Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-21T08:54:44.263Z Has data issue: false hasContentIssue false

22 - Comets

from IV - Solar system

Published online by Cambridge University Press:  05 May 2015

Ludmilla Kolokolova
Affiliation:
University of Maryland, College Park
James Hough
Affiliation:
University of Hertfordshire
Anny-Chantal Levasseur-Regourd
Affiliation:
Université de Paris VI (Pierre et Marie Curie)
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

A’Hearn, M. F., Millis, R. L., Schleicher, D. G., Osip, D. J., and Birch, P. V. (1995). The ensemble properties of comets: Results from narrowband photometry of 85 comets, 1976–1992. Icarus, 118, 223270.CrossRefGoogle Scholar
A’Hearn, M. F., Belton, M. J. S., Delamere, W. A.et al. (2005). Deep impact: Excavating comet Tempel 1. Science, 310(5746), 258264.Google Scholar
Arago, F. (1854–1857). Astronomie Populaire, Vols. 1–4. Paris: Gide et Baudry.Google Scholar
Arpigny, C. (1995). Spectra of comets: Ultraviolet and optical regions. ASP Conference Series, 81, 362382.Google Scholar
Bagnulo, S., Tozzi, G. P., Boehnhardt, H., Vincent, J.-B., and Muinonen, K. (2010). Polarimetry and photometry of the peculiar main-belt object 7968 = 133P/Elst–Pizarro. Astronomy and Astrophysics, 514(A99), 13 pp.CrossRefGoogle Scholar
Boehnhardt, H. and ESO DI team (2005). The Deep Impact campaign at ESO: Dust and nucleus characterization. In IAU Symposium ACM-2005, Vol. 229. Buzios, Brazil.Google Scholar
Boehnhardt, H., Tozzi, G., Bagnulo, S.et al. (2008). Photometry and polarimetry of the nucleus of comet 2P/Encke. Astronomy and Astrophysics, 489, 13371343.CrossRefGoogle Scholar
Bonev, T., Boehnhardt, H., and Borisov, G. (2008). Broadband imaging and narrowband polarimetry of comet 73P/Schwassmann–Wachmann 3, components B and C, on 3, 4, 8, and 9 May 2006. Astronomy and Astrophysics, 480, 277287.CrossRefGoogle Scholar
Brooke, T. Y., Knacke, R. F., and Joyce, R. R. (1987). The near infrared polarization and color of comet P/Halley. Astronomy and Astrophysics, 187, 621624.Google Scholar
Brown, M. E., Bouchez, A. H., Spinrad, H., and Johns-Krull, C. M. (1996). A high-resolution catalog of cometary emission lines. The Astronomical Journal, 112, 11971202.CrossRefGoogle Scholar
Brownlee, D. E., Tomandl, D. A., and Olszewski, E. (1977). Interplanetary dust – A new source of extraterrestrial material for laboratory studies. In Proceedings of the Lunar Science Conference, Vol. 1. New York: Pergamon Press, Inc., pp. 149160.Google Scholar
Chernova, G. P., Kiselev, N. N., and Jockers, K. (1993). Polarimetric characteristic of dust particles as observed in 13 comets: Comparison with asteroids. Icarus, 103, 144158.CrossRefGoogle Scholar
Clarke, D. (1971). Polarization measurements of the head of comet Bennett (1969i). Astronomy and Astrophysics, 14, 9094.Google Scholar
Dobrovolsky, O. V. (1966). Comets. Moscow: Nauka.Google Scholar
Dobrovolsky, O. V., Kiselev, N. N., and Chernova, G. P. (1986). Polarimetry of comets – A review. Earth, Moon, and Planets, 34, 189200.CrossRefGoogle Scholar
Dolginov, A. Z. and Mytrophanov, I. G. (1976). Orientation of cosmic dust grains. Astrophysics and Space Science, 43, 291317.CrossRefGoogle Scholar
Dollfus, A. and Suchail, J.-L. (1987). Polarimetry of grains in the coma of P/Halley I. Observations. Astronomy and Astrophysics, 187, 669688.Google Scholar
Dollfus, A., Bastien, P., Le Borgne, J. L., Levasseur-Regourd, A. C., and Mukai, T. (1988). Optical polarimetry of P/Halley: Synthesis of the measurements in the continuum. Astronomy and Astrophysics, 206, 348356.Google Scholar
Draine, B. T. and Flatau, P. J. (1994). Discrete-dipole approximation of scattering calculations. Journal of the Optical Society of America A, Optics, image science, and vision, 11, 14911499. Available online at: www.astro.princeton.edu/~draine/DDSCAT.html (accessed January 14, 2015).CrossRefGoogle Scholar
Eaton, N., Scarrot, S., and Warren–Smith, R. F. (1988). Polarization images of the inner regions of comet Halley. Icarus, 76, 270278.CrossRefGoogle Scholar
Eaton, N., Scarrott, S. M., and Wolstencroft, R. D. (1991). Polarization studies of Comet Okazaki–Levy–Rudenko. Monthly Notices of the Royal Astronomical Society, 250, 654656.CrossRefGoogle Scholar
Eaton, N., Scarrott, S. M., and Gledhill, T. M. (1992). Polarization studies of Comet Austin. Monthly Notices of the Royal Astronomical Society, 258, 384386.CrossRefGoogle Scholar
Elvius, A. (1958). Preliminary results of polarization measurements in comets. Arkiv för Astronomi, 2, 195197.Google Scholar
Farnham, T. L., Schleicher, D. G., and A’Hearn, M. F. (2000). The HB narrowband comet filters: standard stars and calibrations. Icarus, 147, 180204.CrossRefGoogle Scholar
Farnham, T. L., Schleicher, D. G., Woodney, L. M.et al. (2001). Imaging and photometry of comet C/1999 S4 (LINEAR) before perihelion and after breakup. Science, 292(5520), 13481354.CrossRefGoogle Scholar
