Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-30T00:16:52.368Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  18 March 2019

Matcheri Keshavan
Affiliation:
Harvard Medical School
Shaun Eack
Affiliation:
University of Pittsburgh
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarons, G. A., Hurlburt, M., & Horwitz, S. M. (2011). Advancing a conceptual model of evidence-based practice implementation in public service sectors. Administration and Policy in Mental Health, 38(1), 423.Google Scholar
Adcock, R. A., Dale, C., Fisher, M. et al. (2009). When top-down meets bottom-up: auditory training enhances verbal memory in schizophrenia. Schizophrenia Bulletin, 35(6), 11321141.Google Scholar
Adler, A. A. (1927). Practice and Theory of Individual Psychology. New York, NY: Harcourt, Brace & Co.Google Scholar
Adolphs, R., Gosselin, F., Buchanan, T. W. et al. (2005). A mechanism for impaired fear recognition after amygdala damage. Nature, 433(7021), 6872.CrossRefGoogle ScholarPubMed
Allison, T., Puce, A., & McCarthy, G. (2000). Social perception from visual cues: role of the STS region. Trends in Cognitive Sciences, 4(7), 267278.CrossRefGoogle ScholarPubMed
Amador, X. (2010). I Am Not Sick, I Don't Need Help! How to Help Someone with Mental Illness Accept Treatment (10th Anniversary edn.). New York, NY: Vida Press.Google Scholar
Amador, X. F., Strauss, D. H., Yale, S. A. et al. (1993). Assessment of insight in psychosis. American Journal of Psychiatry, 150, 873879.Google Scholar
Anaya, C., Martinez Aran, A., Ayuso-Mateos, J. L. et al. (2012). A systematic review of cognitive remediation for schizo-affective and affective disorders. Journal of Affective Disorders, 142(1–3), 1321. doi: 10.1016/j.jad.2012.04.020Google Scholar
Anderson, C., Reiss, D., & Hogarty, G. W. (1986). Schizophrenia and the Family: A Practitioner's Guide to Psychoeducation and Management. Guilford Press, May 12, 1986Google Scholar
Andrade, K. C., Spoormaker, V. I., Dresler, M. et al. (2011). Sleep spindles and hippocampal functional connectivity in human NREM sleep. Journal of Neuroscience, 31(28), 1033110339. doi: 10.1523/JNEUROSCI.5660-10.2011Google Scholar
Andreasen, N. C. (1983). Scale for the Assessment of Negative Symptoms. Iowa City, IA: University of Iowa Press.Google Scholar
Andreasen, N. C. (1984). Scale for the Assessment of Positive Symptoms. Iowa City, IA: University of Iowa Press.Google Scholar
Andreasen, N. C., Flaum, M., Swayze, V. W., Tyrrell, G., & Arndt, S. (1990). Positive and negative symptoms in schizophrenia: a critical reappraisal. Archives of General Psychiatry, 47(7), 615621.CrossRefGoogle ScholarPubMed
Army Individual Test Battery. (1944). PsycTESTS Dataset. Washington, DC: American Psychological Association (APA).Google Scholar
American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders (DSM-5®) (5th edn.). Washington, DC: American Psychiatric Association.Google Scholar
Atkins, A. S., Tseng, T., Vaughan, A. et al. (2017). Validation of the tablet-administered Brief Assessment of Cognition (BAC App). Schizophrenia Research, 181, 100106. doi: 10.1016/j.schres.2016.10.010CrossRefGoogle ScholarPubMed
Autry, A. E., & Monteggia, L. M. (2012). Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacological Reviews, 64(2), 238258. doi: 10.1124/pr.111.005108Google Scholar
Baddeley, A., & Wilson, B. A. (1994). When implicit learning fails: amnesia and the problem of error elimination. Neuropsychologia, 32(1), 5368.Google Scholar
Banks, S. J., Eddy, K. T., Angstadt, M., Nathan, P. J., & Phan, K. L. (2007). Amygdala–frontal connectivity during emotion regulation. Social Cognitive and Affective Neuroscience, 2(4), 303312.Google Scholar
Barch, D. M., & Carter, C. S. (2005). Amphetamine improves cognitive function in medicated individuals with schizophrenia and in healthy volunteers. Schizophrenia Research, 77, 4358.Google Scholar
Barch, D. M., Berman, M. G., Engle, R. et al. (2009). CNTRICS final task selection: working memory. Schizophrenia Bulletin, 35, 136152.Google Scholar
Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 11731182.CrossRefGoogle ScholarPubMed
Baron-Cohen, S., Wheelwright, S., Hill, J., Raste, Y., & Plumb, I. (2001). The “Reading the Mind in the Eyes” Test revised version: a study with normal adults, and adults with Asperger syndrome or high-functioning autism. Journal of Child Psychology and Psychiatry, 42(2), 241–51.CrossRefGoogle ScholarPubMed
Bell, M., Bryson, G., Greig, T., Corcoran, C., & Wexler, B. E. (2001). Neurocognitive enhancement therapy with work therapy. Archives of General Psychiatry, 58(8), 763. doi: 10.1001/archpsyc.58.8.763Google Scholar
Bell, M., Bryson, G., & Wexler, B. E. (2003). Cognitive remediation of working memory deficits: durability of training effects in severely impaired and less severely impaired schizophrenia. Acta Psychiatrica Scandinavica, 108(2), 101109.Google Scholar
Ben-Yishay, Y., Piasetsky, E. B., & Rattok, J. (1985). A Systematic Method for Ameliorating Disorders in Basic Attention. In Meir, A. L. B. M. J., & Diller, L. (Eds.), Neuropsychological Rehabilitation (pp. 165181). New York, NY: Guilford Press.Google Scholar
Ben-Yishay, Y., & Prigatano, G. P. (1990). Cognitive Remediation. In: Rosenthal, M., Bond, M. R., Griffith, E. R., & Miller, J. D. (Eds.), Rehabilitation of the adult and child with traumatic brain injury (pp. 393409). Philadelphia, PA: F A Davis.Google Scholar
Benoit, A., Harvey, P. O., Bherer, L., & Lepage, M. (2016). Does the beck cognitive insight scale predict response to cognitive remediation in Schizophrenia? Schizophrenia Research and Treatment, 2016, 6371856. doi: 10.1155/2016/6371856. Epub 2016 Jul 19.Google Scholar
Berman, K. F. (1987). Cortical “stress tests” in schizophrenia: regional cerebral blood flow studies. Biological Psychiatry, 22(11), 13041326.Google Scholar
Birchwood, M., Spencer, E., & McGovern, D. (2000). Schizophrenia: early warning signs. Advances in Psychiatric Treatment, 6(2), 93101.Google Scholar
Bitanihirwe, B. K., & Woo, T. U. (2014). Perineuronal nets and schizophrenia: the importance of neuronal coatings. Neuroscience & Biobehavioral Reviews, 45C, 8599. doi: 10.1016/j.neubiorev.2014.03.018Google Scholar
Bond, G. R., & Drake, R. E. (2014). Making the case for IPS supported employment. Administration and Policy in Mental Health and Mental Health Services Research, 41(1), 6973.CrossRefGoogle ScholarPubMed
Bora, E., & Murray, R. M. (2013). Meta-analysis of cognitive deficits in ultra-high risk to psychosis and first-episode psychosis: do the cognitive deficits progress over, or after, the onset of psychosis? Schizophrenia Bulletin, 40(4), 744755. doi: 10.1093/schbul/sbt085Google Scholar
Bordon, N., O'Rourke, S., & Hutton, P. (2017). The feasibility and clinical benefits of improving facial affect recognition impairments in schizophrenia: systematic review and meta-analysis. Schizophrenia Research, 188, 312. doi: 10.1016/j.schres.2017.01.014Google Scholar
Boroojerdi, B. P. M., Kopylev, L., Wharton, C. M., Cohen, L. G., & Grafman, J. (2001). Enhancing analogic reasoning with rTMS over the left prefrontal cortex. Neurology, 56, 526528.Google Scholar
Bosia, M., Bechi, M., Marino, E. et al. (2007). Influence of Catechol-O-Methyltransferase Val158Met polymorphism on neuropsychological and functional outcomes of classical rehabilitation and cognitive remediation in schizophrenia. Neuroscience Letters, 417(3), 271274. doi: 10.1016/j.neulet.2007.02.076Google Scholar
Bosia, M., Zanoletti, A., Spangaro, M. et al. (2014). Factors affecting cognitive remediation response in schizophrenia: the role of COMT gene and antipsychotic treatment. Psychiatry Research, 217(1–2), 914. doi: 10.1016/j.psychres.2014.02.015Google Scholar
Bowie, C. R., Grossman, M., Gupta, M., Oyewumi, L. K., & Harvey, P. D. (2013). Cognitive remediation in schizophrenia: efficacy and effectiveness in patients with early versus long-term course of illness. Early Intervention in Psychiatry, 8(1), 3238. doi: 10.1111/eip.12029Google Scholar
Bowie, C. R., McGurk, S. R., Mausbach, B., Patterson, T. L., & Harvey, P. D. (2012). Combined cognitive remediation and functional skills training for schizophrenia: effects on cognition, functional competence, and real-world behavior. American Journal of Psychiatry, 169(7), 710718. doi: 10.1176/appi.ajp.2012.11091337Google Scholar
Bozikas, V. P., Kosmidis, M. H., Kioperlidou, K., & Karavatos, A. (2004). Relationship between psychopathology and cognitive functioning in schizophrenia. Comprehensive Psychiatry, 45(5), 392400.CrossRefGoogle ScholarPubMed
