Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-02T05:36:26.941Z Has data issue: false hasContentIssue false

24 - Rates of slope and channel processes in the Reintal valley, Bavarian Alps

from Part V - Solute and sedimentary fluxes in alpine/mountain environments

Published online by Cambridge University Press:  05 July 2016

Achim A. Beylich
Affiliation:
Geological Survey of Norway
John C. Dixon
Affiliation:
University of Arkansas
Zbigniew Zwoliński
Affiliation:
Adam Mickiewicz University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ballantyne, C. K., and Harris, C. (1994). The Periglaciation of Great Britain. Cambridge: Cambridge Univ. Press, 330 pp.Google Scholar
Becht, M., Haas, F., Heckmann, T., and Wichmann, V. (2005). Investigating sediment cascades using field measurements and spatial modelling. IAHS Publication 291. Wallingford: IAHS Press, 206213.Google Scholar
Beylich, A. (2000). Untersuchungen zum gravitativen und fluvialen Stofftransfer in einem subarktisch-ozeanisch geprägten, permafrostfreien Periglazialgebiet mit pleistozäner Vergletscherung (Austaldur, Ost-Island). Z Geomorphol N F., Supplementary Issue 121, 122Google Scholar
Bimböse, M., Nicolay, A., Schmidt, K.-H., Bryk, A., and Morche, D. (2011). Investigations on intra- and interannual coarse sediment dynamics in a high-mountain catchment. Z Geomorphol N F., 55 Supplementary Issue 2, 6781. doi:10.1127/0372–8854/2011/0055S2-0046CrossRefGoogle Scholar
Bimböse, M., Schmidt, K.-H., and Morche, D. (2010). High resolution quantification of slope-channel coupling in an alpine geosystem. IAHS Publication 337. Wallingford: IAHS Press, 300–307.Google Scholar
Burt, T., and Allison, R. (2010). Sediment Cascades: An Integrated Approach. Chichester: John Wiley & Sons.CrossRefGoogle Scholar
Caine, N. (1974). The geomorphic processes of the alpine environment. In Ives, J. D. and Barry, R. G., eds., Arctic and Alpine Environments. London: Methuen, pp. 721–48.Google Scholar
Chorley, R. J., and Kennedy, B. A. (1971). Physical Geography: A Systems Approach. London: Prentice-Hall International, 370 pp.Google Scholar
Chorley, R. J., Schumm, S. A., and Sudgen, D. E. (1984). Geomorphology, London, New York: Methuen.Google Scholar
Gerst, M. (2000). Hangformung durch Lawinen und Steinschlag in den Nördlichen Kalkalpen am Beispiel des Mittleren Reintals und des Lahnenwiesgrabens. Unpublished Diploma thesis, Institute for Geography, LMU München.Google Scholar
Götz, J., Geilhausen, M., and Schrott, L. (2010). Neue Aspekte zur Einordnung rezenter Sedimentflüsse in einen paraglazialen Kontext und zur innovativen Inwertsetzung geomorphologischer Forschung. Salzburger Geographische Arbeiten, 46, 4162.Google Scholar
Götz, J., and Schrott, L. (2007). A comparison of recent and postglacial sediment fluxes in a paraglacial context. A scale based approach (Reintal, Bavarian Alps). – In Kellerer-Pirkelbauer, A., Keiler, M., Embleton-Hamann, C., and Stötter, J., eds., Geomorphology for the Future, Conference Proceedings, Obergurgl, Austria, 2nd–7th September 2007, Innsbruck, Austria: Innsbruck University Press, 105112.Google Scholar
Götz, J., and Schrott, L. (2010). Das Reintal: Eine Wanderung durch Raum und Zeit – Geomorphologischer Lehrpfad am Fuße der Zugspitze. München: Pfeil-Verlag.Google Scholar
Hagg, W., Mayer, C., Mayr, E., and Heilig, A. (2012). Climate and glacier fluctuations in the Bavarian Alps during the past 120 years. Erdkunde, 66, 121142. DOI: 10.3112/erdkunde.2012.02.03CrossRefGoogle Scholar
Haas, F. (2008). Fluviale Hangprozesse in alpinen Einzugsgebieten der nördlichen Kalkalpen – Quantifizierung und Modellierungsansätze. Eichstätter Geographische Arbeiten 17, München: Profil-Verlag.Google Scholar