Festou, M. C., Keller, H. U., and Weaver, H. A. (2004). A brief conceptual history of cometary science. In Festou, M., Keller, H. U., and Weaver, H. A., eds., Comets II. Tucson: University of Arizona Press, pp. 316.CrossRefGoogle Scholar
Flynn, G. J. (2008). Physical, chemical, and mineralogical properties of comet 81P/Wild 2 particles collected by Stardust. Earth, Moon, and Planets, 102, 447459.CrossRefGoogle Scholar
Fomenkova, M. (1999). On the organic refractory component of cometary dust. Space Science Reviews, 90, 109114.CrossRefGoogle Scholar
Furusho, R., Ikeda, Y., Kinoshita, D.et al. (2007). Imaging polarimetry of Comet 9P/Tempel before and after the Deep Impact. Icarus, 190(2), 454458.CrossRefGoogle Scholar
Furusho, R., Arai, A., and Uemura, K. (2008). Polarimetry of 17P/Holmes. In Proceedings of the AOGS Conference, abstract PS10, A018.Google Scholar
Ganesh, S., Joshi, U. C., Baliyan, K. S., and Deshpande, M. R. (1998). Polarimetric observations of the comet Hale–Bopp. Astronomy and Astrophysics Supplement, 129, 489493.CrossRefGoogle Scholar
Gehrels, T. (1974). Introduction and overview. In Gehrels, T., ed., Planets, Stars, and Nebulae Studied with Photopolarimetry. Tucson: University of Arizona Press, pp. 344.Google Scholar
Gehrels, T. (1977). The physical basis of the polarimetric method for deriving asteroid albedos. In Comets, Asteroids, Meteorites: Interrelations, Evolution and Origins. Proceedings of the 39th International Colloquium. Toledo, Ohio: University of Toledo, pp. 253256.Google Scholar
Greenberg, J. M. (1982). What are comets made of − A model based on interstellar dust. In Wilkening, L., ed., Comets. Tucson: University of Arizona Press, pp. 131163.CrossRefGoogle Scholar
Grynko, Ye., Jockers, K., and Schwenn, R. (2004). The phase curve of cometary dust: Observations of comet 96P/Machholz 1 at large phase angle with the SOHO LASCO C3 coronagraph. Astronomy and Astrophysics, 427, 755761.CrossRefGoogle Scholar
Guirado, D. and Moreno, F. (2008). Monte Carlo modeling of radiative transfer in comets: A search for mechanisms giving circular polarization. In Asteroids, Comets, Meteors. Houston: LPI. LPI Contribution No. 1405, id. 8175.Google Scholar
Guirado, D., Hovenier, J. W., and Moreno, F. (2007). Circular polarization of light scattered by asymmetrical particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 106, 6373.CrossRefGoogle Scholar
Gustafson, B. Å. S. and Kolokolova, L. (1999). A systematic study of light scattering by aggregate particles using the microwave analog technique: Angular and wavelength dependence of intensity and polarization. Journal of Geophysical Research, 104, 3171131720.Google Scholar
Hadamcik, E. and Levasseur-Regourd, A. C. (2003a). Dust coma of comet C/1999 S4 (LINEAR): Imaging polarimetry during nucleus disruption. Icarus, 166, 188194.CrossRefGoogle Scholar
Hadamcik, E. and Levasseur-Regourd, A. C. (2003b). Imaging polarimetry of cometary dust: different comets and phase angles. Journal of Quantitative Spectroscopy and Radiative Transfer, 79−80, 661678.CrossRefGoogle Scholar
Hadamcik, E. and Levasseur-Regourd, A. C. (2003c). Dust evolution of comet C/1995 O1 (Hale–Bopp) by imaging polarimetric observations. Astronomy and Astrophysics, 403, 757768.CrossRefGoogle Scholar
Hadamcik, E. and Levasseur-Regourd, A. C. (2009). Optical properties of dust from Jupiter family comets. Planetary and Space Science, 57, 11181132.CrossRefGoogle Scholar
Hadamcik, E., Levasseur-Regourd, A. C., and Renard, J. B. (1997). CCD polarimetric imaging of comet Hale–Bopp (C/1995 O1). Earth, Moon, and Planets, 78(1/3), 365371.CrossRefGoogle Scholar
Hadamcik, E., Renard, J.-B., Worms, J.-C., Levasseur-Regourd, A. C., and Masson, M. (2002). Polarization of light scattered by fluffy particles (PROGRA2 Experiment). Icarus, 155, 497508.CrossRefGoogle Scholar
Hadamcik, E., Renard, J.-B., Levasseur-Regourd, A. C., and Lasue, J. (2006). Light scattering by fluffy particles with the PROHRA2 experiment: Mixtures of materials. Journal of Quantitative Spectroscopy and Radiative Transfer, 100, 143156.CrossRefGoogle Scholar
Hadamcik, E., Levasseur-Regourd, A. C., Leroi, V., and Bardin, D. (2007a). Imaging polarimetry of the dust coma of comet Tempel 1 before and after Deep Impact. Icarus, 190, 459468.CrossRefGoogle Scholar
Hadamcik, E., Renard, J.-B., Rietmeijer, F. J. M.et al. (2007b). Light scattering by fluffy Mg-Fe-SiO and C mixtures as cometary analogs (PROGRA 2 experiment). Icarus, 190, 660671.CrossRefGoogle Scholar
Hadamcik, E., Sen, A. K., Levasseur-Regourd, A. C., Gupta, R., and Lasue, J. (2010). Polarimetric observations of comet 67P/Churyumov–Gerasimenko during its 2008–2009 apparition. Astronomy and Astrophysics, 517, A86.CrossRefGoogle Scholar