Bracy, O. L. (1994). PSSCogRehab. Indianapolis, IN: Psychological Software Services Inc.Google Scholar
Brady, R. O. J., Tandon, N., Masters, G. A. et al. (2017). Differential brain network activity across mood states in bipolar disorder. Journal Affective Disorders, 207, 367376.Google Scholar
Breitborde, N. J. K., Woolverton, C., Dawson, S. C. et al. (2015). Meta-cognitive skills training enhances computerized cognitive remediation outcomes among individuals with first-episode psychosis. Early Intervention in Psychiatry, 11(3), 244249. doi: 10.1111/eip.12289CrossRefGoogle ScholarPubMed
Brenner, H., Stramke, W., Mewes, J., Liese, F., & Seeger, G. (1980). A treatment program, based on training of cognitive and communicative functions, in the rehabilitation of chronic schizophrenic patients (author's translation). Der Nervenarzt, 51(2), 106112.Google Scholar
Brenner, H. D. (2000). Psychological therapy in schizophrenia: what is the evidence? Acta Psychiatrica Scandinavica, 102(s407), 7477. doi: 10.1034/j.1600-0447.2000.00014.xGoogle Scholar
Brenner, H. D., Roder, V., Hodel, B. et al. (1994). Integrated Psychological Therapy for Schizophrenic Patients (IPT). Seattle, WA: Hogrefe & Huber Publishers.Google Scholar
Broadbent, D. (1958). Perception and Communication. London: Pergamon Press.Google Scholar
Brothers, L., Ring, B., & Kling, A. (1990). Response of neurons in the macaque amygdala to complex social stimuli. Behavioural Brain Research, 41(3), 199213.Google Scholar
Brown, P. C., Roediger, H. L., & Mcdaniel, M. A. (2017). Make It Stick: The Science of Successful Learning. Cambridge, MA: Harvard University Press.Google Scholar
Brown, R. P., Gerbarg, P. L., & Muench, F. (2013). Breathing practices for treatment of psychiatric and stress-related medical conditions. Psychiatric Clinics of North America, 36(1), 121140.Google Scholar
Browning, M., Holmes, E. A., & Harmer, C. J. (2010). The modification of attentional bias to emotional information: A review of the techniques, mechanisms, and relevance to emotional disorders. Cognitive Affective & Behavioral Neuroscience, 10(1), 820.Google Scholar
Buchanan, R. W., & Carpenter, W. T. (1994). Domains of psychopathology: an approach to the reduction of heterogeneity in schizophrenia. Journal of Nervous and Mental Disease, 182(4), 193204.Google Scholar
Buchanan, R. W., Keefe, R. S. E., Lieberman, J. A. et al. (2011). A randomized clinical trial of MK-0777 for the treatment of cognitive impairments in people with schizophrenia. Biological Psychiatry, 69(5), 442449.Google Scholar
Buonomano, D. V., & Merzenich, M. M. (1998). Cortical plasticity: from synapses to maps. Annual Review of Neuroscience, 21, 149186.Google Scholar
Cannon, T. D., Chung, Y., He, G. et al. (2015). Progressive reduction in cortical thickness as psychosis develops: a multisite longitudinal neuroimaging study of youth at elevated clinical risk. Biological Psychiatry, 77(2), 147157.Google Scholar
Cappa, S. F., Sandrini, M., Rossini, P. M., Sosta, K., & Miniussi, C. (2002). The role of the left frontal lobe in action naming: rTMS evidence. Neurology, 59(10), 720723.Google Scholar
Carelli, L., Solca, F., Faini, A. et al. (2017). Brain–computer interface for clinical purposes: cognitive assessment and rehabilitation. BioMed Research International, 2017:1695290. doi: 10.1155/2017/1695290. Epub 2017.Google Scholar
Carpenter, W. T. Jr., & Buchanan, R. W. (2017). Negative symptom therapeutics. Schizophrenia Bulletin, 43(4), 681682.Google Scholar
Carpenter, S. K., & Mueller, F. E. (2013). The effects of interleaving versus blocking on foreign language pronunciation learning. Memory & Cognition, 41(5), 671682.Google Scholar
Carter, C. S., & Barch, D. M. (2007). Cognitive neuroscience-based approaches to measuring and improving treatment effects on cognition in schizophrenia: the CNTRICS initiative. Schizophrenia Bulletin, 33(5), 11311137.CrossRefGoogle ScholarPubMed
Carter, C. S., Botvinick, M. M., Cohen, J. D. (1999). The contribution of the anterior cingulate cortex to executive processes in cognition. Reviews in the Neurosciences, 10(1), 4957.Google Scholar
Carter, C. S., Robertson, L. C., Nordahl, T. E. (1992). Abnormal processing of irrelevant information in chronic schizophrenia: selective enhancement of Stroop facilitation. Psychiatry Research, 41(2), 137146.CrossRefGoogle ScholarPubMed
Cavus, I., Reinhart, R. M., Roach, B. J. et al. (2012). Impaired visual cortical plasticity in schizophrenia. Biological Psychiatry, 71(6), 512520. doi: 10.1016/j.biopsych.2012.01.013Google Scholar
Cella, M., & Wykes, T. (2017). The nuts and bolts of cognitive remediation: exploring how different training components relate to cognitive and functional gains. Schizophrenia Research, 2017 Sep 14. pii: S0920-9964(17)30571-6. doi: 10.1016/j.schres.2017.09.012. [Epub ahead of print]. PMID: 28919130.Google Scholar
Cella, M., Reeder, C., & Wykes, T. (2015). Cognitive remediation in schizophrenia – now it is really getting personal. Current Opinion in Behavioral Sciences, 4, 147151.Google Scholar
Cepeda, N. J., Pashler, H., Vul, E., Wixted, J. T., & Rohrer, D. (2006). Distributed practice in verbal recall tasks: a review and quantitative synthesis. Psychological Bulletin, 132, 354380.Google Scholar
Choi, J., & Medalia, A. (2010). Intrinsic motivation and learning in a schizophrenia spectrum sample. Schizophrenia Research, 118(1–3), 1219. doi: 10.1016/j.schres.2009.08.001CrossRefGoogle Scholar
Choi, J., & Medalia, A. (2005). Factors associated with a positive response to cognitive remediation in a community psychiatric sample. Psychiatric Services, 56(5), 602604. doi: 10.1176/appi.ps.56.5.602Google Scholar
Chua, S., Wright, I., Poline, J. et al. (1997). Grey matter correlates of syndromes in schizophrenia. A semi-automated analysis of structural magnetic resonance images. British Journal of Psychiatry, 170(5), 406410.Google Scholar
Clapp, W. C., Kirk, I. J., Hamm, J. P., Shepherd, D., & Teyler, T. J. (2005). Induction of LTP in the human auditory cortex by sensory stimulation. European Journal of Neuroscience, 22(5), 11351140. doi: 10.1111/j.1460-9568.2005.04293.xGoogle Scholar
Clapp, W. C., Zaehle, T., Lutz, K. et al. (2005). Effects of long-term potentiation in the human visual cortex: a functional magnetic resonance imaging study. NeuroReport, 16(18), 19771980.Google Scholar
Claro, S., Paunesku, D., & Dweck, C. S. (2016). Growth mindset tempers the effects of poverty on academic achievement. Proceedings of the National Academy of Sciences of the United States of America, 113(31), 86648668.Google Scholar
Clementz, B. A., Sweeney, J. A., Hamm, J. P. et al. (2016). Identification of distinct psychosis biotypes using brain-based biomarkers. American Journal of Psychiatry, 173(4), 373384. doi: 10.1176/appi.ajp.2015.14091200Google Scholar
Combs, D. R., Adams, S. D., Penn, D. L., Roberts, D., Tiegreen, J., & Stem, P. (2007). Social Cognition and Interaction Training (SCIT) for inpatients with schizophrenia spectrum disorders: Preliminary findings. Schizophrenia Research, 91(1), 112116.Google Scholar
Cooper, G., & Sweller, J. (1987). Effects of schema acquisition and rule automation on mathematical problem-solving transfer. Journal of Educational Psychology, 79(4), 347362.Google Scholar
Corcoran, R., Mercer, G., & Frith, C. D. (1995). Schizophrenia symptomatology and social inference: investigating “theory of mind” in people with schizophrenia. Schizophrenia Research 17, 513.Google Scholar
Corrigan, P. W., & Green, M. F. (1993). Schizophrenic patients’ sensitivity to social cues: the role of abstraction. American Journal of Psychiatry, 150(4), 589594.Google Scholar
Couture, S. M., Penn, D. L., & Roberts, D. L. (2006). The functional significance of social cognition in schizophrenia. Schizophrenia Bulletin, 32(supplement 1), S44S63.Google Scholar
Dark, F. (2016). Implementation and Dissemination of Evidence-Based Mental Health Practices. In Medalia, A., & Bowie, C. R. (Eds.), Cognitive Remediation to Improve Functional Outcomes (pp. 117137). New York, NY: Oxford University Press.Google Scholar
Daskalakis, Z. J., Christensen, B. K., Fitzgerald, P. B., & Chen, R. (2008). Dysfunctional neural plasticity in patients with schizophrenia. Archives of General Psychiatry, 65(4), 378385. doi: 10.1001/archpsyc.65.4.378Google Scholar
Davis, M. C., Green, M. F., Lee, J. et al. (2014). Oxytocin-augmented social cognitive skills training in schizophrenia. Neuropsychopharmacology, 39(9), 20702077. doi: 10.1038/npp.2014.68CrossRefGoogle ScholarPubMed
De Vignemont, F., & Singer, T. (2006). The empathic brain: how, when and why? Trends in Cognitive Sciences, 10(10), 435441.Google Scholar