Haas, F., Heckmann, T., Wichmann, V., and Becht, M. (2011). Quantification and modeling of fluvial bedload discharge from hillslope channels in two Alpine catchments (Bavarian Alps, Germany). Z Geomorphol N F., 55 Supplementary Issue 3, 147–68. doi: 10.1127/0372–8854/2011/0055S3-0056Google Scholar
Heckmann, T. (2006). Untersuchungen zum Sedimenttransport durch Grundlawinen in zwei Einzugsgebieten der Nördlichen Kalkalpen: Quantifizierung, Analyse und Ansätze zur Modellierung der geomorphologischen Aktivität. Eichstätter Geographische Arbeiten 14, München: Profil-Verlag.Google Scholar
Heckmann, T., Bimböse, M., Krautblatter, M., Haas, F., Becht, M., and Morche, D. (2012). From geotechnical analysis to quantification and modeling using LiDAR data: A study on rockfall in the Reintal catchment, Bavarian Alps, Germany. Earth Surface Processes and Landforms, 37, 119133. doi: 10.1002/esp.2250CrossRefGoogle Scholar
Heckmann, T., Haas, F., Wichmann, V., and Morche, D. (2008). Sediment budget and morphodynamics of an alpine talus cone on different timescales. Z Geomorphol N.F., 52 Supplementary Issue 1, 103121. doi:10.1127/0372–8854/2008/0052S1-0103CrossRefGoogle Scholar
Heckmann, T., Wichmann, V., and Becht, M. (2002). Quantifying sediment transport by avalanches in the Bavarian Alps - first results. Z Geomorphol N.F., Supplement-Band 127, 137152.Google Scholar
Heckmann, T., Wichmann, V., and Becht, M. (2005). Sediment transport by avalanches in the Bavarian Alps revisited - a perspective on modelling. Z Geomorphol N.F., Supplement-Band 138, 1125.Google Scholar
Heinimann, H. R., Hollenstein, K., Kienholz, H., Krummenacher, B., and Mani, P. (1998). Methoden zur Ansalyse und Bewertung von Naturgefahren. Umwelt-Materialien Nr. 85, Naturgefahren. Bern: Bundesamt für Umwelt, Wald und Landschaft (BUWAL), 248 p.Google Scholar
Heller, F., and Nieder, R. (1932). Geologisch-geomorphologische Untersuchungen im Partnachtal des Wettersteingebirges. Zeitschrift für Karst – und Höhlenkunde. Mitteilungen d. Forschungsstätte für Karst – und Höhlenkunde, 10, 119153.Google Scholar
Hoffmann, T., and Schrott, L. (2002). Modelling sediment thickness and rockwall retreat in an Alpine valley using 2D-seismic refraction (Reintal, Bavarian Alps). Z Geomorphol N.F., Supplement-Band 127, 153173.Google Scholar
Hüttl, C. (1999). Steuerungsfaktoren und Quantifizierung der chemischen Verwitterung auf dem Zugspitzplatt (Wettersteingebirge, Deutschland. Münchner Geographische Abhandlungen, Reihe B, Band 30, 198, München: GEOBUCH-Verlag.Google Scholar
Keller, D., and Moser, M. (2002). Assessments of field methods for rockfall and soil slip modelling. Z Geomorphol N.F., Supplement-Band 127, 127135.Google Scholar
Koch, F. (2006). Zur raum-zeitlichen Variabilität von Massenbewegungen und pedologische Kartierungen in alpinen Einzugsgebieten - Dendrogeomorphologische Fallstudien und Erläuterungen zu den Bodenkarten Lahnenwiesgraben und Reintal (Bayerische Alpen). Dissertation, Universität Regensburg.Google Scholar
Krautblatter, M., and Dikau, R. (2007). Towards a uniform concept for the comparison and extrapolation of rockwall retreat and rockfall supply. Geografiska Annaler A, 89(1), 2140. doi: 10.1111/j.1468-0459.2007.00305.xCrossRefGoogle Scholar
Krautblatter, M., and Moser, M. (2009). A nonlinear model coupling rockfall and rainfall intensity based on a four year measurement in a high Alpine rock wall (Reintal, German Alps). Natural Hazards and Earth System Sciences, 9, 14251432. doi: 10.5194/nhess-9-1425-2009CrossRefGoogle Scholar