Hadamcik, E., Renard, J.-B., Levasseur-Regourd, A. C., and Lasue, J. (2011). Laboratory measurements of light scattered by clouds and layers of solid particles using an imaging technique. In Mishchenko, M., Yatskiv, Ya., Rosenbush, V., and Videen, G., eds., Polarimetric Detection, Characterization, and Remote Sensing. Dordrecht, The Netherlands: Springer, pp. 137176.CrossRefGoogle Scholar
Hadamcik, E., Sen, A. K., Levasseur-Regourd, A. C. (2013). Dust in comet Hartley 2 coma, during EPOXI mission. Icarus, 222, 774785.CrossRefGoogle Scholar
Hadamcik, E., Sen, A. K., Levasseur-Regourd, A. C.et al. (2014). Dust coma of comet C/2009 P1 (Garradd) by imaging polarimetry. Meteoritics and Planetary Science, 49, 3644.CrossRefGoogle Scholar
Hanner, M. S. (2003). The scattering properties of cometary dust. Journal of Quantitative Spectroscopy and Radiative Transfer, 79−80, 164173.Google Scholar
Hanner, M. S. and Bradley, J. P. (2004). Composition and mineralogy of cometary dust. In Festou, M., Keller, H. U., and Weaver, H. A., eds., Comets II. Tucson: University of Arizona, pp. 555564.CrossRefGoogle Scholar
Hanner, M. S., Veeder, G. J., and Tokunaga, A. T. (1992). The dust coma of Comet P/Giacobini–Zinner in the infrared. The Astronomical Journal, 104, 386393.CrossRefGoogle Scholar
Hanner, M. S., Gehrz, R. D., Harker, D. E.et al. (1997). Thermal emission from the dust coma of comet Hale–Bopp and the composition of the silicate grains. Earth, Moon, and Planets, 79, 247264.CrossRefGoogle Scholar
Harrington, D. M., Meech, K., Kolokolova, L., Kuhn, J. R., and Whitman, K. (2007). Spectropolarimetry of the Deep Impact target Comet 9P/Tempel 1 with HiVIS. Icarus, 191, 381388.CrossRefGoogle Scholar
Hoang, T. and Lazarian, A. (2014). Grain alignment by radiative torques in special conditions and implications. Monthly Notices of the Royal Astronomical Society, 438, 680703.CrossRefGoogle Scholar
Jessberger, E. K., Christoforidis, A., and Kissel, J. (1988). Aspects of the major element composition of Halley’s dust. Nature, 332(6166), 691695.CrossRefGoogle Scholar
Jewitt, D. (2004). Looking through the HIPPO: Nucleus and dust in comet 2P/Encke. The Astronomical Journal, 128, 30613069.CrossRefGoogle Scholar
Jockers, K. (1997). Observations of scattered light from cometary dust and their interpretation. Earth, Moon, and Planets, 79(1/3), 221245.CrossRefGoogle Scholar
Jockers, K., Bonev, T., Delva, M., Kiselev, N., and Petrova, E. (2001). The disintegration of comet C/1999 S4: Properties of cometary dust derived from narrow-band images of its color and polarization. Astronomishe Gesellschaft, Abstract Series, 18(139).Google Scholar
Jockers, K., Kiselev, N., Bonev, T.et al. (2005). CCD imaging and aperture polarimetry of comet 2P/Encke: Are there two polarimetric classes of comets?Astronomy and Astrophysics, 441, 773782.CrossRefGoogle Scholar
Jones, T. J. and Gehrz, R. D. (2000). Infrared imaging polarimetry of comet C/1995 01 (Hale–Bopp). Icarus, 143(2), 338346.CrossRefGoogle Scholar
Jones, T. J., Stark, D., Woodward, C. E.et al. (2008). Evidence of fragmenting dust particles from near-simultaneous optical and near-infrared photometry and polarimetry of comet 73P/Schwassmann–Wachmann 3. The Astronomical Journal, 135(4), 13181327.CrossRefGoogle Scholar
Joshi, U. C., Sen, A. K., Deshpande, M. R., and Chauhan, J. S. (1992). Photopolarimetric studies of Comet Austin. Journal of Astrophysics & Astronomy, 13(3), 267277.CrossRefGoogle Scholar
Joshi, U. C., Ganesh, S., and Baliyan, K. S. (2010). Optical polarimetry and photometry of comet 17P/Holmes. Monthly Notices of the Royal Astronomical Society, 402, 27442752.CrossRefGoogle Scholar
Kearsley, A. T., Borg, J., Graham, G. A.et al. (2008). Dust from comet Wild 2: Interpreting particle size, shape, structure, and composition from impact features on the Stardust aluminum foils. Meteoritics and Planetary Science, 43(1–2), 4173.CrossRefGoogle Scholar
Kelley, M. S., Jones, T. J., Reach, W. T., and Johnson, J. (2004). Near-infrared polarimetry and photometry of recent comets. The Astronomical Journal, 127(4), 23982405.CrossRefGoogle Scholar
Kelley, M. S., Woodward, C. E., and Jones, T. J. (2005). Polarimetry of comets in the near-IR. In Astronomical Polarimetry: Current Status and Future Directions, ASP Conference Series, Vol. 343. San Francisco, USA: Astronomical Society of the Pacific, p. 192.Google Scholar
Kikuchi, S. (2006). Linear polarization of five comets. Journal of Quantitative Spectroscopy and Radiative Transfer, 100, 179186.CrossRefGoogle Scholar
Kimura, H. (2001). Light-scattering properties of fractal aggregates: Numerical calculations by a superposition technique and discrete dipole approximation. Journal of Quantitative Spectroscopy and Radiative Transfer, 70, 581594.CrossRefGoogle Scholar
Kimura, H. and Mann, I. (2004). Light scattering by large clusters of dipoles as an analog for cometary dust aggregates. Journal of Quantitative Spectroscopy and Radiative Transfer, 89, 155164.CrossRefGoogle Scholar