Deci, E. L., & Ryan, R. M. (1987). The support of autonomy and the control of behavior. Journal of Personality and Social Psychology, 53(6), 10241037.CrossRefGoogle ScholarPubMed
Deegan, P. E., & Drake, R. E. (2006). Shared decision making and medication management in the recovery process. Psychiatric Services, 57(11), 16361639.Google Scholar
Demirtas-Tatlidede, A., Vahabzadeh-Hagh, A. M., & Pascual-Leone, A. (2013). Can noninvasive brain stimulation enhance cognition in neuropsychiatric disorders? Neuropharmacology, 64, 566578.Google Scholar
Deutsch, S. I., Schwartz, B. L., Schooler, N. R. et al. (2013). Targeting alpha-7 nicotinic neurotransmission in schizophrenia: a novel agonist strategy. Schizophrenia Research, 148(1–3), 138144.Google Scholar
Diagnostic and Statistical Manual of Mental Disorders. (2000). Text Revision (DSM-IV-TR) (4th edn). Arlington, VA: American Psychiatric Association.Google Scholar
Dickinson, D., Ragland, J. D., Gold, J. M., & Gur, R. C. (2008). General and specific cognitive deficits in schizophrenia: Goliath defeats David? Biological Psychiatry, 64(9), 823827. doi: 10.1016/j.biopsych.2008.04.005Google Scholar
Dixon, R. A., & Bäckman, L. (1992–1993). The concept of compensation in cognitive aging: the case of prose processing in adulthood. International Journal of Aging and Human Development, 36(3), 199217.Google Scholar
Dixon, R. A., et al. (2008). Cognitive Rehabilitation. Cambridge, UK: Cambridge University Press.Google Scholar
Dutra, L., Stathopoulou, G., Basden, S. L. et al. (2008). A meta-analytic review of psychosocial interventions for substance use disorders. American Journal of Psychiatry, 165(2), 179187. doi: 10.1176/appi.ajp.2007.06111851Google Scholar
Dweck, C. S. (2015). Growth. British Journal of Educational Psychology, 85(2), 242245. doi: 10.1111/bjep.12072Google Scholar
Eack, S., Greenwald, D., Hogarty, S. et al. (2009). Cognitive enhancement therapy for early-course schizophrenia: effects of a two-year randomized controlled trial. Psychiatric Services, 60(11). doi: 10.1176/appi.ps.60.11.1468Google Scholar
Eack, S. M. (2012). Cognitive remediation: a new generation of psychosocial interventions for people with schizophrenia. Social Work, 57(3), 235246. doi: 10.1093/sw/sws008Google Scholar
Eack, S. M. (2013). Cognitive Enhancement Therapy. In Roberts, D. L. & Penn, D. L. (Eds.), Social Cognition in Schizophrenia (pp. 335357). New York, NY: Oxford University Press.Google Scholar
Eack, S. M., Greeno, C. G., Pogue-Geile, M. F. et al. (2010). Assessing social-cognitive deficits in schizophrenia with the Mayer-Salovey-Caruso Emotional Intelligence Test. Schizophrenia Bulletin, 36(2), 370380.Google Scholar
Eack, S. M., Greenwald, D. P., Hogarty, S. S. et al. (2009). Cognitive enhancement therapy for early-course schizophrenia: effects of a two-year randomized controlled trial. Psychiatric Services, 60(11), 14681476. doi: 10.1176/appi.ps.60.11.1468Google Scholar
Eack, S. M., Greenwald, D. P., Hogarty, S. S., & Keshavan, M. S. (2010). One-year durability of the effects of cognitive enhancement therapy on functional outcome in early schizophrenia. Schizophrenia Research, 120(1–3), 210216. doi: 10.1016/j.schres.2010.03.042Google Scholar
Eack, S. M., Hogarty, G. E., Cho, R. Y. et al. (2010). Neuroprotective effects of cognitive enhancement therapy against gray matter loss in early schizophrenia: results from a 2-year randomized controlled trial. Archives of General Psychiatry, 67(7), 674682. doi: 10.1001/archgenpsychiatry.2010.63Google Scholar
Eack, S. M., Hogarty, G. E., Greenwald, D. P., Hogarty, S. S., & Keshavan, M. S. (2007). Cognitive enhancement therapy improves emotional intelligence in early course schizophrenia: preliminary effects. Schizophrenia Research, 89(1–3), 308311. doi: 10.1016/j.schres.2006.08.018Google Scholar
Eack, S. M., Hogarty, S. S., Bangalore, S. S., Keshavan, M. S., & Cornelius, J. R. (2016). Patterns of substance use during cognitive enhancement therapy: an 18-month randomized feasibility study. Journal of Dual Diagnosis, 12(1), 7482. doi: 10.1080/15504263.2016.1145778Google Scholar
Eack, S. M., Hogarty, S. S., Greenwald, D. P. et al. (2015). Cognitive enhancement therapy in substance misusing schizophrenia: results of an 18-month feasibility trial. Schizophrenia Research, 161(2–3), 478483. doi: 10.1016/j.schres.2014.11.017Google Scholar
Eack, S. M., Hogarty, S. S., Greenwald, D. P. (2017). Cognitive enhancement therapy for adult autism spectrum disorder: results of an 18-month randomized clinical trial. Autism Research, 11(3), 519530. doi: 10.1002/aur.1913Google Scholar
Eack, S. M., Hogarty, G. E., Cho, R. Y. et al. (2010). Neuroprotective effects of cognitive enhancement therapy against gray matter loss in early schizophrenia: results from a 2-year randomized controlled trial. Archives of General Psychiatry, 67(7), 674682.Google Scholar
Eack, S. M., & Keshavan, M. S. (2008). Foresight in schizophrenia: a potentially unique and relevant factor to functional disability. Psychiatric Services, 59(3), 256260. doi: 10.1176/ps.2008.59.3.256Google Scholar
Eack, S. M., Mesholam-Gately, R. I., Greenwald, D. P., Hogarty, S. S., & Keshavan, M. S. (2013). Negative symptom improvement during cognitive rehabilitation: results from a 2-year trial of cognitive enhancement therapy. Psychiatry Research, 209(1), 2126. doi: 10.1016/j.psychres.2013.03.020Google Scholar
Ehrenreich, H., Degner, D., Meller, J. et al. (2004). Erythropoietin: a candidate compound for neuroprotection in schizophrenia. Molecular Psychiatry, 9(1), 4254.Google Scholar
Eisch, A. J., Cameron, H. A., Encinas, J. M. et al. (2008). Adult neurogenesis, mental health, and mental illness: hope or hype? Journal of Neuroscience 28(46), 1178511791. doi: 10.1523/JNEUROSCI.3798-08.2008Google Scholar
Ekman, P. (2004). Micro Expressions Training Tools. Retrieved from www.paulekman.com/micro-expressions-training-tools. Accessed November 8, 2018.Google Scholar
Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B., & Taub, E. (1995). Increased cortical representation of the fingers of the left hand in string players. Science, 270(5234), 305307.CrossRefGoogle ScholarPubMed
Emerson, R. W. (2000). Compensation. New York, NY: Caldwell.Google Scholar
Erickson, M. A., Ruffle, A., & Gold, J. M. (2016). A meta-analysis of mismatch negativity in schizophrenia: from clinical risk to disease specificity and progression. Biological Psychiatry, 79(12), 980987. doi: 10.1016/j.biopsych.2015.08.025Google Scholar
Farrow, T. F., Hunter, M. D., Haque, R., & Spence, S. A. (2006). Modafinil and unconstrained motor activity in schizophrenia: double-blind crossover placebo-controlled trial. British Journal of Psychiatry, 189, 461462.Google Scholar
Faustman, W. O., & Overall, J. E. (1999). Brief Psychiatric Rating Scale. In Maruish, M. (Ed.), The Use of Psychological Testing for Treatment Planning and Outcome Assessment (2nd edn., pp. 791830). Hillsdale, NJ: Erlbaum.Google Scholar
Feinberg, I. (1982–1983). Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? Journal of Psychiatric Research, 17(4), 319334.Google Scholar
Fenton, W. S. (1997). We can talk: individual psychotherapy for schizophrenia. American Journal of Psychiatry, 154(11), 14931495. doi: 10.1176/ajp.154.11.1493Google Scholar
Fett, A. K., Viechtbauer, W., Dominguez, M. D. et al. (2011). The relationship between neurocognition and social cognition with functional outcomes in schizophrenia: a meta-analysis. Neuroscience & Biobehavioral Reviews, 35(3), 573588. doi: 10.1016/j.neubiorev.2010.07.001Google Scholar
Fisher, E., Achilles, S., & Tonnies, H. (2014). Predictive genetic testing, risk communication, and risk perception: an international expert meeting in Berlin, Germany. Journal of Community Genetics, 5(1), 15. doi: 10.1007/s12687-013-0177-6Google Scholar
Fisher, M., Holland, C., Merzenich, M. M., & Vinogradov, S. (2009a). Using neuroplasticity-based auditory training to improve verbal memory in schizophrenia. American Journal of Psychiatry, 166(7), 805811. doi: 10.1176/appi.ajp.2009.08050757Google Scholar
Fisher, M., Holland, C., Subramaniam, K., & Vinogradov, S. (2009b). Neuroplasticity-based cognitive training in schizophrenia: an interim report on the effects 6 months later. Schizophrenia Bulletin, 36(4), 869879. doi: 10.1093/schbul/sbn170CrossRefGoogle ScholarPubMed
Fisher, M., Loewy, R., Carter, C. et al. (2015). Neuroplasticity-based auditory training via laptop computer improves cognition in young individuals with recent onset schizophrenia. Schizophrenia Bulletin, 41(1), 250258.Google Scholar