Krautblatter, M., Moser, M., Schrott, L., Wolf, J., and Morche, D. (2012). Significance of rockfall magnitude and carbonate dissolution for rock slope erosion and geomorphic work on Alpine limestone cliffs (Reintal, German Alps). Geomorphology, 167–168, 3144. doi: 10.1016/j.geomorph.2012.04.007Google Scholar
Küfmann, C. (2003). Soil types and eolian dust in high-mountainous karst of the Northern Calcareous Alps (Zugspitzplatt, Wetterstein Mountains, Germany). Catena, 53, 211227. doi: 10.1016/S0341-8162(03)00075–4CrossRefGoogle Scholar
Küfmann, C. (2013). Solution dynamics at the rock/snow during the ablation period in the subnival karst of the Wetterstein Mountains (Northern Calcareous Alps, Germany). Z Geomorphol N F., 58, 3757. doi: 10.1127/0372–8854/2013/0121CrossRefGoogle Scholar
Lauber, U., Morche, D., Kotyla, P., and Goldscheider, N. (2014). Hydrogeology of an alpine rockfall aquifer system and its role in flood attenuation and maintaining baseflow. Hydrology and Earth System Sciences, 18, 44374452. doi: 10.5194/hess-18–4437-2014CrossRefGoogle Scholar
Leuchs, K. (1921). Die Ursachen des Bergsturzes am Reintalanger (Wettersteingebirge). Geologische Rundschau, 12, 189192. doi: 10.1007/BF01800180CrossRefGoogle Scholar
Leuchs, K. (1930). Der Bau der Südrandstörung des Wettersteingebirges. Geologische Rundschau, 21, 8196. doi: 10.1007/BF01802266CrossRefGoogle Scholar
Miller, H. (1961). Der Bau des westlichen Wettersteingebirges. Z. dt. geol. Ges., 113, 161203.Google Scholar
Morche, D. (2010). Die fluviale Lösungsfracht und ihre Effektivität bei der rezenten geomorphologischen Formung in einem kalkalpinen Hochgebirgstal. Salzburger Geographische Arbeiten, 46, 95112.Google Scholar
Morche, D., and Bryk, A. (2010) Bed load transport in an Alpine river after a high magnitude flood: results from the 2008 field campaign. IAHS Publication 336. Wallingford: IAHS Press, 157–163Google Scholar
Morche, D., Katterfeld, C., Fuchs, S., and Schmidt, K.-H. (2006). The life-span of a small high mountain lake, the Vordere Blaue Gumpe in Upper Bavaria, Germany. IAHS Publication 306. Wallingford: IAHS Press, 7281.Google Scholar
Morche, D., and Laute, K. (2009). Investigating channel response to a dambreak flood event in an Alpine river – Downstream trends in stream power and channel bed particle characteristics. Arctic, Antarctic, and Alpine Research, 41(1), 6978. doi: 10.1657/1938–4246(08-024)[MORCHE]2.0.CO;2CrossRefGoogle Scholar
Morche, D., and Schmidt, K.-H. (2005). Particle size and particle shape analyses of unconsolidated material from sediment sources and sinks in a small Alpine catchment (Reintal, Bavarian Alps, Germany). Z Geomorphol N.F., Supplement-Band 138, 6780.Google Scholar
Morche, D., and Schmidt, K.-H. (2012). Sediment transport in an alpine river before and after a dambreak flood event. Earth Surface Processes and Landforms, 37, 347353. doi: 10.1002/esp.2263CrossRefGoogle Scholar
Morche, D., Schmidt, K.-H., Heckmann, T., and Haas, F. (2007). Hydrology and geomorphic effects of a high magnitude flood in an Alpine river. Geografiska Annaler A, 89(1), 519. doi: 10.1111/j.1468-0459.2007.00304.xCrossRefGoogle Scholar
Morche, D., Schmidt, K.H., Sahling, I., Herkommer, M., and Kutschera, J. (2008a). Volume changes of Alpine sediment stores in a state of post-event disequilibrium and the implications for downstream hydrology and bed load transport. Norsk Geografisk Tidsskrift-Norwegian Journal of Geography, 62, 89101. DOI: 10.1080/00291950802095079CrossRefGoogle Scholar
Morche, D., Witzsche, M., and Schmidt, K.-H. (2008b). Hydrogeomorphological characteristics and sediment transport of a high mountain river (Partnach River, Reintal Valley, Bavarian Alps, Germany) Z Geomorphol N.F., 52 Supplementary Issue 1, 5177. doi: 10.1127/0372–8854/2008/0052S1-0051CrossRefGoogle Scholar