Kimura, H., Kolokolova, L., and Mann, I. (2003). Optical properties of cometary dust: Constraints from numerical studies on light scattering by aggregate particles. Astronomy and Astrophysics, 407, L5L8.CrossRefGoogle Scholar
Kimura, H., Kolokolova, L., and Mann, I. (2006). Light scattering by cometary dust numerically simulated with aggregate particles consisting of identical spheres. Astronomy and Astrophysics, 449, 12431254.CrossRefGoogle Scholar
Kiselev, N. N. (1981). Polarimetric and photometric studies of comets, Ph.D. thesis, Dushanbe, 239 pp.Google Scholar
Kiselev, N. N. (2003). Light scattering by dust particles of comets, asteroids, and circumstellar shells: Observations and interpretation. Doctor degree thesis, Kharkiv National University, Kharkiv, 338 pp.Google Scholar
Kiselev, N. N. and Chernova, G. P. (1976). On a possible new version of the polarization–phase relation for comets. Astronomicheskij Tsirkulyar, 931, 57.Google Scholar
Kiselev, N. N. and Chernova, G. P. (1978). Polarization of the radiation of comet West, 1975n. Soviet Astronomy, 22, 607611.Google Scholar
Kiselev, N. N. and Chernova, G. P. (1979). Photometry and polarimetry during flares of comet Schwassmann–Wachmann I. Soviet Astronomy Letters, 5, 156159.Google Scholar
Kiselev, N. N. and Chernova, G. P. (1981). Phase functions of polarization and brightness and the nature of cometary atmosphere particles. Icarus, 48, 473481.CrossRefGoogle Scholar
Kiselev, N. and Rosenbush, V. (2004). Polarimetry of comets: Progress and problems. In Videen, G., Yatskiv, Ya., and Mishchenko, M., eds., Photopolarimetry in Remote Sensing. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 411430.Google Scholar
Kiselev, N. and Velichko, F. (1997). Aperture polarimetry and photometry of comet Hale–Bopp. Earth, Moon, and Planets, 78, 347352.CrossRefGoogle Scholar
Kiselev, N. and Velichko, F. (1998). Polarimetry and photometry of comet C/1996 B2 Hyakutake. Icarus, 133, 286292.CrossRefGoogle Scholar
Kiselev, N. N., Jockers, K., Rosenbush, V. K.et al. (2000). Anomalous wavelength dependence of polarization of Comet 21P/Giacobini–Zinner. Planetary Space Science, 48(10), 10051009.CrossRefGoogle Scholar
Kiselev, N. N., Velichko, F. P., and Velichko, S. F. (2001a). Polarimetry of comet C/1999 S4 (LINEAR) before and after disintegration. In Churyumov, K. I., ed., Fourth Vsekhsvyatsky Readings. Modern Problems of Physics and Dynamics of the Solar System. Ukraine: Kyiv University, pp. 127131.Google Scholar
Kiselev, N. N., Jockers, K., Rosenbush, V. K., and Korsun, P. P. (2001b). Analysis of polarimetric, photometric, and spectroscopic observations of comet C/1996 Q1 (Tabur). Solar System Research, 35(6), 480495.CrossRefGoogle Scholar
Kiselev, N. N., Jockers, K., and Rosenbush, V. K. (2002). Comparative study of the dust polarimetric properties in split and normal comets. Earth, Moon, and Planets, 90, 167176.CrossRefGoogle Scholar
Kiselev, N. N., Jockers, K., and Bonev, T. (2004). CCD imaging polarimetry of Comet 2P/Encke. Icarus, 168(2), 385391.CrossRefGoogle Scholar
Kiselev, N., Velichko, S., Jockers, K., Rosenbush, V., and Kikuchi, S., eds. (2006). Database of comet polarimetry. EAR-C-COMPIL-5-COMET-POLARIMETRY-V1.0.  NASA Planetary Data System.Google Scholar
Kiselev, N., Rosenbush, V., Kolokolova, L., and Antonyuk, K. (2008). The anomalous spectral dependence of polarization in comets. Journal of Quantitative Spectroscopy and Radiative Transfer, 109, 13841391.CrossRefGoogle Scholar
Kiselev, N. N., Rosenbush, V. K., Afanasiev, V. L.et al. (2013). Linear and circular polarization of comet C/2009 P1 (Garradd). Earth, Planets and Space, 65, 11511157.CrossRefGoogle Scholar
Knacke, R. F. and Encrenaz, T. (2006). IHW comet Halley infrared polarimetry, V2.0, IHW-C-IRPOL-3-RDR-HALLEY-V2.0. NASA Planetary Data System.Google Scholar
Kolokolova, L. and Jockers, K. (1997). Composition of cometary dust from polarization spectra. Planetary and Space Science, 45, 15431550.CrossRefGoogle Scholar
Kolokolova, L. and Kimura, H. (2010a). Effects of electromagnetic interaction in the polarization of light scattered by cometary and other types of cosmic dust. Astronomy and Astrophysics, 513, id. A40.CrossRefGoogle Scholar
Kolokolova, L. and Kimura, H. (2010b). Comet dust as a mixture of aggregates and solid particles: Model consistent with ground-based and space-mission results. Earth, Planets and Space, 62, 1722.CrossRefGoogle Scholar
Kolokolova, L. and Mackowski, D. W. (2012). Polarization of light scattered by large aggregates. Journal of Quantitative Spectroscopy and Radiative Transfer, 113, 25672572.CrossRefGoogle Scholar
Kolokolova, L., Hanner, M., Levasseur-Regourd, A.-Ch., and Gustafson, B. Å. S. (2004a). Physical properties of cometary dust from light scattering and emission. In Festou, M., Keller, H. U., and Weaver, H. A., eds., Comets II. Tucson: University of Arizona Press, pp. 577604.CrossRefGoogle Scholar