Fiszdon, J. M., Kurtz, M. M., Choi, J., Bell, M. D., & Martino, S. (2015). Motivational interviewing to increase cognitive rehabilitation adherence in schizophrenia. Schizophrenia Bulletin, 42(2), 327334.Google Scholar
Fitzgerald, P. B., Brown, T. L., Marston, N. A. et al. (2004). Reduced plastic brain responses in schizophrenia: a transcranial magnetic stimulation study. Schizophrenia Research, 71(1), 1726. doi: 10.1016/j.schres.2004.01.018Google Scholar
Flavell, J. H. (1979). Metacognition and cognitive monitoring: a new area of cognitive–developmental inquiry. American Psychologist, 34(10), 906911.Google Scholar
Flore, P. C., & Wicherts, J. M. (2015). Does stereotype threat influence performance of girls in stereotyped domains? A meta-analysis. Journal of School Psychology, 53(1), 2544.Google Scholar
Fogel, S., Martin, N., Lafortune, M. et al. (2012). NREM sleep oscillations and brain plasticity in aging. Frontiers in Neurology, 3, 17. doi: 10.3389/fneur.2012.00176Google Scholar
Frank, A. F., & Gunderson, J. G. (1990). The role of the therapeutic alliance in the treatment of schizophrenia. Relationship to course and outcome. Archives of General Psychiatry, 47(1), 228236.CrossRefGoogle ScholarPubMed
Frantseva, M. V., Fitzgerald, P. B., Chen, R. et al. (2008). Evidence for impaired long-term potentiation in schizophrenia and its relationship to motor skill learning. Cerebral Cortex, 18(5), 990996. doi: 10.1093/cercor/bhm151Google Scholar
Fredrick, M. M., Mintz, J., Roberts, D. L. et al. (2015). Is cognitive adaptation training (CAT) compensatory, restorative, or both? Schizophrenia Research, 166(1), 290296. doi: 10.1016/j.schres.2015.06.003Google Scholar
Frommann, N., Streit, M., & Wölwer, W. (2003). Remediation of facial affect recognition impairments in patients with schizophrenia: a new training program. Psychiatry Research, 117(3), 281284. doi: 10.1016/s0165-1781(03)00039-8Google Scholar
Fujiwara, H., Yassin, W., & Murai, T. (2015). Neuroimaging studies of social cognition in schizophrenia. Psychiatry and Clinical Neurosciences, 69(5), 259267.Google Scholar
Gallego, J. A., Robinson, D. G., Sevy, S. M. et al. (2011). Time to treatment response in first episode schizophrenia: should acute treatment trials last several months? Journal of Clinical Psychiatry, 72(12), 1691.Google Scholar
Garety, P., Joyce, E., Jolley, S. et al. (2013). Neuropsychological functioning and jumping to conclusions in delusions. Schizophrenia Research, 150(2), 570574. doi: 10.1016/j.schres.2013.08.035Google Scholar
Garrido, G., Penadés, R., Barrios, M. et al. (2017). Computer-assisted cognitive remediation therapy in schizophrenia: durability of the effects and cost-utility analysis. Psychiatry Research, 254, 198204.Google Scholar
Gioia, G., Isquith, P. K., Guy, S. C., Kenworthy, L. (2000). Reviewed by Baron, I.S. “Test Review: Behavior Rating Inventory of Executive Function”. Child Neuropsychology. 6(3), 235238.Google Scholar
Giuliano, A. J., Li, H., Mesholam-Gately, R. I. et al. (2012). Neurocognition in the psychosis risk syndrome: a quantitative and qualitative review. Current Pharmaceutical Design, 18(4), 399415.Google Scholar
Glantz, L. A., & Lewis, D. A. (2000). Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Archives of General Psychiatry, 57(1), 6573.Google Scholar
Gold, J. M., Hahn, B., Strauss, G. P., & Waltz, J. A. (2009). Turning it upside down: areas of preserved cognitive function in schizophrenia. Neuropsychology Review, 19(3), 294311.Google Scholar
Goldberg, T. E., Keefe, R. S., Goldman, R. S., Robinson, D. G., & Harvey, P. D. (2010). Circumstances under which practice does not make perfect: a review of the practice effect literature in schizophrenia and its relevance to clinical treatment studies. Neuropsychopharmacology, 35(5), 10531062.Google Scholar
Goldberg, T. E., Ragland, J. D., Torrey, E. F. et al. (1990). Neuropsychological assessment of monozygotic twins discordant for schizophrenia. Archives of General Psychiatry, 47(11), 10661072.Google Scholar
Goldman-Rakic, P. S. (1994). Working memory dysfunction in schizophrenia. Journal of Neuropsychiatry and Clinical Neurosciences, 6(4), 348357.Google Scholar
Goldman-Rakic, P. S., & Selemon, L. D. (1997). Functional and anatomical aspects of prefrontal pathology in schizophrenia. Schizophrenia Bulletin, 23(3), 437458.Google Scholar
Gonzalez, R., Pacheco-Colón, I., Duperrouzel, J. C., & Hawes, S. W. (2017). Does cannabis use cause declines in neuropsychological functioning? A review of longitudinal studies. Journal of the International Neuropsychological Society, 23(9–10), 893902.Google Scholar
Green, M. F. (2000). Neurocognitive deficits and functional outcome in schizophrenia: are we measuring the “right stuff”? Schizophrenia Bulletin, 26, 119136.Google Scholar
Green, M. F., Nuechterlein, K. H., Gold, J. M. et al. (2004). Approaching a consensus cognitive battery for clinical trials in schizophrenia: the NIMH-MATRICS conference to select cognitive domains and test criteria. Biological Psychiatry, 56(5), 301307. doi: 10.1016/j.biopsych.2004.06.023Google Scholar
Green, M. F., Penn, D. L., Bentall, R. et al. (2008). Social cognition in schizophrenia: an NIMH workshop on definitions, assessment, and research opportunities. Schizophrenia Bulletin, 34(6), 12111220.Google Scholar
Greeno, J. G. (1989). On the Nature of Competence: Principles for Understanding in a Domain©. In Resnick, L. B. (Ed.), Knowing, Learning, and Instruction: Essays in Honor of Robert Glaser (pp. 125186). Hillsdale, NJ: Erlbaum.Google Scholar
Greenwood, K., Hung, C. F., Tropeano, M., McGuffin, P., & Wykes, T. (2011). No association between the Catechol-O-Methyltransferase (COMT) Val158Met polymorphism and cognitive improvement following cognitive remediation therapy (CRT) in schizophrenia. Neuroscience Letters, 496(2), 6569.Google Scholar
Gur, R. C., Ragland, J. D., Moberg, P. J. et al. (2001). Computerized neurocognitive scanning: I. methodology and validation in healthy people. Neuropsychopharmacology, 25(5), 766776.Google Scholar
Gur, R. C., Richard, J., Hughett, P. et al. (2010). A cognitive neuroscience-based computerized battery for efficient measurement of individual differences: standardization and initial construct validation. Journal of Neuroscience Methods, 187(2), 254262. doi: 10.1016/j.jneumeth.2009.11.017Google Scholar
Guy, W. (1976). ECDEU Assessment for Psychopharmacology (Revised edn.). Rockville, MD: National Institute of Mental Health.Google Scholar
Hamann, J., Mendel, R., Cohen, R. et al. (2009). Psychiatrists’ use of shared decision making in the treatment of schizophrenia: patient characteristics and decision topics. Psychiatric Services, 60(8), 11071112.Google Scholar
Hamann, S. B., Ely, T. D., Hoffman, J. M., & Kilts, C. D. (2002). Ecstasy and agony: activation of the human amygdala in positive and negative emotion. Psychological Science, 13(2), 135141.Google Scholar
Harrow, M., Jobe, T. H., & Faull, R. N. (2012). Do all schizophrenia patients need antipsychotic treatment continuously throughout their lifetime? A 20-year longitudinal study. Psychological Medicine, 42(10), 21452155.Google Scholar
Harvey, P. D., Raykov, T., Twamley, E. W. et al. (2011). Validating the measurement of real-world functional outcomes: phase I results of the VALERO study. American Journal of Psychiatry, 168(11), 11951201. doi: 10.1176/appi.ajp.2011.10121723Google Scholar
Hasan, A., Nitsche, M. A., Herrmann, M. et al. (2012). Impaired long-term depression in schizophrenia: a cathodal tDCS pilot study. Brain Stimulation, 5(4), 475483. doi: 10.1016/j.brs.2011.08.004CrossRefGoogle ScholarPubMed
Haut, K. M., Lim, K. O., & MacDonald, A., 3rd. (2010). Prefrontal cortical changes following cognitive training in patients with chronic schizophrenia: effects of practice, generalization, and specificity. Neuropsychopharmacology, 35(9), 18501859. doi: 10.1038/npp.2010.52Google Scholar
Heaton, R. K. (1980). A Manual for the Wisconsin Card Sorting Test. Odessa, FL: Psychological Assessment Resources Inc.Google Scholar
Heaton, R. K., Chelune, G. J., Talley, J. L., Kay, G. G., & Curtiss, G. (1993). Wisconsin Card Sorting Test Manual: Revised and Expanded. Odessa, FL: Psychological Assessment Resources Inc.Google Scholar
Hebb, D. O. (1949). Organization of Behavior: A Neuropsychological Theory. New York, NY: John Wiley.Google Scholar
Heinrichs, R. W., & Zakzanis, K. K. (1998). Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology, 12(3), 426.Google Scholar