Orwin, J. F., Lamoureux, S. F., Warburton, J., and Beylich, A. (2010). A framework for characterizing fluvial sediment fluxes from source to sink in cold environments. Geografiska Annaler A, 92(2), 155176. doi: 10.1111/j.1468-0459.2010.00387.xCrossRefGoogle Scholar
Otto, J. C., and Dikau, R. (2004). Geomorphologic system analysis of a high mountain valley in the Swiss Alps. Z Geomorphol N.F., 48, 323341.CrossRefGoogle Scholar
Rapp, A. (1960). Recent development of mountain slopes in Kärkevagge and surroundings, Northern Scandinavia. Geografisker Annaler A, 42(2–3), 65200.Google Scholar
Rappl, A., Wetzel, K.-F., Büttner, G., and Scholz, M. (2010). Tracerhydrologische Untersuchungen am Partnach-Ursprung. Hydrologie und Wasserbewirtschaftung 54, 222230.Google Scholar
Reis, O. (1910). Erläuterungen zur geologischen Karte des Wettersteingebirges. Geognostische Jahreshefte, 23, 61104.Google Scholar
Sass, O., and Krautblatter, M. (2007). Debris-flow-dominated and rockfall-dominated scree slopes: genetic models derived from GPR measurements. Geomorphology, 86, 176192. doi: 10.1016/j.geomorph.2006.08.012CrossRefGoogle Scholar
Sass, O., Krautblatter, M., and Morche, D. (2007). Rapid lake infill following bergsturz events revealed by GPR measurements (Reintal, German Alps) The Holocene, 17(7), 965977. doi:10.1177/0959683607082412CrossRefGoogle Scholar
Schmidt, K.-H., and Morche, D. (2006). Sediment output and effective discharge in two small high mountain catchments in the Bavarian Alps, Germany. Geomorphology, 80, 131145. doi: 10.1016/j.geomorph.2005.09.01CrossRefGoogle Scholar
Schneevoigt, N. J., van der Linden, S., Thamm, H.-P., and Schrott, L. (2008). Detection of alpine landforms from remotely sensed imagery. A pilot study in the Bavarian Alps. Geomorphology, 93, 104119. doi: 10.1016/j.geomorph.2006.12.034CrossRefGoogle Scholar
Schneevoigt, N. J., and Schrott, L. (2006). Linking geomorphic systems theory and remote sensing. A conceptual approach to Alpine landform detection (Reintal, Bavarian Alps, Germany). Geographica Helvetica, 61, 181190. doi: 10.5169/seals-72613CrossRefGoogle Scholar
Schrott, L., Götz, J., Geilhausen, M., and Morche, D. (2006). Spatial and temporal variability of sediment transfer and storage in an Alpine basin (Bavarian Alps, Germany). Geographica Helvetica, 61, 191200. doi: 10.5169/seals-72614CrossRefGoogle Scholar
Schrott, L., Hufschmidt, G., Hankammer, M., Hoffmann, T., and Dikau, R. (2003). Spatial distribution of sediment storage types and quantification of valley fill deposits in an alpine basin, Reintal, Bavarian Alps, Germany. Geomorphology, 55, 4563. doi: 10.1016/S0169-555X(03)00131–4CrossRefGoogle Scholar
Schrott, L., Niederheide, A., Hankammer, M., Hufschmidt, G., and Dikau, R. (2002). Sediment storage in a mountain catchment: geomorphic coupling and temporal variability (Reintal, Bavarian Alps, Germany). - Zeitschrift für Geomorphologie, 127, 175196.Google Scholar
Slaymaker, O. (1991). Mountain geomorphology: a theoretical framework for measurement programmes. Catena, 18, 427437. doi: 10.1016/0341–8162(91)90047-2CrossRefGoogle Scholar
Wetzel, K. F. (1994). Abflussbildung während sommerlicher Niederschläge in einem kleinen Einzugsgebiet der nördlichen Kalkalpen. Erdkunde, 34, 161173.Google Scholar
Wetzel, K.-F. (2004). On the hydrology of the Partnach area in the Wetterstein Mountains (Bavarian Alps). Erdkunde, 58, 172186. doi: 10.3112/erdkunde.2004.02.05CrossRefGoogle Scholar
Wichmann, V. (2006). Modellierung geomorphologischer Prozesse in einem alpinen Einzugsgebiet – Abgrenzung und Klassifizierung der Wirkungsräume von Sturzprozessen und Muren mit einem GIS. Eichstätter Geographische Arbeiten, 15, 1231.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×