Kolokolova, L., Kimura, H., and Mann, I. (2004b). Characterization of dust particles using photopolarimetric data: Example of cometary dust. In Videen, G., Yatskiv, Ya., and Mishchenko, M., eds., Photopolarimetry in Remote Sensing. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 431454.Google Scholar
Kolokolova, L., Kimura, H., Kiselev, N., and Rosenbush, V. (2007). Polarimetric and infrared evidence of two types of dust in comets. Astronomy and Astrophysics, 463, 11891196.CrossRefGoogle Scholar
Kolokolova, L., Sparks, W., and Mackowski, D. (2011a). Astrobiological remote sensing with circular polarization. In Mishchenko, M., Yatskiv, Ya., Rosenbush, V., and Videen, G., eds., Polarimetric Detection, Characterization, and Remote Sensing. Dordrecht, The Netherlands: Springer, pp. 277293.CrossRefGoogle Scholar
Kolokolova, L., Petrova, E., and Kimura, H. (2011b). Effects of interaction of electromagnetic waves in complex particles. In Zhurbenko, V., ed., Electromagnetic Waves. Vienna: InTech, ISSN 978-953-307-304-0, pp. 173202.Google Scholar
Lasue, J. and Levasseur-Regourd, A. C. (2006). Porous irregular aggregates of sub-micron sized grains to reproduce cometary dust light scattering observations. Journal of Quantitative Spectroscopy and Radiative Transfer, 100, 220236.CrossRefGoogle Scholar
Lasue, J., Levasseur-Regourd, A. C., Fray, N., and Cottin, H. (2007). Inferring the interplanetary dust properties from remote observations and simulations. Astronomy and Astrophysics, 473, 641649.CrossRefGoogle Scholar
Lasue, J., Levasseur-Regourd, A. C., Hadamcik, E., and Alcouffe, G. (2009). Cometary dust properties retrieved from polarization observations: Application to C/1995 O1 Hale–Bopp and 1P/Halley. Icarus, 199, 129144.CrossRefGoogle Scholar
Le Borgne, J. F. and Crovisier, J. (1987). Polarization of molecular fluorescence bands in comets: Recent observations and interpretation. In Proceedings of the International Symposium on the Diversity and Similarity of Comets. ESA-278. European Space Agency, pp. 171175.Google Scholar
Le Borgne, J. F., Leroy, J. L., and Arnaud, J. (1987). Polarimetry of visible and near-UV molecular bands: Comet P/Halley and Hartley–Good. Astronomy and Astrophysics, 173, 180182.Google Scholar
Levasseur-Regourd, A. C. (1995). Physical properties of dust grains deduced by optical probing techniques. Advances in Space Research, 17, 117122.CrossRefGoogle Scholar
Levasseur-Regourd, A. C. (1999). Polarization of light scattered by cometary dust particles: Observations and tentative interpretations. Space Science Reviews, 90, 163168.CrossRefGoogle Scholar
Levasseur-Regourd, A. C. (2011). Inferring properties of dust within small bodies of the solar system through observations and simulations of the linear polarization of scattered solar light. In Mishchenko, M., Yatskiv, Ya., Rosenbush, V., and Videen, G., eds., Polarimetric Detection, Characterization, and Remote Sensing. Dordrecht, The Netherlands: Springer, pp. 296312.Google Scholar
Levasseur-Regourd, A. C. (2014). Polarimetry of solar system bodies. Journal of Quantitative Spectroscopy and Radiative Transfer, submitted.Google Scholar
Levasseur-Regourd, A. C. and Hadamcik, E. (2003). Light scattering by irregular dust particles in the solar system: Observations and interpretation by laboratory measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 79–80, 903910.CrossRefGoogle Scholar
Levasseur-Regourd, A. C., Bertaux, J. L., Dumont, R.et al. (1985a). The Giotto optical probe experiment. ESA Special Publication, ESA SP-1077, 187193.Google Scholar
Levasseur-Regourd, A.-C., Bertaux, J.-J., Weinberg, J. L., Dumont, R., and Festou, M. (1985b). In-situ photopolarimetric measurements of dust and gas in the coma of Halley’s Comet. Advances in Space Research, 5(12), 197199.CrossRefGoogle Scholar
Levasseur-Regourd, A. C., Bertaux, J. L., Dumont, R.et al. (1986). Optical probing of comet Halley from the Giotto spacecraft. Nature, 321, 341344.CrossRefGoogle Scholar
Levasseur-Regourd, A. C., Dumont, R., and Renard, J. B. (1990). A comparison between polarimetric properties of cometary dust and interplanetary dust particles. Icarus, 86, 264272.CrossRefGoogle Scholar
Levasseur-Regourd, A. C., Goidet, B., Le Duin, T.et al. (1993). Optical probing of dust in comet Grigg–Skjellerup from the Giotot spacecraft. Planetary and Space Science, 41(2), 167169.CrossRefGoogle Scholar
Levasseur-Regourd, A. C., Hadamcik, E., and Renard, J. B. (1996). Evidence of two classes of comets from their polarimetric properties at large phase angles. Astronomy and Astrophysics, 313, 327333.Google Scholar
Levasseur-Regourd, A. C., McBride, N., Hadamcik, E., and Fulle, M. (1999a). Similarities between in situ measurements of local dust scattering and dust flux impact data within the coma of 1P/Halley. Astronomy and Astrophysics, 348, 636641.Google Scholar