Hemsley, D. (1977). What have cognitive deficits to do with schizophrenic symptoms? British Journal of Psychiatry, 130(2), 167173.Google Scholar
Herbener, E. S., Hill, S. K., Marvin, R. W., & Sweeney, J. A. (2005). Effects of antipsychotic treatment on emotion perception deficits in first-episode schizophrenia. American Journal of Psychiatry, 162(9), 17461748. doi: 10.1176/appi.ajp.162.9.1746Google Scholar
Herschell, A. D., Kolko, D. J., Baumann, B. L., & Davis, A. C. (2010). The role of therapist training in the implementation of psychosocial treatments: a review and critique with recommendations. Clinical Psychology Review, 30, 448466.Google Scholar
Hill, S. K., Reilly, J. L., Keefe, R. S., et al. (2013). Neuropsychological impairments in schizophrenia and psychotic bipolar disorder: findings from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) study. American Journal of Psychiatry, 170(11), 12751284.Google Scholar
Hogarty, G. E. (1974). Drug and sociotherapy in the aftercare of schizophrenic patients. Archives of General Psychiatry, 31(5), 609. doi: 10.1001/archpsyc.1974.01760170011002Google Scholar
Hogarty, G. E. (2002). Personal Therapy for Schizophrenia and Related Disorders. New York, NY: Guilford Press.Google Scholar
Hogarty, G. E., & Flesher, S. (1999). Practice principles of cognitive enhancement therapy for schizophrenia. Schizophrenia Bulletin, 25(4), 693708.Google Scholar
Hogarty, G. E., & Greenwald, D. P. (2006). Cognitive Enhancement Therapy: The Training Manual. Pittsburgh, PA: CET Training, LLC.Google Scholar
Hogarty, G. E., Goldberg, S. C., Schooler, N. R., & the Collaborative Study Group. (1974). Drug and sociotherapy in the aftercare of schizophrenic patients: III. Adjustment of nonrelapsed patients. Archives of General Psychiatry, 31(5), 609618.Google Scholar
Hogarty, G. E., Flesher, S., Ulrich, R. et al. (2004). Cognitive enhancement therapy for schizophrenia: effects of a 2-year randomized trial on cognition and behavior. Archives of General Psychiatry, 61(9), 866876. doi: 10.1001/archpsyc.61.9.866Google Scholar
Hogarty, G. E., & Greenwald, D. P. (2006). Cognitive Enhancement Therapy. www.cognitiveenhancementtherapy.com/manual/. Accessed November 8, 2018.Google Scholar
Hooker, C. I., Bruce, L., Fisher, M. et al. (2012). Neural activity during emotion recognition after combined cognitive plus social cognitive training in schizophrenia. Schizophrenia Research, 139(1–3), 5359. doi: 10.1016/j.schres.2012.05.009Google Scholar
Hooker, C. I., Carol, E. E., Eisenstein, T. J. et al. (2014). A pilot study of cognitive training in clinical high risk for psychosis: initial evidence of cognitive benefit. Schizophrenia Research, 157(1–3), 314316. doi: 10.1016/j.schres.2014.05.034Google Scholar
Horan, W. P., Kern, R. S., Shokat-Fadai, K. et al. (2009). Social cognitive skills training in schizophrenia: an initial efficacy study of stabilized outpatients. Schizophrenia Research, 107(1), 4754. doi: 10.1016/j.schres.2008.09.006Google Scholar
Horan, W. P., Kern, R. S., Tripp, C. et al. (2011). Efficacy and specificity of social cognitive skills training for outpatients with psychotic disorders. Journal of Psychiatric Research, 45(8), 11131122. doi: 10.1016/j.jpsychires.2011.01.015Google Scholar
Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurones in the cat's striate cortex. Journal of Physiology, 148, 574591.Google Scholar
Huddy, V., Reeder, C., Kontis, D., Wykes, T., & Stahl, D. (2012). The effect of working alliance on adherence and outcome in cognitive remediation therapy. Journal of Nervous and Mental Disease, 200(7), 614619.Google Scholar
Hunter, M. D., Ganesan, V., Wilkinson, I. D., & Spence, S. A. (2006). Impact of modafinil on prefrontal executive function in schizophrenia. American Journal of Psychiatry, 163, 21842186.Google Scholar
Huttenlocher, P. R. (1979). Synaptic density in human frontal cortex-developmental changes and effects of aging. Brain Research, 163(2), 195205.Google Scholar
Insel, T., Cuthbert, B., Garvey, M. et al. (2010). Research Domain Criteria (RDoC): toward a new classification framework for research on mental disorders. American Journal of Psychiatry, 167(7), 748751. doi: 10.1176/appi.ajp.2010.09091379Google Scholar
Insel, T. R. (2015). The NIMH experimental medicine initiative. World Psychiatry, 14(2), 151153.Google Scholar
James, W. (1890). Principles of Psychology (Vol. 2). Mineola, NY: Dover Publications.Google Scholar
Jarskog, L. F., Lowy, M. T., Grove, R. A. et al. (2015). A Phase II study of a histamine H 3 receptor antagonist GSK239512 for cognitive impairment in stable schizophrenia subjects on antipsychotic therapy. Schizophrenia Research, 164(1), 136142.Google Scholar
Javitt, D. C. (2009). When doors of perception close: bottom-up models of disrupted cognition in schizophrenia. Annual Review of Clinical Psychology, 5(1), 249275. doi: 10.1146/annurev.clinpsy.032408.153502Google Scholar
Javitt, D. C., Shelley, A. M., & Ritter, W. (2000). Associated deficits in mismatch negativity generation and tone matching in schizophrenia. Clinical Neurophysiology, 111(10), 17331737. doi: 10.1016/s1388-2457(00)00377-1Google Scholar
Kabat-Zinn, J. (1996). Full Catastrophe Living: How to Cope with Stress, Pain and Illness Using Mindfulness Meditation. London, UK: Piatkus.Google Scholar
Kane, J. M., Robinson, D. G., Schooler, N. R. et al. (2015). Comprehensive versus usual community care for first-episode psychosis: 2-year outcomes from the NIMH RAISE early treatment program. American Journal of Psychiatry, 173(4), 362372.Google Scholar
Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: a module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17(11), 43024311.Google Scholar
Karson, C., Duffy, R. A., Eramo, A., Nylander, A. G., & Offord, S. J. (2016). Long-term outcomes of antipsychotic treatment in patients with first-episode schizophrenia: a systematic review. Neuropsychiatric Disease and Treatment, 6(12), 5767.Google Scholar
Keech, B., Crowe, S., & Hocking, D. R. (2018). Intranasal oxytocin, social cognition and neurodevelopmental disorders: a meta-analysis. Psychoneuroendocrinology, 87, 919.Google Scholar
Keefe, R. (2004). The brief assessment of cognition in schizophrenia: reliability, sensitivity, and comparison with a standard neurocognitive battery. Schizophrenia Research, 68(2–3), 283297. doi: 10.1016/j.schres.2003.09.011Google Scholar
Keefe, R. S., Bilder, R. M., Davis, S. M. et al. (2007). Neurocognitive effects of antipsychotic medications in patients with chronic schizophrenia in the CATIE Trial. Archives of General Psychiatry, 64(6), 633647.Google Scholar
Keefe, R. S., Eesley, C. E., & Poe, M. P. (2005). Defining a cognitive function decrement in schizophrenia. Biological Psychiatry, 57(6), 688691.Google Scholar
Keefe, R. S., Poe, M., Walker, T. M., Kang, J. W., & Harvey, P. D. (2006). The schizophrenia cognition rating scale: an interview-based assessment and its relationship to cognition, real-world functioning, and functional capacity. American Journal of Psychiatry, 163(3), 426432. doi: 10.1176/appi.ajp.163.3.426Google Scholar
Keefe, R. S., Silva, S. G., Perkins, D. O., & Lieberman, J. A. (1999). The effects of atypical antipsychotic drugs on neurocognitive impairment in schizophrenia: a review and meta-analysis. Schizophrenia Bulletin, 25(2), 201222.Google Scholar
Keefe, R. S. E. (2007). Neurocognitive effects of antipsychotic medications in patients with chronic schizophrenia in the CATIE Trial. Archives of General Psychiatry, 64(6), 633647. doi: 10.1001/archpsyc.64.6.633Google Scholar
Keefe, R. S. E., Poe, M., Walker, T. M., Kang, J. W., & Harvey, P. D. (2006). The schizophrenia cognition rating scale: an interview-based assessment and its relationship to cognition, real-world functioning, and functional capacity. American Journal of Psychiatry, 163(3), 426432. doi: 10.1176/appi.ajp.163.3.426Google Scholar
Keefe, R. S. E., Vinogradov, S., Medalia, A. et al. (2012). Feasibility and pilot efficacy results from the multisite Cognitive Remediation in the Schizophrenia Trials Network (CRSTN) randomized controlled trial. Journal of Clinical Psychiatry, 73(07), 10161022. doi: 10.4088/jcp.11m07100Google Scholar
Keefe, R. S. E., Vinogradov, S., Medalia, A. (2010). Report from the working group conference on multisite trial design for cognitive remediation in schizophrenia. Schizophrenia Bulletin, 37(5), 10571065. doi: 10.1093/schbul/sbq010Google Scholar
Kern, R. S., Wallace, C. J., Hellman, S. G., Womack, L. M., & Green, M. F. (1996). A training procedure for remediating WCST deficits in chronic psychotic patients: An adaptation of errorless learning principles. Journal of Psychiatric Research, 30(4), 283294.Google Scholar
