection of susceptibility to malignant hyperthermia. Br J Anaesth 2001; 86: 283.Google Scholar
Waddingham, M. Malignant hyperthermia: investigation for the uninitiated. In: Keneally, J, ed. Australian Anaesthesia. Melbourne: ANZCA. 2005; p 41.Google Scholar

Bibliography

Bhatia, P, Portin, D, Inculet, RI, et al. Current concepts in the management of esophageal perforations. Ann Thorac Surg 2011; 92: 209.Google Scholar

Bibliography

Barceloux, DG. Manganese. J Toxicol Clin Toxicol 1999; 37: 293.CrossRefGoogle ScholarPubMed

Bibliography

De Paepe, A, Devereux, RB, Dietz, HC, et al. Revised diagnostic criteria for the Marfan syndrome. Am J Med Genet 1996; 62: 417.Google Scholar
Summers, KM, West, JA, Hattam, A, et al. Recent developments in the diagnosis of Marfan syndrome and related disorders. Med J Aust 2012; 197: 494.Google Scholar
Summers, KM, West, JA, Peterson, MM, et al. Challenges in the diagnosis of Marfan syndrome. Med J Aust 2006; 184: 627.Google Scholar

Bibliography

Arthur, G, Bradding, P. New developments in mast cell biology. Chest 2016; 150: 680.Google Scholar
Denburg, JA. Basophil and mast cell lineage in vitro and in vivo. Blood 1992; 79: 846.Google Scholar
Fine, J. Mastocytosis. Int J Dermatol 1980; 19: 117.Google Scholar
Lewis, RA. Mastocytosis. J Allergy Clin Immunol 1984; 74: 755.Google Scholar
Pardanini, A. Systemic mastocytosis in adult: 2012 update on diagnosis, risk stratification, and management. Am J Hematol 2012; 87: 402.Google Scholar
van der Weide, HY, van Westerloo, DJ, van den Bergh, WM. Critical care management of systemic mastocytosis. Crit Care 2015; 19: 238.Google Scholar

Bibliography

Abolnik, I, Lossos, IS, Breuer, R. Spontaneous pneumomediastinum. Chest 1991; 100: 93.Google Scholar
Azarow, KS, Pearl, RH, Zurcher, R, et al. Primary mediastinal masses. J Thorac Cardiovasc Surg 1993; 106: 67.Google Scholar
Duwe, BV, Sterman, DH, Musani, AI. Tumors of the mediastinum. Chest 2005; 128: 2893.Google Scholar
Estrera, AS, Landay, MJ, Grisham, JM, et al. Descending necrotizing mediastinitis. Surg Gynecol Obstet 1983; 157: 545.Google Scholar
Freeman, RK, Vallieres, E, Verrier, ED, et al. Descending necrotizing mediastinitis: an analysis of the effects of serial surgical debridement on patient mortality. J Thorac Cardiovasc Surg 2000; 119: 260.Google Scholar
Lerner, AD, Feller-Kopman, D. Disorders of the pleura, mediastinum, and hilum. In: Scientific American Medicine. Pulmonary & Critical Care Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Schowengerdt, CG, Suyemoto, R, Main, FB. Granulomatous and fibrous mediastinitis. J Thorac Cardiovasc Surg 1969; 57: 365.Google Scholar
Strollo, DC, de Christenson, MLR, Jett, JR. Primary mediastinal tumors. Chest 1997; 112: 511 & 1344.Google Scholar
Takeda, S, Miyoshi, S, Minami, M, et al. Clinical spectrum of mediastinal cysts. Chest 2003; 124: 125.Google Scholar
Whooley, BP, Urschel, JD, Antkowiak, JG, et al. Primary tumors of the mediastinum. J Surg Oncol 1999; 70: 95.Google Scholar

Bibliography

Editorial. Nitrous oxide and acute marrow failure. Lancet 1982; 2: 856.Google Scholar
Pruthi, RK, Tefferi, A. Pernicious anemia revisited. Mayo Clin Proc 1994; 69: 144.Google Scholar
Romain, M, Sviri, S, Linton, DM, et al. The role of vitamin B12 in the critically ill – a review. Anaesth Intens Care 2016; 44: 447.Google Scholar

Bibliography

Bourne, RS, Mills, GH. Melatonin: possible implications for the postoperative and critically ill patient. Intens Care Med 2006; 32: 371.Google Scholar
Bourne, RS, Mills, GH, Minelli, C. Melatonin therapy to improve nocturnal sleep in critically ill patients: encouraging results from a small randomised controlled trial. Crit Care 2008; 12: R52.Google Scholar
Brzezinski, A. Melatonin in humans. N Engl J Med 1997; 336: 186.Google Scholar
Buscemi, N, Vandermeer, B, Hooten, N, et al. Efficacy and safety of exogenous melatonin for secondary sleep disorders and sleep disorders accompanying sleep restriction: meta-analysis. BMJ 2006; 332: 385.Google Scholar
Garfinkel, D, Laudon, M, Zisapel, N. Improvement in sleep quality in elderly people by controlled-release melatonin. Lancet 1995; 346: 541.Google Scholar
Hamblin, SE, Burka, AT. Ramelteon for ICU delirium prevention: is it time to melt away? Crit Care Med 2019; 47: 1813.Google Scholar
Jarratt, J. Perioperative melatonin use. Anaesth Intens Care 2011; 39: 171.CrossRefGoogle Scholar
Lewis, KS, McCarthy, RJ, Rothenberg, DM. Does melatonin decrease sedative use and time to extubation in patients requiring prolonged mechanical ventilation? Anesth Analg 1999; 88: S123.CrossRefGoogle Scholar
Lewis, SR, Pritchard, MW, Schofield-Robinson, OJ, et al. Melatonin for the promotion of sleep in adults in the intensive care unit. Cochrane Database Syst Rev 2018; 5: CD012455.Google Scholar
Maas, MB, Lizza, BD, Abbott, SM, et al. Factors disrupting melatonin secretion rhythms during critical illness. Crit Care Med 2020; 48: 854.Google Scholar
Maldonado, M-D, Murillo-Cabezas, F, Calvo, J-R, et al. Melatonin as a pharmacologic support in burns patients: a proposed solution to thermal injury-related lymphocytopenia and oxidative damage. Crit Care Med 2007; 35: 1177.Google Scholar
Mundigler, G, Delle-Karth, G, Koreny, M, et al. Impaired circadian rhythm of melatonin secretion in sedated critically ill patients with severe sepsis. Crit Care Med 2002; 30: 536.Google Scholar
Perras, B, Meier, M, Dodt, C. Light and darkness fail to regulate melatonin release in critically ill humans. Intens Care Med 2007; 33: 1954.Google Scholar
Riutta, A, Ylitalo, P, Kaukinen, S. Diurnal variation of melatonin and cortisol is maintained in non-septic intensive care patients. Intens Care Med 2009; 35: 1720.Google Scholar
Shilo, L, Dagan, Y, Smorjik, Y, et al. Effect of melatonin on sleep quality of COPD Intensive Care patients. Chronobiol Int 2000; 17: 71.Google Scholar
Webb, SM, Puig-Domingo, M. Role of melatonin in health and disease. Clin Endocrinol 1995; 42: 221.Google Scholar
Wurtman, RJ, Moskowitz, MA. The pineal organ. N Engl J Med 1977; 1329: 1383.Google Scholar