Levasseur-Regourd, A. C., Cabane, M., and Haudebourg, V. (1999b). Observational evidence for the scattering properties of interplanetary and cometary dust. Journal of Quantitative Spectroscopy and Radiative Transfer, 63, 631641.CrossRefGoogle Scholar
Levasseur-Regourd, A. C., Hadamcik, E., and Lasue, J. (2005). Light scattering as a clue to cometary dust structure. Highlights of Astronomy, 13, 498500.CrossRefGoogle Scholar
Levasseur-Regourd, A. C., Zolensky, M., and Lasue, J. (2008). Dust in cometary comae: Present understanding of the structure and composition of dust particles. Planetary and Space Science, 56, 17191724.CrossRefGoogle Scholar
Li, A. and Greenberg, J. M. (1998). From interstellar dust to comets: Infrared emission from comet Hale–Bopp (C/1995 O1). The Astrophysical Journal, 498, L83L87.CrossRefGoogle Scholar
Lisse, C. (2002). On the role of dust mass loss in the evolution of comets and dusty disk systems. Earth, Moon, and Planets, 90, 497506.CrossRefGoogle Scholar
Lisse, C. M., A’Hearn, M. F., Fernández, Y. R., and Peschke, S. B. (2002). A search for trends in cometary dust emission. In Green, S. F., Williams, I. P., McDonnell, J. A. M., and McBride, N., eds., Dust in the Solar System and Other Planetary Systems. Oxford: Pergamon, p. 259.Google Scholar
Lumme, K. and Muinonen, K. (1993). A two-parameter system for linear polarization of some solar system objects. In IAU Symposium 160: Asteroids, Comets, Meteors, LPI Contribution 810. Houston: LPI, pp. 194197.Google Scholar
Lumme, K. and Rahola, J. (1994). Light scattering by porous dust particles in the discrete-dipole approximation. The Astrophysical Journal, 425, 653667CrossRefGoogle Scholar
Lyot, B. (1934). Polarisation des petites planètes. Comptes Rendus de l’Académie des sciences, 199, 774782.Google Scholar
Mackowski, D. W. and Mishchenko, M. I. (1996). Calculation of the T matrix and the scattering matrix for ensembles of spheres. Journal of the Optical Society of America A, 13, 22662278.CrossRefGoogle Scholar
Mackowski, D. W. and Mishchenko, M. I. (2011). A multiple sphere T-matrix Fortran code for use on parallel computer clusters. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 21822192. Available online at www.eng.auburn.edu/users/dmckwski/scatcodes/ (accessed January 14, 2015).CrossRefGoogle Scholar
Manset, N. and Bastien, P. (2000). Polarimetric observations of comets C/1995 O1 Hale–Bopp and C/1996 B2 Hyakutake. Icarus, 145, 203219.CrossRefGoogle Scholar
McBride, N., Green, S. F., Levasseur-Regourd, A. C., Goidet- Devel, B., and Renard, J.-B. (1997). The inner dust coma of comet 26P/Grigg–Skjellerup: Multiple jets and nucleus fragments?Monthly Notices of the Royal Astronomical Society, 289, 535553.CrossRefGoogle Scholar
McDonnell, J. A. M., Lamy, P. L., and Pankiewicz, G. S. (1991). Physical properties of cometary dust. In Comets in Post-Halley Era, I. Dordrecht, the Netherlands: Kluwer, pp. 10431074.Google Scholar
Meech, K. J., A’Hearn, M. F., Adams, J. A.et al. (2011). EPOXI: Comet 103P/Hartley 2 observations from a worldwide campaign. The Astrophysical Journal Letters, 734, L1L9.CrossRefGoogle Scholar
Metz, K. and Haefner, R. (1987). Circular polarization near the nucleus of Comet P/Halley. Astronomy and Astrophysics, 187(1–2), 539542.Google Scholar
Michalsky, J. J. (1981). Optical polarimetry of Comet West 1976 VI. Icarus, 47, 388396.CrossRefGoogle Scholar
Mirzoyan, L. V. and Khachikian, E. (1959). The investigation of Comet Mrkos 1957d. I. Byurakan Observatory Report, 26, 3552.Google Scholar
Mishchenko, M., Travis, L. D., and Mackowski, D. W. (1996). T-matrix computations of light scattering by nonspherical particles: A review. Journal of Quantitative Spectroscopy and Radiative Transfer, 55, 535575. Available online at www.giss.nasa.gov/staff/mmishchenko/t_matrix.html (accessed January 14, 2015).CrossRefGoogle Scholar
Mishchenko, M. I., Travis, L. D., and Lacis, A. A. (2002). Scattering, Absorption, and Emission of Light by Small Particles. New York: Cambridge University Press.Google Scholar
Mishchenko, M. I., Rosenbush, V. K., Kiselev, N. N.et al. (2010). Polarimetric Remote Sensing of Solar System Objects. Kyiv: Akademperiodika.CrossRefGoogle Scholar
Moreno, F., Munoz, O., Guirado, D., and Vilaplana, R. (2007). Comet dust as a size distribution of irregularly shaped, compact particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 106, 348359.CrossRefGoogle Scholar
Morozhenko, A. V., Kiselev, N. N., and Gural’chuk, A. L. (1987). On the circular polarization of comet Halley head. Kinematika i Fizika Nebesnykh Tel, 3, 8990.Google Scholar
Mukai, T., Mukai, S., and Kikuchi, S. (1987). Complex refractive index of grain material deduced from the visible polarimetry of comet P/Halley. Astronomy and Astrophysics, 187, 650–652.Google Scholar