Kerns, J. G., Cohen, J. D., MacDonald, A. W., 3rd et al. (2005). Decreased conflict- and error-related activity in the anterior cingulate cortex in subjects with schizophrenia. American Journal of Psychiatry, 162(10), 18331839. doi: 10.1176/appi.ajp.162.10.1833Google Scholar
Keshavan, M., Kulkarni, S., Bhojraj, T. et al. (2010). Premorbid cognitive deficits in young relatives of schizophrenia patients. Frontiers in Human Neuroscience, 3(62). doi: 10.3389/neuro.09.062.2009Google Scholar
Keshavan, M. S. (1999). Development, disease and degeneration in schizophrenia: a unitary pathophysiological model. Journal of Psychiatric Research, 33(6), 513521.Google Scholar
Keshavan, M. S., & Eack, S. (2014). Psychosocial Treatments for Chronic Psychosis. In Gabbard, G. O. (Ed.), Gabbard's Treatments of Psychiatric Disorders (5th edn., pp. 197212). Washington, DC: American Psychiatric Publishing.Google Scholar
Keshavan, M. S., Anderson, S., & Pettegrew, J. W. (1994). Is schizophrenia due to excessive synaptic pruning in the prefrontal cortex? The Feinberg hypothesis revisited. Journal of Psychiatric Research, 28(3), 239265.Google Scholar
Keshavan, M. S., Eack, S. M., Prasad, K. M., Haller, C. S., & Cho, R. Y. (2017). Longitudinal functional brain imaging study in early course schizophrenia before and after cognitive enhancement therapy. NeuroImage, 151, 5564. doi: 10.1016/j.neuroimage.2016.11.060CrossRefGoogle ScholarPubMed
Keshavan, M. S., Eack, S. M., Wojtalik, J. A., et al. (2011). A broad cortical reserve accelerates response to cognitive enhancement therapy in early course schizophrenia. Schizophrenia Research, 130(1–3), 123129. doi: 10.1016/j.schres.2011.05.001Google Scholar
Keshavan, M. S., Giedd, J., Lau, J. Y. F., Lewis, D. A., & Paus, T. (2014). Changes in the adolescent brain and the pathophysiology of psychotic disorders. Lancet Psychiatry, 1(7), 549558. doi: 10.1016/S2215-0366(14)00081-9Google Scholar
Keshavan, M. S., & Hogarty, G. E. (1999). Brain maturational processes and delayed onset in schizophrenia. Development and Psychopathology, 11(3), 525543. doi: 10.1017/s0954579499002199Google Scholar
Keshavan, M. S., Lawler, A. N., Nasrallah, H. A., & Tandon, R. (2017). New drug developments in psychosis: challenges, opportunities and strategies. Progress in Neurobiology, 152, 320.Google Scholar
Keshavan, M. S., Mehta, U. M., Padmanabhan, J. L., & Shah, J. L. (2015). Dysplasticity, metaplasticity, and schizophrenia: implications for risk, illness, and novel interventions. Development and Psychopathology, 27(2), 615635.Google Scholar
Keshavan, M. S., Nasrallah, H. A., & Tandon, R. (2011). Schizophrenia, “Just the Facts” 6. Moving ahead with the schizophrenia concept: from the elephant to the mouse. Schizophrenia Research, 127(1), 313.Google Scholar
Keshavan, M. S., Rabinowitz, J., DeSmedt, G., Harvey, P. D., & Schooler, N. (2004). Correlates of insight in first episode psychosis. Schizophrenia Research, 70(2), 187194.Google Scholar
Keshavan, M. S., Vinogradov, S., Rumsey, J., Sherrill, J., & Wagner, A. (2014). Cognitive training in mental disorders: update and future directions. American Journal of Psychiatry, 171(5), 510522. doi: 10.1176/appi.ajp.2013.13081075Google Scholar
Kingdon, D. G., & Turkington, D. (1994). Cognitive-Behavioral Therapy of Schizophrenia. New York, NY: Guilford Press.Google Scholar
Kingdon, D. G., & Turkington, D. (2005). Cognitive Therapy of Schizophrenia. New York, NY: Guilford Press.Google Scholar
Kirkpatrick, B., Buchanan, R. W., McKenny, P. D., Alphs, L. D., & Carpenter, W. T. (1989). The schedule for the deficit syndrome: an instrument for research in schizophrenia. Psychiatry Research, 30(2), 119123.Google Scholar
Kirkpatrick, B., Strauss, G. P., Nguyen, L. et al. (2010). The brief negative symptom scale: psychometric properties. Schizophrenia Bulletin, 37(2), 300305. doi: 10.1093/schbul/sbq059Google Scholar
Kline, E., & Keshavan, M. (2017). Innovations in first episode psychosis interventions: the case for a “RAISE-Plus” approach. Schizophrenia Research, 182(supplement C), 23. doi: 10.1016/j.schres.2017.03.035Google Scholar
Klintsova, A. Y., & Greenough, W. T. (1999). Synaptic plasticity in cortical systems. Current Opinion in Neurobiology, 9(2), 203208.Google Scholar
Knöchel, C., Voss, M., Grüter, F. et al. (2015). Omega 3 fatty acids: novel neurotherapeutic targets for cognitive dysfunction in mood disorders and schizophrenia? Current Neuropharmacology, 13(5), 663680.Google Scholar
Kobayashi, M., & Pascual-Leone, A. (2003). Transcranial magnetic stimulation in neurology. Lancet Neurology, 2(3), 145156.Google Scholar
Kohler, C. G., Turner, T. H., Bilker, W. B. et al. (2003). Facial emotion recognition in schizophrenia: intensity effects and error pattern. American Journal of Psychiatry, 160(10), 17681774. doi: 10.1176/appi.ajp.160.10.1768Google Scholar
Koreen, A. R., Siris, S. G., Chakos, M., & Alvir, J. (1993). Depression in first-episode schizophrenia. American Journal of Psychiatry, 150(11), 1643.Google Scholar
Koren, D., Seidman, L. J., Goldsmith, M., & Harvey, P. D. (2006). Real-world cognitive – and metacognitive – dysfunction in schizophrenia: a new approach for measuring (and remediating) more “right stuff”. Schizophrenia Bulletin, 32(2), 310326.Google Scholar
Kornell, N., & Bjork, R. A. (2008). Learning concepts and categories: is spacing the “enemy of induction? Psychological Science, 19, 585592.Google Scholar
Krabbendam, L., & Aleman, A. (2003). Cognitive rehabilitation in schizophrenia: a quantitative analysis of controlled studies. Psychopharmacology (Berl), 169(3–4), 376382.Google Scholar
Kraepelin, E., Barclay, R. M., & Robertson, G. M. (1919). Dementia Praecox and Paraphrenia. Chicago: Chicago Medical Book Co.Google Scholar
Kurtz, M. M., & Richardson, C. L. (2011). Social cognitive training for schizophrenia: a meta-analytic investigation of controlled research. Schizophrenia Bulletin, 38(5), 10921104. doi: 10.1093/schbul/sbr036Google Scholar
Lebedev, M. A., & Nicolelis, M. A. (2017). Brain-machine interfaces: from basic science to neuroprostheses and neurorehabilitation. Physiological Reviews, 97(2), 767837.Google Scholar
Lee, H., Dvorak, D., Kao, H. Y. et al. (2012). Early cognitive experience prevents adult deficits in a neurodevelopmental schizophrenia model. Neuron, 75(4), 714724.Google Scholar
Lehrer, D. S., & Lorenz, J. (2014). Anosognosia in schizophrenia: hidden in plain sight. Innovations in Clinical Neuroscience, 11(5–6), 1017.Google Scholar
Leifker, F. R., Patterson, T. L., Heaton, R. K., & Harvey, P. D. (2009). Validating measures of real-world outcome: the results of the VALERO expert survey and RAND panel. Schizophrenia Bulletin, 37(2), 334343. doi: 10.1093/schbul/sbp044Google Scholar
Lett, T. A., Voineskos, A. N., Kennedy, J. L., Levine, B., & Daskalakis, Z. J. (2014). Treating working memory deficits in schizophrenia: a review of the neurobiology. Biological Psychiatry, 75(5), 361370. doi: 10.1016/j.biopsych.2013.07.026Google Scholar
Lewandowski, K. E., Eack, S. M., Hogarty, S. S., Greenwald, D. P., & Keshavan, M. S. (2011). Is cognitive enhancement therapy equally effective for patients with schizophrenia and schizoaffective disorder? Schizophrenia Research, 125(2–3), 291294. doi: 10.1016/j.schres.2010.11.017Google Scholar
Lewandowski, K. E., Ongur, D., & Keshavan, M. S. (2017). Development of novel behavioral interventions in an experimental therapeutics world: challenges, and directions for the future. Schizophrenia Research. doi: 10.1016/j.schres.2017.06.010Google Scholar
Lewis, D. A. (2014). Inhibitory neurons in human cortical circuits: substrate for cognitive dysfunction in schizophrenia. Current Opinion in Neurobiology, 26(supplement C), 2226. doi: 10.1016/j.conb.2013.11.003Google Scholar
Liberman, R. P., Massel, H. K., Mosk, M. D., & Wong, S. E. (1985). Social skills training for chronic mental patients. Psychiatric Services, 36(4), 396403. doi: 10.1176/ps.36.4.396Google Scholar
Liddle, P. F. (1987). The symptoms of chronic schizophrenia. A re-examination of the positive-negative dichotomy. British Journal of Psychiatry, 151(2), 145151.Google Scholar
Lieberman, J. A., Papadakis, K., Csernansky, J. et al. (2009). MEM-MD-29 study group. A randomized, placebo-controlled study of memantine as adjunctive treatment in patients with schizophrenia. Neuropsychopharmacology, 34(5), 13221329.Google Scholar
Linden, M., Hawley, C., Blackwood, B. et al. (2016). Technological aids for the rehabilitation of memory and executive functioning in children and adolescents with acquired brain injury. Cochrane Database of Systematic Reviews, 7, CD011020.Google Scholar
