Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-04T08:10:09.928Z Has data issue: false hasContentIssue false

9 - Toward an embodied approach to inferences in comprehension: the case of action language

Published online by Cambridge University Press:  05 May 2015

Edward J. O'Brien
Affiliation:
University of New Hampshire
Anne E. Cook
Affiliation:
University of Utah
Robert F. Lorch, Jr
Affiliation:
University of Kentucky
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J. R. (1983). The Architecture of Cognition. Cambridge, MA: Harvard University Press.Google Scholar
Aravena, P., Hurtado, E., Riveros, R., Cardona, J. F., Manes, F., & Ibáñez, A. (2010). Applauding with closed hands: neural signature of action-sentence compatibility effects. PLoS ONE,. 5, 114.CrossRefGoogle ScholarPubMed
Aziz-Zadeh, L., Wilson, S. M., Rizzolatti, G., & Iacoboni, M. (2006). Congruent embodied representations for visually presented actions and linguistic phrases describing actions. Current Biology, 16,1818–23.CrossRefGoogle ScholarPubMed
Barsalou, L. (1999). Perceptual symbol system. Behavioral and Brain Sciences, 22, 577660.CrossRefGoogle Scholar
Barsalou, L., Santos, A., & Simmons, W. K., & Wilson, C. D. (2008). Language and simulation in conceptual processing. In de Vega, M., Glenberg, A., & Graesser, A. (eds.). Symbols, and Embodiment. Debates on Meaning and Cognition (pp. 245–84). New York: Oxford University Press.Google Scholar
Borreggine, K. L., & Kaschak, M. P. (2006). The action–sentence compatibility effect: it’s all in the timing. Cognitive Science, 30, 1097–112.CrossRefGoogle ScholarPubMed
Britton, B. K., van Dussen, L., Glynn, S. M., & Hemphill, D. (1990). The impact of inferences on instructional text. In Graesser, A. C. & Bower, G. H. (eds.). Inferences and Text Comprehension. San Diego: Academic Press.Google Scholar
Buccino, G., Riggio, L., Melli, G., Binkofski, F., Gallese, V., & Rizzolatti, G. (2005). Listening to action-related sentences modulates the activity of the motor system: a combined TMS and behavioural study. Cognitive Brain Research, 24, 355–63.CrossRefGoogle Scholar
Cook, A. E., Limber, J. E., & O’Brien, E. J. (2001). Situation-based context and the availability of predictive Inferences. Journal of Memory and Language, 44, 220–34.CrossRefGoogle Scholar
Cramer, S. C., Weisskoff, R. M, Schaechter, J. D., Nelles, G., Foley, M., Finklestein, S. P., & Rosen, B. R. (2002). Motor cortex activation is related to force of squeezing. Human Brain Mapping, 16(4): 197205.CrossRefGoogle ScholarPubMed
Damasio, A. R. (1994). Descartes’ Error. Emotion, Reason and the Human Brain. New York: Putnam’s Sons.Google Scholar
Denis, M., Daniel, M. P., Fontaine, S., & Pazzaglia, F. (2001). Language, spatial cognition, and navigation. In Denis, M., Logie, R. H., Cornoldi, C., de Vega, M., & Engelkamp, J. (eds.). Imagery, Language, and Visuo-spatial Thinking (pp. 137–60). New York: Psychology Press.Google Scholar
de Vega, M. (2008). Levels of embodiment: from pointing to counterfactuals. In de Vega, M., Glenberg, A. M., & Graesser, A. C. (eds.). Symbols and Embodiment. Debates on Meaning and Cognition (pp. 285308). New York: Oxford University Press.CrossRefGoogle Scholar
de Vega, M., Graesser, A., & Glenberg, A. (2008). Reflecting on the debate. In de Vega, M., Glenberg, A., & Graesser, A. (eds.). Symbols and Embodiment: Debates on Meaning and Cognition (pp. 397440). New York: Oxford University Press.CrossRefGoogle Scholar
de Vega, M., León, I., Hernández, J.A., Valdés, M., Padrón, I., & Ferstl, E.C. (2014). Action sentences activate sensory-motor regions in the brain independently of their status of reality. Journal of Cognitive Neuroscience.CrossRefGoogle ScholarPubMed