Bibliography

Koponen, M, Zlock, D, Palmer, D, et al. Melioidosis: forgotten, but not gone! Arch Intern Med 1991; 151: 605.Google Scholar
MacLaren, G, Lye, DC, Lee, VJ. Increasing experience with melioidosis and critical care: medical and military implications. Crit Care Med 2016; 44: 1608.Google Scholar
Wiersinga, WJ, Currie, BJ, Peacock, SJ. Melioidosis. N Engl J Med 2012; 367: 1035.Google Scholar

Bibliography

Bernhoft, RA, Mercury toxicity and treatment: a review of the literature. J Environ Public Health 2012; 2012: 460508.Google Scholar
Black, J. The puzzle of pink disease. J R Soc Med 1999; 92: 478.Google Scholar

Bibliography

Anderson, JJB, Toverud, SU. Diet and vitamin D: a review with an emphasis on human function. J Nutr Biochem 1994; 5: 58.Google Scholar
Biolo, G, Grimble, G, Preiser, J-C, et al. Position paper of the ESICM working group on nutrition and metabolism: metabolic basis of nutrition in intensive care unit patients: ten critical questions. Intens Care Med 2002; 11: 1512.Google Scholar
Casaer, MP, Van den Berghe, G. Nutrition in the acute phase of critical illness. N Engl J Med 2014; 370: 1227.Google Scholar
Chandra, RK. Effect of vitamin and trace-element supplementation on immune responses and infection in elderly patients. Lancet 1992; 340: 1124.Google Scholar
Crowe, AV, Griffiths, RD. Nutritional failure and drugs. Curr Opin Crit Care 1997; 3: 268.Google Scholar
Cynober, L, Moore, FA, eds. Nutrition and Critical Care. Basel: Karger. 2003Google Scholar
DeLuca, HF. Vitamin D metabolism and function. Arch Intern Med 1978; 138: 836.Google Scholar
Dent, CE, Smith, R. Nutritional osteomalacia. Q J Med 1969; 38: 195.Google Scholar
Editorial. Hepatic osteomalacia and vitamin D. Lancet 1982; 1: 943.Google Scholar
Faber, P, Siervo, M, eds. Nutrition in Critical Care. Cambridge: Cambridge University Press. 2014.Google Scholar
Fetterplace, K, Holt, D, Udy, A, et al. Parenteral nutrition in adults during acute illness: a clinical perspective for clinicians. Intern Med J 2020; 50: 403.CrossRefGoogle ScholarPubMed
Fisher, RL, ed. Malabsorption and nutritional status and support. Gastroenterol Clin North Am 1989; 18: 467.Google Scholar
Herndon, DN, Wernerman, J, eds. Metabolic support in sepsis and multiple organ failure. Crit Care Med 2007; 35: (suppl.) S435.Google Scholar
Kellum, JA. Recent advances in acid-base physiology applied to critical care. In: Vincent, J-L, ed. Yearbook of Intensive Care and Emergency Medicine 1998. Berlin: Springer. 1998; p. 577.Google Scholar
Marik, P, Varon, J. The obese patient in the ICU. Chest 1998; 113: 492.Google Scholar
Mogensen, KM, Robinson, MK. Enteral and parenteral nutrition. In: Scientific American Medicine. Gastroenterology. Hamilton: Dekker Medicine. 2020.Google Scholar
Nasraway, S, Black, R, Sottile, F. The anion gap in patients admitted to the medical intensive care unit. Chest 1989; 96: 287S.Google Scholar
Preiser, J-C, Chiolero, R, Wernerman, J. Nutritional papers in ICU patients: what lies between the lines? Intens Care Med 2003; 29: 156.Google Scholar
Rose, BD, Post, TW, Stokes, J, eds. Clinical Physiology of Acid-Base and Electrolyte Disorders. 6th edition. New York: McGraw-Hill. 2021.Google Scholar
Schelling, JR, Howard, RL, Winter, SD, et al. Increased osmol gap in alcoholic ketoacidosis and lactic acidosis. Ann Intern Med 1990; 113: 580.Google Scholar
Taylor, BE, McClave, SA, Martindale, RG, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (ASPEN). Crit Care Med 2016; 44: 390.Google Scholar