Lindenmayer, J. P., & Khan, A. (2011). Galantamine augmentation of long-acting injectable risperidone for cognitive impairments in chronic schizophrenia. Schizophrenia Research, 125(2), 267277. doi: 10.1016/j.schres.2010.08.021Google Scholar
Lindenmayer, J. P., Khan, A., Lachman, H. et al. (2015). COMT genotype and response to cognitive remediation in schizophrenia. Schizophrenia Research, 168(1–2), 279284.Google Scholar
Lindenmayer, J. P., McGurk, S. R., Mueser, K. T. et al. (2008). A randomized controlled trial of cognitive remediation among inpatients with persistent mental illness. Psychiatric Services, 59(3), 241247. doi: 10.1176/appi.ps.59.3.241Google Scholar
Lindenmayer, J. P., Ozog, V. A., Khan, A. et al. (2017). Predictors of response to cognitive remediation in service recipients with severe mental illness. Psychiatric Rehabilitation Journal, 40(1), 6169.Google Scholar
Liu, C. H., Keshavan, M. S., Tronick, E., Seidman, L. J. (2015a). Perinatal risks and childhood premorbid indicators of later psychosis: next steps for early psychosocial interventions. Schizophrenia Bulletin 41(4): 801–16.Google Scholar
Liu, B., Teng, F., Fu, H., et al. (2015b). Excessive intraoperative blood loss independently predicts recurrence of hepatocellular carcinoma after liver transplantation. BMC Gastroenterology, 15, 138. doi: 10.1186/s12876-015-0364-5Google Scholar
Lomo, T. (2003). The discovery of long-term potentiation. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 358(1432), 617620. doi: 10.1098/rstb.2002.1226Google Scholar
Lysaker, P. H., Dimaggio, G., Buck, K. D., Carcione, A., & Nicolò, G. (2007). Metacognition within narratives of schizophrenia: associations with multiple domains of neurocognition. Schizophrenia Research, 93(1), 278287.Google Scholar
Lysaker, P. H., Dimaggio, G., Carcione, A. et al. (2010). Metacognition and schizophrenia: the capacity for self-reflectivity as a predictor for prospective assessments of work performance over six months. Schizophrenia Research, 122(1), 124130.Google Scholar
Lysaker, P. H., Leonhardt, B. L., Pijnenborg, M. et al. (2014). Metacognition in schizophrenia spectrum disorders: methods of assessment and associations with neurocognition, symptoms, cognitive style and function. Israel Journal of Psychiatry and Related Sciences, 51(1), 5461.Google Scholar
Lysaker, P. H., Vohs, J., Minor, K. S. et al. (2015). Metacognitive deficits in schizophrenia. Journal of Nervous and Mental Disease, 203(7), 530536. doi: 10.1097/nmd.0000000000000323Google Scholar
Maguire, E. A., Gadian, D. G., Johnsrude, I. S. et al. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences of the United States of America, 97(8), 43984403. doi: 10.1073/pnas.070039597Google Scholar
Manganas, L. N., Zhang, X., Li, Y. et al. (2007). Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain. Science, 318(5852), 980985. doi: 10.1126/science.1147851Google Scholar
Marjoram, D., Tansley, H., Miller, P. et al. (2005). A theory of mind investigation into the appreciation of visual jokes in schizophrenia. BMC Psychiatry, 5(1), 12.Google Scholar
Markham, J. A., & Greenough, W. T. (2004). Experience-driven brain plasticity: beyond the synapse. Neuron Glia Biology, 1(4), 351363. doi: 10.1017/s1740925x05000219Google Scholar
Marshall, M., & Rathbone, J. (2011). Early intervention for psychosis. Schizophrenia Bulletin, 37(6), 11111114. doi: 10.1093/schbul/sbr110Google Scholar
Maslow, A. H. (1943). A theory of human motivation. Psychological Review, 50(4), 370396. doi: 10.1037/h0054346Google Scholar
Mathew, I., Gardin, T. M., Tandon, N. et al. (2014). Medial temporal lobe structures and hippocampal subfields in psychotic disorders: findings from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) study. JAMA Psychiatry, 71(7), 769777.Google Scholar
Mausbach, B. T., Harvey, P. D., Goldman, S. R., Jeste, D. V., & Patterson, T. L. (2007). Development of a brief scale of everyday functioning in persons with serious mental illness. Schizophrenia Bulletin, 33(6), 13641372.Google Scholar
Mayer, J. D., Salovey, P., Caruso, D. R., & Sitarenios, G. (2003). Measuring emotional intelligence with the MSCEIT V2.0. Emotion, 3(1), 97105. doi: 10.1037/1528-3542.3.1.97Google Scholar
Mayes, A., Montaldi, D., & Migo, E. (2007). Associative memory and the medial temporal lobes. Trends in Cognitive Sciences, 11(3), 126135. doi: 10.1016/j.tics.2006.12.003Google Scholar
Mayfield, K. H., & Chase, P. N. (2002). The effects of cumulative practice on mathematics problem solving. Journal of Applied Behavior Analysis, 35, 105123.Google Scholar
McDonald, S., Flanagan, S., Rollins, J., & Kinch, J. (2003). TASIT: A new clinical tool for assessing social perception after traumatic brain injury. Journal of Head Trauma Rehabilitation, 18(3), 219238.Google Scholar
McGhie, A., & Chapman, J. (1961). Disorders of attention and perception in early schizophrenia. British Journal of Medical Psychology, 34, 103116.Google Scholar
McGrath, J., Saha, S., Welham, J. et al. (2004). A systematic review of the incidence of schizophrenia: the distribution of rates and the influence of sex, urbanicity, migrant status and methodology. BMC Medicine, 2(13), 122.Google Scholar
McGurk, S. R. (2005). Cognitive training and supported employment for persons with severe mental illness: one-year results from a randomized controlled trial. Schizophrenia Bulletin, 31(4), 898909. doi: 10.1093/schbul/sbi037Google Scholar
McGurk, S. R., Mueser, K. T., Xie, H. et al. (2015). Cognitive enhancement treatment for people with mental illness who do not respond to supported employment: a randomized controlled trial. American Journal of Psychiatry, 172(9), 852861. doi: 10.1176/appi.ajp.2015.14030374Google Scholar
McGurk, S. R., Mueser, K. T., Feldman, K., Wolfe, R., & Pascaris, A. (2007a). Cognitive training for supported employment: 2–3 year outcomes of a randomized controlled trial. American Journal of Psychiatry, 164(3), 437441.Google Scholar
McGurk, S. R., Twamley, E. W., Sitzer, D. I., McHugo, G. J., & Mueser, K. T. (2007b). A meta-analysis of cognitive remediation in schizophrenia. American Journal of Psychiatry, 164(12), 17911802. doi: 10.1176/appi.ajp.2007.07060906Google Scholar
McHugh, R. K., & Barlow, D. H. (2010). The dissemination and implementation of evidence-based psychological treatments: a review of current efforts. American Psychologist, 65(2), 7384.Google Scholar
McNab, F., Varrone, A., Farde, L., et al. (2009). Changes in cortical dopamine D1 receptor binding associated with cognitive training. Science. 323(5915), 800–2.Google Scholar
Meaney, M. J. (2001). Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annual Review of Neuroscience, 24(1), 11611192.Google Scholar
Mears, R. P., & Spencer, K. M. (2012). Electrophysiological assessment of auditory stimulus-specific plasticity in schizophrenia. Biological Psychiatry, 71(6), 503511. doi: 10.1016/j.biopsych.2011.12.016Google Scholar
Medalia, A., Erlich, M. D., Soumet-Leman, C., & Saperstein, A. M. (2017). Translating cognitive behavioral interventions from bench to bedside: the feasibility and acceptability of cognitive remediation in research as compared to clinical settings. Schizophrenia Research. doi: 10.1016/j.schres.2017.07.044. [Epub ahead of print]Google Scholar
Medalia, A., & Freilich, B. (2008). The Neuropsychological Educational Approach to Cognitive Remediation (NEAR) model: practice principles and outcome studies. American Journal of Psychiatric Rehabilitation, 11(2), 123143. doi: 10.1080/15487760801963660Google Scholar
Medalia, A., Herlands, T., & Baginsky, C. (2003). Rehab rounds: cognitive remediation in the supportive housing setting. Psychiatric Services, 54(9), 12191220. doi: 10.1176/appi.ps.54.9.1219Google Scholar
Medalia, A., Revheim, N., & Casey, M. (2002). Remediation of problem-solving skills in schizophrenia: evidence of a persistent effect. Schizophrenia Research, 57(2–3), 165171. doi: 10.1016/s0920-9964(01)00293-6Google Scholar
Medalia, A., Revheim, N., & Herlands, T. (2009). Cognitive Remediation for Psychological Disorders. New York, NY: Oxford University Press.Google Scholar
Medalia, A., & Saperstein, A. (2011). The role of motivation for treatment success. Schizophrenia Bulletin, 37(supplement 2), S122S128. doi: 10.1093/schbul/sbr063Google Scholar
Medalia, A., & Saperstein, A. M. (2013). Does cognitive remediation for schizophrenia improve functional outcomes? Current Opinion in Psychiatry, 26, 151157.Google Scholar