de Vega, M., Moreno, V., & Castillo, M. D. (2013). The comprehension of action-related sentences may cause interference rather than facilitation on matching actions. Psychological Research, 77, 2030.CrossRefGoogle ScholarPubMed
de Vega, M., Robertson, D. A., Glenberg, A. M., Kaschak, M. P., & Rinck, M. (2004). On doing two things at once: temporal constraints on actions in language comprehension. Memory & Cognition, 32, 1033–43.CrossRefGoogle ScholarPubMed
de Vega, M., & Urrutia, M. (2011). Counterfactual sentences activate embodied meaning: an action-sentence compatibility effect study. Journal of Cognitive Psychology, 23, 962–73.CrossRefGoogle Scholar
Dowty, D. (1986). The effects of aspectual class on the temporal structure of discourse: semantics or pragmatics? Linguistic Philosophy, 9, 3761.CrossRefGoogle Scholar
Garrod, S., & Pickering, M. J. (2004). Why is conversation so easy? Trends in Cognitive Sciences, 8, 811.CrossRefGoogle ScholarPubMed
Glenberg, A. M., & Kaschak, M. P. (2002). Grounding language in action. Psychonomic Bulletin & Review, 9, 558–65.CrossRefGoogle ScholarPubMed
Glenberg, A. M., Sato, M., Cattaneo, L., Riggio, L., Palumbo, D., & Buccino, G. (2008). Processing abstract language modulates motor system activity. Quarterly Journal of Experimental Psychology, 61, 905–19.CrossRefGoogle ScholarPubMed
Goldberg, R., Perfetti, C., & Schneider, W. (2006). Perceptual knowledge retrieval activates sensory brain regions. Journal of Neuroscience, 26, 4917–21.CrossRefGoogle ScholarPubMed
Graesser, A. C., Singer, M., & Trabasso, T. (1994). Constructing inferences during narrative text comprehension. Psychological Review, 101, 371–95.CrossRefGoogle ScholarPubMed
Hamzei, F., Rijntjes, M., Dettmers, C., Glauche, V. Weiller, C., & Buëchel, C (2003). The human action recognition system and its relationship to Broca’s area: an fMRI study. NeuroImage, 19, 637–44.CrossRefGoogle ScholarPubMed
Harnad, S. (1990). The symbol grounding problem. Physica, 42, 335–46.Google Scholar
Havas, D. A., Glenberg, A. M., & Rinck, M. (2007). Emotion simulation during language comprehension. Psychonomic Bulletin & Review, 14, 436–41.CrossRefGoogle ScholarPubMed
Kintsch, W. (1988). The role of knowledge in discourse comprehension: a construction-integration model. Psychological Review, 95, 163–82.CrossRefGoogle ScholarPubMed
Kintsch, W. (1998). Comprehension: A Paradigm for Cognition. New York: Cambridge University Press.Google Scholar
Kintsch, W. (2008). Symbol systems and perceptual representations. In de Vega, M., Glenberg, A., & Graesser, A. (eds.). Symbols and Embodiment: Debates on Meaning and Cognition (pp. 397440). New York: Oxford University Press.Google Scholar
Kintsch, W., & Van Dijk, T. A. (1978). Toward a model of text comprehension and production. Psychological Review, 85, 363–94.CrossRefGoogle Scholar
Lakoff, G., & Johnson, M. (1980). Metaphors We Live By. University of Chicago Press.Google Scholar
McKoon, G., & Ratcliff, R. (1988). Contextually relevant aspects of meaning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 14, 331–43.Google ScholarPubMed
McKoon, G., & Ratcliff, R. (1992). Inference during reading. Psychological Review, 99, 440–66.CrossRefGoogle ScholarPubMed
Moody, C. L., & Gennari, S. P. (2010). Effects of implied physical effort in sensory-motor and pre-frontal cortex during language comprehension. NeuroImage, 49, 782–93.CrossRefGoogle ScholarPubMed
Moreno, I. Z., de Vega, M., & León, I. (2013a). Understanding action language modulates oscillatory mu and beta rhythms in the same way as observing actions. Brain and Cognition, 82, 236–42.CrossRefGoogle Scholar