Bibliography

Ajayi, T, Gropper, MA. Methemoglobinemia. Pulmonary Perspectives 2001; 18(4): 4.Google Scholar
Barker, SJ, Tremper, KK, Hyatt, J. Effects of methemoglobinemia on pulse oximetry and mixed venous oximetry. Anesthesiology 1989; 70: 112.CrossRefGoogle ScholarPubMed
Charache, S. Methemoglobinemia – sleuthing for a new cause. N Engl J Med 1986; 314: 776.Google Scholar
Dotsch, J, Demirakca, S, Hamm, R, et al. Extracorporeal circulation increases nitric oxide induced methemoglobinemia in vivo and in vitro. Crit Care Med 1997; 25: 1153.Google Scholar
Hall, AH, Kulig, KW, Rumack, BH. Drug- and chemical-induced methemoglobinemia: clinical features and management. Med Toxicol 1986; 1: 253.Google Scholar
Mansouri, A, Lurie, AA. Concise review: methemoglobinemia. Am J Hematol 1993; 42: 7.Google Scholar
Mokhlesi, B, Leikin, JB, Murray, P, et al. Adult toxicology in critical care: part II: specific poisonings. Chest 2003; 123: 897.Google Scholar
Schweitzer, SA. Spurious pulse oximeter desaturation due to methemoglobinemia. Anesth Intens Care 1991; 19: 988.Google Scholar
Warren, JB, Higenbottam, T. Caution with the use of inhaled nitric oxide. Lancet 1996; 348: 629.Google Scholar

Bibliography

Barceloux, DG, Bond, GR, Krenzelok, EP, et al. American Academy of Chemical Toxicology practice guidelines on the treatment of methanol poisoning. J Toxicol Clin Toxicol 2002; 40: 415.Google Scholar
Brent, J, McMartin, K, Phillips, S, et al. Fomepizole for the treatment of methanol poisoning. N Engl J Med 2001; 344: 424.Google Scholar
Burns, MJ, Graudins, A, Aaron, CK, et al. Treatment of methanol with intravenous 4-methylpyrazole. Ann Emerg Med 1997; 30: 829.Google Scholar
Jacobsen, D, McMartin, KE. Methanol and ethylene glycol poisoning: mechanism of toxicity, clinical course, diagnosis and treatment. Med Toxicol 1986; 1: 309.Google Scholar
Jacobsen, D, McMartin, KE. Antidotes for methanol and ethylene glycol poisoning. J Toxicol Clin Toxicol 1997; 35: 127.Google Scholar
Kruse, JA. Methanol poisoning. Intens Care Med 1992; 18: 391.Google Scholar
Kulig, K, Duffy, JP, Lenden, CH, et al. Toxic effects of methanol, ethylene glycol and isopropyl alcohol. Topics in Emerg Med 1984; 6: 14.Google Scholar
McCoy, HG, Cipolle, RJ, Ehlers, SM, et al. Severe methanol poisoning: application of a pharmacokinetic model for ethanol therapy and hemodialysis. Am J Med 1979; 67: 804.Google Scholar
Megarbane, B, Borron, SW, Baud, FJ. Current recommendations for treatment of severe toxic alcohol poisonings. Intens Care Med 2005; 31: 189.Google Scholar
Mokhlesi, B, Leikin, JB, Murray, P, et al. Adult toxicology in critical care: part II: specific poisonings. Chest 2003; 123: 897.Google Scholar
Palatnick, W, Redman, LW, Sitar, DS, et al. Methanol half-life during ethanol administration: implications for management of methanol poisoning. Ann Emerg Med 1995; 26: 202.Google Scholar
Zimmerman, JL. Poisonings and overdoses in the intensive care unit: general and specific management issues. Crit Care Med 2003; 31: 2794.Google Scholar

Bibliography

Ajayi, T, Gropper, MA. Methemoglobinemia. Pulmonary Perspectives 2001; 18(4): 4.Google Scholar
Blass, N, Fung, D. Dyed but not dead: methylene blue overdose. Anesthesiology 1976; 45: 458.Google Scholar
Gachot, B, Bedos, JP, Veber, B, et al. Short-term effects of methylene blue on hemodynamics and gas exchange in humans with septic shock. Intens Care Med 1995; 21: 1027.Google Scholar
Hall, HA, Kulig, KW, Rumack, BH. Drug and chemical-induced methaemoglobinaemia; clinical features and management. Med Toxicol 1986; 1: 253.Google Scholar
Kartha, SS, Chacko, CE, Bumpous, JM, et al. Toxic metabolic encephalopathy after parathyroidectomy with methylene blue localization. Otolaryngol Head Neck Surg 2006; 135: 765.Google Scholar
Mokhlesi, B, Leikin, JB, Murray, P, et al. Adult toxicology in critical care: part II: specific poisonings. Chest 2003; 123: 897.Google Scholar
Pasin, L, Umbrello, M, Greco, T, et al. Methylene blue as a vasopressor: a meta-analysis of randomized trials. Crit Care Resusc 2013; 15: 42.Google Scholar
Viaro, F, Dalio, MB, Evora, PRB. Catastrophic cardiovascular adverse reactions to protamine are nitric oxide/cyclic guanosine monophosphate dependent and endothelium mediated: should methylene blue be the treatment of choice? Chest 2002; 122: 1061.Google Scholar

Bibliography

Darmon, M, Azoulay, E, Thiery, G, et al. Time course of organ dysfunction in thrombotic microangiopathy patients receiving either plasma perfusion or plasma exchange. Crit Care Med 2006; 34: 2127.Google Scholar
Moake, JL. Thrombotic microangiopathies. N Engl J Med 2002; 347: 589.Google Scholar
Nand, S, Bansal, VK, Kozeny, G, et al. Red cell fragmentation syndrome with the use of subclavian hemodialysis catheters. Arch Intern Med 1985; 145: 1421.Google Scholar
Scully, M, Cataland, S, Coppo, P, et al. Consensus on the standardization of terminology in thrombotic thrombocytopenic purpura and related thrombotic microangiopathies. J Thromb Haemost 2017; 15: 312.Google Scholar