Mumma, M. J., Dello Russo, N., DiSanti, M. A.et al. (2001). Organic composition of C/1999 S4 (LINEAR): A comet formed near Jupiter?Science, 292(5520), 13341339.CrossRefGoogle ScholarPubMed
Muñoz, O., Volten, H., de Haan, J. F., Vassen, W., and Hovenier, J. W. (2000). Experimental determination of scattering matrices of olivine and Allende meteorite particles. Astronomy and Astrophysics, 360, 777788.Google Scholar
Myers, R. V. and Nordsieck, K. H. (1984). Spectropolarimetry of comets Austin and Churyumov–Gerasimenko. Icarus, 58, 431439.CrossRefGoogle Scholar
Nagdimunov, L., Kolokolova, L., and Sparks, W. (2013). Polarimetric technique to study (pre)biological organics in cosmic dust and planetary aerosols. Earth, Planets and Space, 65(10), 11671173.CrossRefGoogle Scholar
Noguchi, K., Sato, S., Maihara, T., Okuda, H., and Uyama, K. (1974). Infrared photometric and polarimetric observations of Comet Kohoutek 1973f. Icarus, 23, 545550.CrossRefGoogle Scholar
Öhman, Y. (1939). On some observations made with a modified Pickering polarigraph. Monthly Notices of the Royal Astronomical Society, 99, 624634.CrossRefGoogle Scholar
Öhman, Y. (1941). Measurements of polarization in the spectra of comet Cunningham (1940 C) and comet Paraskevopoulos (1941C). Stockholms Observatoriums Annaler, 13, 120.Google Scholar
Oishi, M., Kawara, K., Kobayashi, Y.et al. (1978). Infrared observations of Comet West (1975n). I. Observational results. Publications of the Astronomical Society of Japan, 30, 149160.Google Scholar
Osborn, W. H., A’Hearn, M. F., Carsenty, U.et al. (1990). Standard stars for photometry of comets. Icarus, 88, 228245.CrossRefGoogle Scholar
Penttilä, A., Lumme, K., Hadamcik, E., and Levasseur-Regourd, A.-C. (2005). Statistical analysis of asteroidal and cometary polarization phase curves. Astronomy and Astrophysics, 432, 10811090.CrossRefGoogle Scholar
Petrova, E. V., Jockers, K., and Kiselev, N. (2000). Light scattering by aggregates with sizes comparable to the wavelength: an application to cometary dust. Icarus, 148, 526536.CrossRefGoogle Scholar
Petrova, E. V., Tishkovets, V. P., and Jockers, K. (2004). Polarization of light scattered by solar system bodies and the aggregate model of dust particles. Solar System Research, 38, 354371.CrossRefGoogle Scholar
Pontoppidan, K. M. and Brearley, A. J. (2010). Dust particle size evolution. In Apai, D. and Lauretta, D., eds., Protoplanetary Dust. Cambridge University Press, pp. 191229.CrossRefGoogle Scholar
Renard, J. B., Levasseur-Regourd, A. C., and Dollfus, A. (1992). Polarimetric CCD imaging of comet Levy. Annales Geophysicae, 10, 288292.Google Scholar
Renard, J. B., Hadamcik, E., and Levasseur-Regourd, A. C. (1996). Polarimetric CCD imaging of comet 47P/Ashbrook–Jackson and variability of polarization in the inner coma of comets. Astronomy and Astrophysics, 316, 263269.Google Scholar
Richter, I., Koenders, C., Glassmeier, K. H., Tsurutani, B. T., and Goldstein, R. (2011). Deep Space 1 at comet 19P/Borrelly: Magnetic field and plasma observations. Planetary and Space Science, 59(8), 691698.CrossRefGoogle Scholar
Rosenbush, V. K., Rosenbush, A. E., and Dement’ev, M. S. (1994). Comets Okazaki–Levy–Rudenko (1989 XIX) and Levy (1990 XX): Polarimetry and stellar occultations. Icarus, 108, 8191.CrossRefGoogle Scholar
Rosenbush, V. K., Shakhovskoy, N. M., and Rosenbush, A. E. (1997). Polarimetry of Comet Hale–Bopp: Linear and circular polarization, stellar occultation. Earth, Moon, and Planets, 78, 373379.CrossRefGoogle Scholar
Rosenbush, V. K., Kiselev, N. N., and Velichko, S. F. (2002). Polarimetric and photometric observations of split comet C/2001 A2 (LINEAR). Earth, Moon, and Planets, 90, 423433.CrossRefGoogle Scholar
Rosenbush, V., Kolokolova, L., Lazarian, A., Shakhovskoy, N., and Kiselev, N. (2007a). Circular polarization in comets: Observations of comet C/1999 S4 (LINEAR) and tentative interpretation. Icarus, 186, 317330.CrossRefGoogle Scholar
Rosenbush, V., Kiselev, N., Shakhovskoy, N., Kolesnikov, S., and Breus, V. (2007b). Circular and linear polarization of comet C/2001 Q4 (NEAT). Why circular polarization in comets is predominantly left-handed? In Videen, G., Mishchenko, M., Mengüҁ, M. P. and Zakharova, N., eds., Proceedings of the Tenth Conference on Electromagnetic and Light Scattering, Bodrum, Turkey. IHMT, pp. 181184.CrossRefGoogle Scholar
Rosenbush, V., Kiselev, N., Kolokolova, L.et al. (2008a). Atypical polarization in some recent comets. In Proceedings of the 11th Conference on Electromagnetic and Light Scattering, Hertfordshire, UK. IHMT, pp. 193196.Google Scholar
Rosenbush, V., Kiselev, N., Antoniuk, K., and Kolesnikov, S. (2008b). Optical properties of recent bright comets C/2001 Q4 (NEAT), 73P/Schwassmann–Wachmann 3, 17P/Holmes, and 8P/Tuttle derived from aperture and imaging polarimetry. LPI Contr. No. 1405, ID 8393. Houston: LPI.Google Scholar