Moreno, I. Z., de Vega, M., León, I., & Bastiaansen, M. (2013b). The time course of motor resonance during the comprehension of action-sentences. A time-frequency analysis of mu rhythms modulation. Unpublished manuscript.Google Scholar
Myers, J. L., & O’Brien, E. J. (1998). Accessing the discourse representation during reading. Discourse Processes, 26(2–3), 131–57.CrossRefGoogle Scholar
Pecher, D., Zeelenberg, R., & Barsalou, L. W. (2003). Verifying properties from different modalities for concepts produces switching costs. Psychological Science, 14, 119–24.CrossRefGoogle ScholarPubMed
Pineda, J. (2005). The functional significance of mu rhythms: translating “seeing” and “hearing” into “doing”. Brain Research Reviews, 50, 5768.CrossRefGoogle Scholar
Pulvermüller, F. (2008). Grounding language in the brain. In de Vega, M., Glenberg, A. M., & Graesser, A. C. (eds.). Symbols and Embodiment. Debates on Meaning and Cognition (pp. 85116). New York: Oxford University Press.CrossRefGoogle Scholar
Pulvermüller, F., Hauk, O., Nikulin, V. V., & Ilmoniemi, R. J. (2005). Functional links between motor and language systems. European Journal of Neuroscience, 21, 793–97.CrossRefGoogle ScholarPubMed
Pulvermüller, F., Shtyrov, Y., & Ilmoniemi, R. J. (2003). Spatiotemporal patterns of neural language processing: an MEG study using minimum-norm current estimates. Neuroimage, 20, 1020–5.CrossRefGoogle Scholar
Rizzolatti, G., & Arbib, M. A. (1998). Language within our grasp. Trends in Neuroscience, 21, 188–94.CrossRefGoogle ScholarPubMed
Rumelhart, D. E. (1980). Schemata: the building blocks of cognition. In Spiro, R. et al. (eds.). Theoretical Issues in Reading Comprehension. Mahwah, NJ: Erlbaum.Google Scholar
Santana, E., & de Vega, M. (2011). Orientational metaphors are embodied … and so are their literal counterparts. Frontiers in Psychology, 90(2), 112.Google Scholar
Santana, E., & de Vega, M. (2013). An ERP study of motor compatibility effects in action language. Brain Research, 1526, 7183.CrossRefGoogle ScholarPubMed
Searle, J. R. (1980). Minds, brains, & programs. Behavioral and Brain Sciences, 3, 417–57.CrossRefGoogle Scholar
Tettamanti, M., Manenti, R., Della Rosa, P. A., Falini, A., Perani, D., Cappa, S. F., & Moro, A. (2008). Negation in the brain: modulating action representations. Neuroimage, 43, 358–67.CrossRefGoogle ScholarPubMed
Urrutia, M., Gennari, S. P., & de Vega, M. (2012). Counterfactuals in action: an fMRI study of counterfactual sentences describing physical effort. Neuropsychologia, 50, 3663–72.CrossRefGoogle ScholarPubMed
Van den Broek, P. J. (1990). Causal inferences and the comprehension of narrative texts. In Graesser, A. C. & Bower, G. H. (eds.). Inferences and Text Comprehension. San Diego: Academic Press.Google Scholar
Van Elk, M., van Schie, H. T., Zwaan, R. A., & Bekkering, H. (2010). The functional role of motor resonance in language processing: motor-cortical oscillations support lexical-semantic retrieval. Neuroimage, 50, 665–77.CrossRefGoogle ScholarPubMed
Zwaan, R. A. (1996). Processing narrative time shifts. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 1196–207.Google Scholar
Zwaan, R. A. (2004). The immersed experiencer: toward an embodied theory of language comprehension. In Ross, B. H. (ed.), The Psychology of Learning and Motivation. Vol. XLIV (pp. 3562). New York: Academic Press.Google Scholar
Zwaan, R. A., & Radvansky, G. A. (1998). Situation models in language and memory. Psychological Bulletin, 123, 162–85.CrossRefGoogle Scholar
Zwaan, R. A., & Taylor, L. J. (2006). Seeing, acting, understanding: motor resonance in language comprehension. Journal of Experimental Psychology: General, 135, 111.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×