Bibliography

Almeida, A, Mitchell, AL, Boland, M, et al. A new genomic blueprint of the human gut microbiota. Nature 2019; 568: 499.Google Scholar
Bassetti, M, Bandera, A, Gori, A. Therapeutic potential of gut microbiota in the management of sepsis critical care. Crit Care 2020; 24: 105.Google Scholar
Dickson, RP. The microbiome and critical illness. Lancet Respir Med 2016; 4: 59.Google Scholar
Fehily, SR, Basnayake, C, Wright, EK, et al. The gut microbiota and gut disease. Intern Med J 2021; 51: 1594.Google Scholar
Gilbert, JA, Blaser, MJ, Caporaso, JG, et al.Current understanding of the human microbiome. Nat Med 2018; 24: 392.Google Scholar
Gilbert, JA, Quinn, RA, Debelius, J, et al. Microbiome-wide association studies link dynamic microbial consortia to disease. Nature 2016; 535: 94.Google Scholar
Ho, KM, Kalgudi, S, Corbett, J-M, et al. Gut microbiota in surgical and critically ill patients. Anaesth Intens Care 2020; 48: 179.Google Scholar
Johnson, AL, Backhed, F. Role of gut microbiota in atherosclerosis. Nat Rev Cardiol 2017; 14: 79.Google Scholar
Relman, DA. The human microbiome and the future practice of medicine. JAMA 2015; 314: 1127.Google Scholar
Rusting, R, ed. The Microbiome: Your Inner Ecosystem. New York: Scientific American. 2020.Google Scholar
Sharma, A, Das, P, Buschmann, M, et al. The future of microbiome-based therapeutics in clinical applications. Clin Pharmacol Ther 2020; 107: 123.Google Scholar
Soo, WT, Bryant, RV, Costello, SP. Faecal microbiota transplantation: indications, evidence and safety. Aust Prescriber 2020 43: 36.Google Scholar

Bibliography

De Backer, D, Hollenberg, S, Boerma, C, et al. How to evaluate the microcirculation: report of a round table conference. Crit Care 2007; 11: R101.Google Scholar
Den Uil, CA, Klijn, E, Lagrand, WK, et al. The microcirculation in health and clinical disease. Prog Cardiovasc Dis 2008; 51: 161.Google Scholar
Edul, VS, Enrico, C, Lavoille, B, et al. Quantitative assessment of the microcirculation in healthy volunteers and in patients with septic shock. Crit Care Med 2012; 40: 1443.Google Scholar

Bibliography

Alsolamy, S. Middle East Respiratory Syndrome: knowledge to date. Crit Care Med 2015; 43:1283.Google Scholar
Arabi, YM, Mandourah, Y, Sindi, AA, et al. Critically ill patients with the Middle East respiratory syndrome: a multicenter retrospective cohort study. Crit Care Med 2017; 45: 1683.Google Scholar

Bibliography

Chinnery, PF, Turnbull, DM. Mitochondrial DNA and disease. Lancet 1999; 354: S117.Google Scholar
Clay, AS, Behnia, M, Brown, KK. Mitochondrial disease: a pulmonary and critical-care perspective. Chest 2001; 120: 634.Google Scholar
DiMauro, S, Bonilla, E, Zeviani, M, et al. Mitochondrial myopathies. Ann Neurol 1985; 17: 521.Google Scholar
Dziadek, MA, Sue, CM. Mitochondrial donation. Med J Aust 2022; 216: 118.Google Scholar
Howell, N. Human mitochondrial diseases: answering questions and questioning answers. Int Rev Cytol 1999; 186: 49.Google Scholar
Hutchin, T, Cortopassi, G. A mitochondrial DNA clone is associated with increased risk of Alzheimer’s disease. Proc Natl Acad Sci 1995; 92: 6892.Google Scholar
Neupert, W. Mitochondrial gene expression: a playground of evolutionary thinking. Annu Rev Biochem 2016; 85: 65.Google Scholar
Ng, YS, Bindoff, LA, Gorman, GS, et al. Mitochondrial disease in adults: recent advances and future promise. Lancet Neurol 2021; 20: 573.Google Scholar
Ng, YS, Turnbull, DM. Mitochondrial disease: genetics and management. J Neurol 2016; 263: 179.Google Scholar
Shoffner, JM. Maternal inheritance and the evaluation of oxidative phosphorylation diseases. Lancet 1996; 348: 1283.Google Scholar
Sue, CM. Mitocochondrial disease: recognizing more than just the tip of the iceberg. Med J Aust 2010; 193: 195.Google Scholar
Sue, CM, Balasubramaniam, S, Bratkovic, D, et al. Patient care standards for primary mitochondrial disease in Australia. Intern Med J 2022; 52: 110.Google Scholar
Thorburn, DR. Mitochondrial diseases: not so rare after all. Intern Med J 2004; 34: 3.Google Scholar
Zhang, Q, Raoof, M, Chen, Y, et al. Circulating mitcochondrial DAMPs cause inflammatory responses to injury. Nature 2010; 464: 104.Google Scholar

Bibliography

Prockop, DJ. Mutations in collagen genes as a cause of connective-tissue diseases. N Engl J Med 1992; 326: 540.Google Scholar

Bibliography

Schaumburg, HH, Byck, R, Gerstl, R, et al. Monosodium L-glutamate. Science 1969; 163: 826.Google Scholar

Bibliography

Strickman, D. Buzz kill. Sci Am 2018; 319: 59.Google Scholar
Winegard, TC. The Mosquito: A Human History of Our Deadliest Predator. New York: Dutton (Penguin Random House). 2019.Google Scholar