Rosenbush, V., Kiselev, N., and Kolokolova, L. (2008c). Predominantly left-handed circular polarization in comets: does it indicate L-enantiomeric excess in cometary organics? In S. Kwok and S. Sandford, eds., Proceedings of the IAU Symposium on Organic Matter in Space, Vol. 251. Hong Kong, China, pp. 311312.Google Scholar
Rosenbush, V., Kiselev, N., Kolokolova, L.et al. (2009). Polarization properties of odd comet 17P/Holmes. Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 17191725.CrossRefGoogle Scholar
Rosenbush, V., Afanasiev, V., and Kiselev, N. (2013). One more evidence of left-handed circular polarization in comets: Comet C/2009 P1 (Garradd). In Electromagnetic & Light Scattering XIV, Abstracts, 51.Google Scholar
Scarrott, S. M., Warren-Smith, R. F., Pallister, W. S., Axon, D. J., and Bingham, R. G. (1983). Electronographic polarimetry – The Durham polarimeter. Monthly Notices of the Royal Astronomical Society, 204, 11631177.CrossRefGoogle Scholar
Schulz, R., Hilchenbach, M., Langevin, Y.et al. (2015). Comet 67P/Churyumov-Gerasimenko sheds dust coat accumulated over the past four years. Nature, 518, 216218.CrossRefGoogle ScholarPubMed
Sephton, M. (2002). Organic compounds in carbonaceous meteorite. Natural Product Reports, 19, 292311.CrossRefGoogle Scholar
Shen, Y., Draine, B. T., and Johnson, E. T. (2009). Modeling porous dust grains with ballistic aggregates. II. Light scattering properties. The Astrophysical Journal, 696, 21262137.CrossRefGoogle Scholar
Sitko, M., Lynch, D., Russell, R., and Hanner, M. (2004). 3–14 micron spectroscopy of comets C/2002 O4 (Hönig), C/2002 V1 (NEAT), C/2002 X5 (Kudo–Fujikawa), C/2002 Y1 (Juels–Holvorcem), and 69P/Taylor and the relationships among grain temperature, silicate band strength, and structure among comet families. The Astrophysical Journal, 612, 576587.CrossRefGoogle Scholar
Swamy, K. S. K. (1986). Physics of Comets. Singapore: World Scientific Publication.CrossRefGoogle Scholar
Tozzi, G. P., Cimatti, A., di Serego Alighieri, S., and Cellino, A. (1997). Imaging polarimetryof comet C/1996 B2 (Hyakutake) at the perigee. Planetary and Space Science, 45, 535540.CrossRefGoogle Scholar
Tozzi, G. P., Bagnulo, S., Boehnhardt, H.et al. (2006). Observations of comet 73P/SW3 at its closest approach to the Earth. In Proceedings of the European Planetary Science Congress 2006. Berlin, Germany, p. 725.Google Scholar
Tozzi, G. T., Bagnulo, S., Boehnhardt, H., and Kolokolova, L. (2012). Polarimetry of Comet 9P/Tempel 1 around the epoch of the Deep Impact Event. Geophysical Research Abstracts, 14, EGU201211671.Google Scholar
Van de Hulst, H. C. (1957). Light Scattering by Small Particles. New York: John Wiley & Sons, Inc.CrossRefGoogle Scholar
Weaver, H. A., Chin, G., Bockelée–Morvan, D.et al. (1999). An infrared investigation of volatiles in comet 21P/Giacobini–Zinner. Icarus, 142(2), 482497.CrossRefGoogle Scholar
Weiss-Wrana, K. (1983). Optical properties of interplanetary dust − Comparison with light scattering by larger meteoritic and terrestrial grains. Astronomy and Astrophysics, 126, 240250.Google Scholar
Whipple, F. L. (1957). Some problems of meteor astronomy (Introductory Lecture). In Van de Hulst, H. Ch., ed., Radio Astronomy. Proceedings of the 4th IAU Symposium. Cambridge University Press, pp. 375389.Google Scholar
Wolf, G. W. (1972). A search for elliptical polarization in starlight. The Astronomical Journal, 77, 576583.CrossRefGoogle Scholar
Woodward, C. E., Jones, T. J., Brown, B.et al. (2011). Dust in Comet C/2007 N3 (Lulin). The Astronomical Journal, 141(6), 181190.CrossRefGoogle Scholar
Xing, Z. and Hanner, M. S. (1997). Light scattering by aggregate particles. Astronomy and Astrophysics, 324, 805820.Google Scholar
Yurkin, M. A. and Hoekstra, A. G. (2007). The discrete dipole approximation: An overview and recent developments. Journal of Quantitative Spectroscopy and Radiative Transfer, 106, 558589.CrossRefGoogle Scholar
Zubko, E., Petrov, D., Shkuratov, Y., and Videen, G. (2005). Discrete dipole approximation simulations of scattering by particles with hierarchical structure. Applied Optics, 44, 64796485.CrossRefGoogle ScholarPubMed
Zubko, E., Shkuratov, Y., Kiselev, N. N., and Videen, G. (2006). DDA simulations of light scattering by small irregular particles with various structure. Journal of Quantitative Spectroscopy and Radiative Transfer, 101(3), 416434.CrossRefGoogle Scholar
Zubko, E., Furusho, R., Kawabata, K.et al. (2011). Interpretation of photo-polarimetric observations of comet 17P/Holmes. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 18481863.CrossRefGoogle Scholar
Zubko, E., Muinonen, K., Shkuratov, Y.et al. (2012). Evaluating the carbon depletion found by the Stardust mission in Comet 81P/Wild 2. Astronomy and Astrophysics, 544, L8L11.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×