Bibliography

Bach, JR. Amyotrophic lateral sclerosis: prolongation of life by noninvasive respiratory aids. Chest 2002; 122: 92.Google Scholar
Baumer, D, Talbot, K, Turner, MR. Advances in motor neurone disease. J R Soc Med 2014; 107: 14.Google Scholar
Boman, K, Meurman, T. Prognosis of amyotrophic lateral sclerosis. Acta Neurol Scand 1967; 43: 489.Google Scholar
Brown, RH, Al-Chalabi, A. Amyotrophic lateral sclerosis. N Engl J Med 2017; 377: 162.Google Scholar
Dharmadasa, T, Henderson, RD, Talman, PS, et al. Motor neurone disease: progress and challenges. Med J Aust 2017; 206: 357.Google Scholar
Greenland, KJ, Zajac, JD. Kennedy’s disease: pathogenesis and clinical approaches. Intern Med J 2004; 34: 279.Google Scholar
Kiernan, MC. Motor neurone disease: a Pandora’s box. Med J Aust 2003; 178: 311.Google Scholar
Kiernan, MC. Riluzole: a glimmer of hope in the treatment of motor neurone disease. Med J Aust 2005; 182: 319.Google Scholar
Kiernan, MC, ed. Motor Neurone Disease. Sydney: MJA Books. 2007.Google Scholar
Kiernan, MC, Vucic, S, Cheah, BC, et al. Amyotrophic lateral sclerosis. Lancet 2011; 377: 942.Google Scholar
Pestronk, A. Motor neuropathies, motor neuron disorders, and antiglycolipid antibodies. Muscle Nerve 1991; 14: 927.Google Scholar
Petrucelli, L, Gitler, AD. Unlocking the mystery of ALS. Sci Am 2017; 316: 40.Google Scholar
Simmons, Z. Management strategies for patients with amyotrophic lateral sclerosis from diagnosis to death. Neurologist 2005; 11: 257.Google Scholar
Simon, NG, Huynh, W, Vucic, S, et al. Motor neuron disease: current management and future prospects. Intern Med J 2015; 45: 1005.Google Scholar
The ALS/Riluzole Study Group. A controlled trial of riluzole in amyotrophic lateral sclerosis. N Engl J Med 1994; 330: 585.Google Scholar

Bibliography

Moreland, LW, Corey, J, McKenzie, R. Ludwig’s angina. Arch Intern Med 1988; 148: 463.Google Scholar
Pruett, TL, Simmons, RL. Nosocomial gram-negative bacillary parotitis. JAMA 1984; 251: 252.Google Scholar
Utsunomiya, J, Gocho, H, Miyanaga, T, et al. Peutz-Jeghers syndrome: its natural course and management. Johns Hopkins Med J 1975; 136: 71.Google Scholar

Bibliography

Marshall, JC, Deutschman, CS. The multiple organ dysfunction syndrome: syndrome, metaphor, and unsolved clinical challenge. Crit Care Med 2021; 49: 1402.Google Scholar

Bibliography

Brandi, ML. Multiple endocrine neoplasia type 1: general features and new insights into etiology. J Endocrinol Invest 1991; 14: 61.Google Scholar
Burgess, JR. Multiple endocrine neoplasia type 1: current concepts in diagnosis and management. Med J Aust 1999; 170: 605.Google Scholar
Chandrasekharappa, SC, Guru, SC, Manickam, P, et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 1997; 276: 404.Google Scholar
Eng, C. RET proto-oncogene in the development of human cancer. J Clin Oncol 1999; 17: 380.Google Scholar
Learoyd, DL, Delbridge, LW, Robinson, BG. Multiple endocrine neoplasia. Aust NZ J Med 2000; 30: 675.Google Scholar
Mallette, LE. The parathyroid polyhormones: new concepts in the spectrum of peptide hormone action. Endocr Rev 1991; 12: 110.Google Scholar
McDonnell, JE, Gild, ML, Clifton-Bligh, RJ, et al. Multiple endocrine neoplasia: an update. Intern Med J 2019; 49: 954.Google Scholar
Robinson, BG. Multiple endocrine neoplasia – who should be screened? Med J Aust 1994; 160: 739.Google Scholar
Schimke, RN. Multiple endocrine neoplasia: how many syndromes? Am J Med Genet 1990; 37: 375.Google Scholar

Bibliography

Almond, JB, Cohen, GM. The proteasome: a novel target for cancer chemotherapy. Leukemia 2002; 16: 433.Google Scholar
Attal, M, Harousseau, J-L, Stoppa, A-M, et al. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. N Engl J Med 1996; 335: 91.Google Scholar
Bataille, R. Management of myeloma with bisphosphonates. N Engl J Med 1996; 334: 529.Google Scholar
Bjorkstrand, B, Ljungman, P, Svensson, H, et al. Allogeneic bone marrow transplantation versus autologous stem cell transplantation in multiple myeloma. Blood 1996; 88: 4711.Google Scholar
Brouet, JC, Clouvel, JP, Danon, F, et al. Biologic and clinical significance of cryoglobulins. Am J Med 1974; 57: 775.Google Scholar
Clark, WF, Stewart, AK, Rock, GA, et al. Plasma exchange when myeloma presents as acute renal failure: a randomized, controlled trial. Ann Intern Med 2005; 143: 777.Google Scholar
Dauel, TF, Dauth, J, Mellstedt, H, et al. Waldenstrom’s macroglobulinaemia. Lancet 1985; 2: 311.Google Scholar
Dowd, PM. Cold-related disorders. Prog Dermatol 1987; 21: 1.Google Scholar
Frankel, AH, Singer, DRJ, Winearls, CG, et al. Type II essential mixed cryoglobulinemia: presentation, treatment and outcome in 13 patients. Q J Med 1992; 82: 101.Google Scholar
Gertz, MA, Kyle, RA, Greipp, PR. Response rates and survival in primary systemic amyloidosis. Blood 1991; 77: 257.Google Scholar
Gertz, MA, Kyle, RA. Secondary systemic amyloidosis. Medicine 1991; 70: 246.Google Scholar
Grateau, G, Kyle, RA, Skinner, M, eds. Amyloid and Amyloidosis. Boca Baton: CRC Press. 2004.Google Scholar
Greipp, PR. Advances in the diagnosis and management of myeloma. Semin Hematol 1992; 29: 24.Google Scholar
Hamblin, TJ. The kidney in myeloma. BMJ 1986; 292: 2.Google Scholar
Joshua, DE. Multiple myeloma: the present and the future. Med J Aust 2005; 183: 344.Google Scholar
Joshua, DE, Bryant, C, Dix, C, et al. Biology and therapy of multiple myeloma. Med J Aust 2019; 210: 375.Google Scholar
Joshua, DE, Gibson, J. Multiple myeloma – evolving concepts of biology and treatment. Aust NZ J Med 2000; 30: 311.Google Scholar
Kintzer, JS, Rosenow, EC, Kyle, RA. Thoracic and pulmonary abnormalities in multiple myeloma. Arch Intern Med 1978; 138: 727.Google Scholar
Kwaan, HC, ed. The hyperviscosity syndromes. Semin Thromb Hemost 2003; 29: 433.Google Scholar
Kyle, RA. Amyloidosis: review of 236 cases. Medicine 1975; 54: 271.Google Scholar
Kyle, RA. ‘Benign’ monoclonal gammopathy. Mayo Clin Proc 1993; 68: 26.Google Scholar
Kyle, RA, Gertz, MA, Greipp, PR, et al. A trial of three regimens for primary amyloidosis. N Engl J Med 1997; 336: 1202.Google Scholar
Kyle, RA, Rajkumar, SV. Multiple myeloma. N Engl J Med 2004; 351: 1860.Google Scholar
Kyle, RA, Remstein, ED, Therneau, TM, et al. Clinical course and prognosis of smouldering (asymptomatic) multiple myeloma. N Engl J Med 2007; 356: 2582.Google Scholar
Kyle, RA, Therneau, TM, Rajkumar, SV, et al. Prevalence of monoclonal gammopathy of undetermined significance. N Engl J Med 2006; 354: 1362.Google Scholar
McGrath, MA, Penny, R. Paraproteinemia: blood hyperviscosity and clinical manifestations. J Clin Invest 1976; 58: 1155.Google Scholar
Mollee, P, Renaut, P, Gottlieb, D, et al. How to diagnose amyloidosis. Intern Med J 2014; 44: 7.Google Scholar
Norden, CW. Infections in patients with multiple myeloma. Arch Intern Med 1980; 140:1150.Google Scholar
Pepys, MB. Amyloidosis: some recent developments. Q J Med 1988; 67: 283.Google Scholar
Picken, MM, Herrera, GA, Dogan, A, eds. Amyloid and Related Disorders. 2nd edition. New York: Springer. 2015.Google Scholar
Richardson, P, Hideshima, T, Anderson, KC. An update of novel therapeutic approaches for multiple myeloma. Curr Treat Options Oncol 2004; 5: 227.Google Scholar
Smith, A, Wisloff, F, Samson, D. Guidelines on the diagnosis and management of multiple myeloma 2005. Br J Haematol 2006; 132: 410.Google Scholar
Solomon, A, Weiss, DT, Kattine, AA. Nephrotoxic potential of Bence Jones proteins. N Engl J Med 1991; 324: 1845.Google Scholar
Talaulikar, D, Tam, CS, Joshua, D, et al. Treatment of patients with Waldenstrom macroglobulinaemia: clinical practice guidelines from the Myeloma Foundation of Australia Medical and Scientific Advisory Group. Intern Med J 2017; 47: 35.Google Scholar

Bibliography

Anderson, DW, Ellenberg, JH, Leventhal, CM, et al. Revised estimate of the prevalence of multiple sclerosis in the United States. Ann Neurol 1992; 31: 333.Google Scholar
Broadley, SA, Barnett, MH, Boggild, M, et al. A new era in the treatment of multiple sclerosis. Med J Aust 2015; 203: 139.Google Scholar
Dhib-Jalbut, S, McFarlin, DE. Immunology of multiple sclerosis. Ann Allergy 1990; 64: 433.Google Scholar
Ebers, GC. Optic neuritis and multiple sclerosis. Arch Neurol 1985; 42: 702.Google Scholar
Editorial. Where to hit MS. Lancet 1991; 337: 765.Google Scholar
European Study Group on interferon beta-1b in secondary progressive MS. Placebo-controlled multicentre randomised trial of interferon beta-1b in treatment of secondary progressive multiple sclerosis. Lancet 1998; 352: 1491.Google Scholar
Hauser, SL, Cree, BAC. Treatment of multiple sclerosis: a review. Am J Med 2020; 133: 1380.Google Scholar
Jacobs, LD, Beck, RW, Simon, JH, et al. Intramuscular interferon beta-1a therapy initiated during the first demyelinating event in multiple sclerosis. N Engl J Med 2000; 343: 898.Google Scholar
Kilpatrick, TJ, Soilu-Hanninen, M. New treatments for multiple sclerosis. Aust NZ J Med 1999; 29: 801.Google Scholar
Lucchinetti, C, Brueck, W, Parisi, J, et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 2000; 47: 707.Google Scholar
McDonald, WI. Multiple sclerosis: diagnostic optimism. BMJ 1992; 304: 1259.Google Scholar
McDonald, WI, Compston, DAS, Edan, G, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 2001; 50: 121.Google Scholar
Pender, MP. Recent advances in the understanding, diagnosis and management of multiple sclerosis. Aust NZ J Med 1996; 26:157.Google Scholar
Pender, MP. Multiple sclerosis. Med J Aust 2000; 172: 556.Google Scholar
Pender, MP, Wolfe, NP. Prevention of autoimmune attack and disease progression in multiple sclerosis: current therapies and future prospects. Intern Med J 2002; 32: 554.Google Scholar
PRISMS Study Group. Randomized double-blind placebo-controlled study of interferon beta-1a in relapsing/remitting multiple sclerosis. Lancet 1998; 352: 1498.Google Scholar
Ron, MA, Feinstein, A. Multiple sclerosis and the mind. J Neurol Neurosurg Psychiatry 1992; 55: 1.Google Scholar
Sedal, L, Wilson, IB, McDonald, EA. Current management of relapsing-remitting multiple sclerosis. Intern Med J 2014; 44: 950.Google Scholar
Shaw, C, Chapman, C, Butzkueven, H. How to diagnose multiple sclerosis and what are the pitfalls. Intern Med J 2009; 30: 792.Google Scholar
Thompson, AJ, Banwell, BL, Barkhof, F, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 2018; 17: 162.Google Scholar
Thompson, AJ, Baranzini, SE, Geurts, J, et al. Multiple sclerosis. Lancet 2018; 391: 1622.Google Scholar
Tyler, KL. Human herpesvirus 6 and multiple sclerosis: the continuing conundrum. J Infect Dis. 2003; 187: 1360.Google Scholar

Bibliography

Dent, KM, Dunn, DM, Niederhausern, AC, et al. Improved molecular diagnosis of dystrophinophies in an unselected clinical cohort. Am J Med 2005; 134: 295.Google Scholar
Gregorevic, P, Chamberlain, JS. Gene therapy for muscular dystrophy: a review of promising progress. Expert Opin Biol Ther 2003; 3: 803.Google Scholar
Griggs, RC, Moxley, RT, Mendell, JR, et al. Duchenne dystrophy: randomized, controlled trial of prednisone (18 months) and azathioprine (12 months). Neurology 1993; 43: 520.Google Scholar
Harper, PS. Myotonic Dystrophy. 3rd edition. London: WB Saunders. 2001.Google Scholar
Hlaing, PM, Scott, IA, Jackson, RV. Dysregulation of calcium metabolism in type 1 myotonic dystrophy. Intern Med J 2019; 49: 1412.Google Scholar
Mankodi, A, Thornton, CA. Myotonic syndromes. Curr Opin Neurol 2002; 15: 545.Google Scholar
Moser, H. Duchenne muscular dystrophy: pathogenetic aspects and genetic prevention. Hum Genet 1984; 66: 17.Google Scholar

Bibliography

Barbato, MP. Poisoning from accidental ingestion of mushrooms. Med J Aust 1993; 158: 842.Google Scholar
Diaz, JH. Evolving global epidemiology, syndromic classification, general management, and prevention of unknown mushroom poisonings. Crit Care Med 2005; 33: 419.Google Scholar
Klein, AS, Hart, J, Brems, JJ, et al. Amanita poisoning: treatment and the role of liver transplantation. Am J Med 1989; 86: 187.Google Scholar
Mitchell, DH. Amanita mushroom poisoning. Annu Rev Med 1980; 31: 51.Google Scholar
Mount, P, Harris, G, Sinclair, R, et al. Acute renal failure following ingestion of wild mushrooms. Intern Med J 2002; 32: 187.Google Scholar
Nicholson, FB, Korman, MG. Death from Amanita poisoning. Aust NZ J Med 1997; 27: 448.Google Scholar
Rumack, BH, Spoerke, DG, eds. Handbook of Mushroom Poisoning: Diagnosis and Treatment. 2nd edition. Boca Raton: CRC Press. 1994.Google Scholar

Bibliography

Berrouschot, J, Baumann, I, Kalischewski, P, et al. Therapy of myasthenic crisis. Crit Care Med 1997; 25: 1228.Google Scholar
Clamon, GH, Evans, WK, Shepherd, FA, et al. Myasthenic syndrome and small cell cancer of the lung: variable response to antineoplastic therapy. Arch Intern Med 1984; 144: 999.Google Scholar
Drachman, DB. Myasthenia gravis. N Engl J Med 1994; 330: 1797.Google Scholar
Gilhus, NE. Myasthenia gravis. N Engl J Med 2016; 375: 2570.Google Scholar
Gilhus, NE, Verschuuren, JJ. Myasthenia gravis: subgroup classification and therapeutic strategies. Lancet Neurol 2015; 14: 1023.Google Scholar
Gracey, DR, Divertie, MB, Howard, FM. Mechanical ventilation for respiratory failure in myasthenia gravis. Mayo Clin Proc 1983; 58: 597.Google Scholar
Gronseth, GS, Bahron, RJ. Practice parameter; thymectomy for auto-immune myasthenia gravis (an evidence-based review). Neurology 2000; 55: 7.Google Scholar
O’Neill, JH, Murray, NM, Newsom-Davis, J. The Lambert-Eaton myasthenic syndrome. Brain 1988; 111: 577.Google Scholar
Segredo, V, Caldwell, J, Matthay, M, et al. Persistent paralysis in critically ill patients after long-term administration of vecuronium. N Engl J Med 1992; 327: 524.Google Scholar
Seybold, ME. Myasthenia gravis: a clinical and basic science review. JAMA 1983; 250: 2516.Google Scholar
Sokoll, M, Gergis, S. Antibiotics and neuromuscular function. Anesthesiology 1981; 55: 148.Google Scholar
Swift, TR. Disorders of neuromuscular transmission other than myasthenia gravis. Muscle Nerve 1981; 4: 334.Google Scholar
Tonner, DR, Schlechte, JA. Neurologic complications of thyroid and parathyroid disease. Med Clin North Am 1993; 77: 251.Google Scholar
Varelas, PN, Chua, HC, Natterman, J, et al. Ventilatory care in myasthenia crisis: assessing the baseline adverse event rate. Crit Care Med 2002; 30: 2663.Google Scholar
Vincent, A, Palace, J, Hilton-Jones, D. Myasthenia gravis. Lancet 2001; 357: 2122.Google Scholar
Wolfe, GI, Kaminski, HJ, Aban, IB, et al. Randomized trial of thymectomy in myasthenia gravis. N Engl J Med 2016; 375: 511.Google Scholar
Wright, EA, McQuillen, MP. Antibiotic-induced neuromuscular blockade. Ann NY Acad Sci 1971; 183: 358.Google Scholar

Bibliography

Boyd, SC, Athan, E, Friedman, MD, et al. Epidemiology, clinical features and diagnosis of Mycobacterium ulcerans in an Australian population. Med J Aust 2012; 196: 341.Google Scholar
O’Brien, DP, Athan, E, Blasdell, K, et al. Tackling the worsening epidemic of Buruli ulcer in Australia in an information void: time for an urgent scientific response. Med J Aust 2018; 208: 287.Google Scholar
WHO. Treatment of Mycobacterium ulcerans Disease (Buruli Ulcer): Guidance for Health Workers. Geneva: WHO. 2012.Google Scholar

Bibliography

Baer, AN. Advances in the therapy of idiopathic inflammatory myopathies. Curr Opin Rheumatol 2006; 18: 236.Google Scholar
Batchelor, PM, Taylor, LP, Thaler, HT, et al. Steroid myopathy in cancer patients. Neurology 1997; 48: 1234.Google Scholar
Bolton, CF. Critical illness polyneuropathy and myopathy. Crit Care Med 2001; 29: 2388.Google Scholar
Chad, DA, Lacomis, D. Critically ill patients with newly acquired weakness: the clinicopathological spectrum. Ann Neurol 1994; 35: 257.Google Scholar
De Jonghe, B, Cook, D, Sharshar, T, et al. Acquired neuromuscular disorders in critically ill patients: a systematic review. Intens Care Med 1998; 24: 1242.Google Scholar
de Letter, M-ACJ, Schmitz, PIM, Visser, LH, et al. Risk factors for the development of polyneuropathy and myopathy in critically ill patients. Crit Care Med 2001; 29: 2281.Google Scholar
Douglass, JA, Tuxen, DV, Horne, M, et al. Myopathy in severe asthma. Am Rev Respir Dis 1992; 146: 157.Google Scholar
Hall, JB, Griffiths, RD, eds. ICU-acquired weakness: proceedings of a round table conference in Brussels, Belgium, March 2009. Crit Care Med 2009; 37: S295.Google Scholar
Hamilton-Craig, I. Statin-associated myopathy. Med J Aust 2001; 175: 486.Google Scholar
Hansen-Flaschen, J. Neuromuscular complications of critical illness. Pulm Perspect 1997; 14(4): 1.Google Scholar
Hund, E. Myopathy in critically ill patients. Chest 1999; 27: 2544.Google Scholar
Joffe, MM, Love, LA, Leff, RL, et al. Drug therapy of idiopathic inflammatory myopathies: predictors of response to prednisone, azathioprine, and methotrexate and a comparison of their efficacy. Am J Med 1993; 94: 379.Google Scholar
Latronico, N. Neuromuscular alterations in the critically ill patient: critical illness myopathy, critical illness neuropathy, or both? Intens Care Med 2003; 29: 1411.Google Scholar
Latronico, N, Fenzi, F, Recupero, D, et al. Critical illness myopathy and neuropathy. Lancet 1996; 347: 1579.Google Scholar
Layzer, RB. McArdle’s disease in the 1980s. N Engl J Med 1985; 312: 370.Google Scholar
Limaye, VS, Blumbergs, P, Roberts-Thomson, PJ. Idiopathic inflammatory myopathies. Intern Med J 2009; 39: 179.Google Scholar
Maramattom, BV, Wijdicks, EFM. Acute neuromuscular weakness in the intensive care unit. Crit Care Med 2006; 34: 2835.Google Scholar
Mastaglia, Phillips BA. Idiopathic inflammatory myopathies: epidemiology, classification and diagnostic criteria. Rheum Dis Clin North Am 2002; 28: 723.Google Scholar
Miller, FW, Schiffenbauer, A. Idiopathic inflammatory myopathies. In: Scientific American Medicine. Rheumatology. Hamilton: Dekker Medicine. 2020.Google Scholar
Nates, JL, Cooper, DJ, Day, B, et al. Acute weakness syndromes in critically ill patients – a reappraisal. Anaesth Intens Care 1997; 25: 502.Google Scholar
Polkey, MI, Moxham, J. Clinical aspects of respiratory muscle dysfunction in the critically ill. Chest 2001; 119: 926.Google Scholar
Rosenson, RS. Current overview of statin-induced myopathy. Am J Med 2004; 116: 408.Google Scholar
Schweickert, WD, Hall, J. ICU-acquired weakness. Chest 2007; 131: 1541.Google Scholar
Segredo, V, Caldwell, JE, Matthay, MA, et al. Persistent paralysis in critically ill patients after long-term administration of vecuronium. N Engl J Med 1992; 327: 524.Google Scholar
Sieb, JP, Gillensen, T. Iatrogenic and toxic myopathies. Muscle Nerve 2003; 27: 142.Google Scholar
Tonner, DR, Schlechte, JA. Neurologic complications of thyroid and parathyroid disease. Med Clin North Am 1993; 77: 251.Google Scholar

Bibliography

Ashton, C, Paramalingam, S, Stevenson, B, et al. Idiopathic inflammatory myopathies: a review. Intern Med J 2021; 51: 845.Google Scholar
Hirschmann, JV. Fungal, bacterial, and viral infections of the skin. In: Scientific American Medicine. Dermatology. Hamilton: Dekker Medicine. 2020.Google Scholar
Limaye, VS, Blumbergs, P, Roberts-Thomson, PJ. Idiopathic inflammatory myopathies. Intern Med J 2009; 39: 179.Google Scholar
Mastaglia, FL, Phillips, BA. Idiopathic inflammatory myopathies: epidemiology, classification and diagnostic criteria. Rheum Dis Clin North Am 2002; 28: 723.Google Scholar
Miller, FW. Classification and prognosis of inflammatory muscle disease. Rheum Dis Clin North Am 1994; 20: 811.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • M
  • J. F. Cade, University of Melbourne
  • Book: Critical Care Compendium
  • Online publication: 05 May 2023
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • M
  • J. F. Cade, University of Melbourne
  • Book: Critical Care Compendium
  • Online publication: 05 May 2023
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • M
  • J. F. Cade, University of Melbourne
  • Book: Critical Care Compendium
  • Online publication: 05 May 2023
Available formats
×