Mervis, J. E., Capizzi, R. J., Boroda, E., & MacDonald, A. W. III (2017). Transcranial direct current stimulation over the dorsolateral prefrontal cortex in schizophrenia: a quantitative review of cognitive outcomes. Frontiers in Human Neuroscience, 18.Google Scholar
Merzenich, M. M., Jenkins, W. M., Johnston, P. et al. (1996). Temporal processing deficits of language-learning impaired children ameliorated by training. Science, 271(5245), 7781. doi: 10.1126/science.271.5245.77Google Scholar
Mesholam-Gately, R. I., Giuliano, A. J., Goff, K. P., Faraone, S. V., & Seidman, L. J. (2009). Neurocognition in first-episode schizophrenia: a meta-analytic review. Neuropsychology, 23(3), 315.Google Scholar
Metz, A., & Albers, B. (2014). What does it take? How federal initiatives can support the implementation of evidence-based programs to improve outcomes for adolescents. Journal of Adolescent Health, 54(3), S92S96.Google Scholar
Michalopoulou, P. G., Lewis, S. W., Drake, R. J. et al. (2015). Modafinil combined with cognitive training: pharmacological augmentation of cognitive training in schizophrenia. European Neuropsychopharmacology, 25(8), 11781189.Google Scholar
Moore, H., Geyer, M. A., Carter, C. S., & Barch, D. M. (2013). Harnessing cognitive neuroscience to develop new treatments for improving cognition in schizophrenia: CNTRICS selected cognitive paradigms for animal models. Neuroscience & Biobehavioral Reviews, 37(9, Part B), 20872091. doi: 10.1016/j.neubiorev.2013.09.011Google Scholar
Moritz, S., & Woodward, T. S. (2007). Metacognitive training in schizophrenia: from basic research to knowledge translation and intervention. Current Opinion in Psychiatry, 20(6), 619625.Google Scholar
Moritz, S., Andreou, C., Schneider, B. C. et al. (2014). Sowing the seeds of doubt: a narrative review on metacognitive training in schizophrenia. Clinical Psychology Review, 34(4), 358366.Google Scholar
Moritz, S., & Woodward, T. S. (2005). Jumping to conclusions in delusional and non-delusional schizophrenic patients. British Journal of Clinical Psychology, 44(2), 193207. doi: 10.1348/014466505x35678Google Scholar
Morrens, M., Hulstijn, W., & Sabbe, B. (2006). Psychomotor slowing in schizophrenia. Schizophrenia Bulletin, 33(4), 10381053.Google Scholar
Mueller, D. R., Schmidt, S. J., & Roder, V. (2015). One-year randomized controlled trial and follow-up of integrated neurocognitive therapy for schizophrenia outpatients. Schizophrenia Bulletin, 41(3), 604616.Google Scholar
Mueser, K. T., Deavers, F., Penn, D. L., & Cassisi, J. E. (2013). Psychosocial treatments for schizophrenia. Annual Review of Clinical Psychology, 9, 465497.Google Scholar
Mueser, K. T., Penn, D. L., Blanchard, J. J., & Bellack, A. S. (1997). Affect recognition in schizophrenia: a synthesis of findings across three studies. Psychiatry, 60(4), 301308.Google Scholar
Nagarajan, S., Mahncke, H., Salz, T. et al. (1999). Cortical auditory signal processing in poor readers. Proceedings of the National Academy of Sciences, 96(11), 64836488. doi: 10.1073/pnas.96.11.6483Google Scholar
Nahum, M., Fisher, M., Loewy, R. et al. (2014). A novel, online social cognitive training program for young adults with schizophrenia: a pilot study. Schizophrenia Research: Cognition, 1(1), e11e19. doi: 10.1016/j.scog.2014.01.003Google Scholar
National Institute of Mental Health. (2012). Recovery After an Initial Schizophrenia Episode: A Research Project of the NIMH from nimh.nih.gov/health/topics/schizophrenia/raise/index.shtmlGoogle Scholar
Nelson, C. A. (2000). Neurons to Neighborhoods. Washington, DC: National Academies Press.Google Scholar
Nestler, E. J., & Hyman, S. E. (2010). Animal models of neuropsychiatric disorders. Nature Neuroscience, 13(10), 11611169.Google Scholar
Newman, L. S. (2001). What is Social Cognition? Four Basic Approaches and Their Implications for Schizophrenia Research. In Corrigan, P. W. & Penn, D. L. (Eds.), Social Cognition and Schizophrenia (pp. 4172). Washington, DC: American Psychological Association.Google Scholar
Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. Journal of Physiology, 527(Pt 3), 633639.Google Scholar
Nuechterlein, K. H., Green, M. F., Kern, R. S. et al. (2008) The MATRICS Consensus Cognitive Battery, part 1: test selection, reliability, and validity. American Journal of Psychiatry, 165(2), 203–13.Google Scholar
Nuechterlein, K. H., Ventura, J., Subotnik, K. L. et al. (2014). Developing a cognitive training strategy for first-episode schizophrenia: integrating bottom-up and top-down approaches. American Journal of Psychiatric Rehabilitation, 17, 225253.Google Scholar
Oberman, L., & Pascual-Leone, A. (2013). Changes in plasticity across the lifespan: cause of disease and target for intervention. Progress in Brain Research, 207, 91120. doi: 10.1016/B978-0-444-63327-9.00016-3Google Scholar
Osborne, A. L., Solowij, N., & Weston-Green, K. (2017). A systematic review of the effect of cannabidiol on cognitive function: relevance to schizophrenia. Neuroscience & Biobehavioral Reviews, 72(supplement C), 310324. doi: 10.1016/j.neubiorev.2016.11.012Google Scholar
Oxley, T., Fitzgerald, P. B., Brown, T. L. et al. (2004). Repetitive transcranial magnetic stimulation reveals abnormal plastic response to premotor cortex stimulation in schizophrenia. Biological Psychiatry, 56(9), 628633. doi: 10.1016/j.biopsych.2004.08.023Google Scholar
Overall, J. E., & Gorham, D. R. (1962). The brief psychiatric rating scale. Psychological Reports, 10(3), 799812.Google Scholar
Papa, M., De Luca, C., Petta, F., Alberghina, L., & Cirillo, G. (2014). Astrocyte-neuron interplay in maladaptive plasticity. Neuroscience & Biobehavioral Reviews, 42, 3554. doi: 10.1016/j.neubiorev.2014.01.010Google Scholar
Papiol, S., Popovic, D., Keeser, D. et al. (2017). Polygenic risk has an impact on the structural plasticity of hippocampal subfields during aerobic exercise combined with cognitive remediation in multi-episode schizophrenia. Translational Psychiatry, 7(6), 19.Google Scholar
Patterson, T. L., Goldman, S., McKibbin, C. L., Hughs, T., & Jeste, D. V. (2001). UCSD Performance-based skills assessment: development of a new measure of everyday functioning for severely mentally ill adults. Schizophrenia Bulletin, 27(2), 235245.Google Scholar
Patterson, T. L., McKibbin, C., Taylor, M. et al. (2003). Functional Adaptation Skills Training (FAST): a pilot psychosocial intervention study in middle-aged and older patients with chronic psychotic disorders. American Journal of Geriatric Psychiatry, 11(1), 1723. doi: 10.1097/00019442-200301000-00004Google Scholar
Pearlson, G. D., Petty, R. G., Ross, C. A., & Tien, A. Y. (1996). Schizophrenia: a disease of heteromodal association cortex? Neuropsychopharmacology, 14(1), 117.Google Scholar
Penades, R., Pujol, N., Catalan, R. et al. (2013). Brain effects of cognitive remediation therapy in schizophrenia: a structural and functional neuroimaging study. Biological Psychiatry, 73(10), 10151023. doi: 10.1016/j.biopsych.2013.01.017Google Scholar
Penn, D., Roberts, D. L., Munt, E. D. et al. (2005). A pilot study of social cognition and interaction training (SCIT) for schizophrenia. Schizophrenia Research, 80(2–3), 357359. doi: 10.1016/j.schres.2005.07.011Google Scholar
Penn, D. L., Corrigan, P. W., Bentall, R. P., Racenstein, J. M., & Newman, L. (1997). Social cognition in schizophrenia. Psychological Bulletin, 121(1), 114132. doi: 10.1037//0033-2909.121.1.114Google Scholar
Perkins, D. O. (2002). Predictors of noncompliance in patients with schizophrenia. Journal of Clinical Psychiatry, 63(12), 11211128.Google Scholar
Perkins, D. O., Gu, H., Boteva, K., & Lieberman, J. A. (2005). Relationship between duration of untreated psychosis and outcome in first-episode schizophrenia: a critical review and meta-analysis. American Journal of Psychiatry, 162(10), 17851804. doi: 10.1176/appi.ajp.162.10.1785Google Scholar
Perlman, S. B., & Pelphrey, K. A. (2011). Developing connections for affective regulation: age-related changes in emotional brain connectivity. Journal of Experimental Child Psychology, 108(3), 607620.Google Scholar
Peterson, C., Semmel, A., Von Baeyer, C., et al. (1982). The attributional style questionnaire. Cognitive Therapy and Research, 6(3), 287300.Google Scholar
Peterson, D. E., Beck, S. L., & Keefe, D. M. (2004). Novel therapies. Seminars in Oncology Nursing, 20(1), 5358.Google Scholar
Phillips, M. L., Drevets, W. C., Rauch, S. L., & Lane, R. (2003). Neurobiology of emotion perception I: the neural basis of normal emotion perception. Biological Psychiatry, 54(5), 504514.Google Scholar
Pietrzak, R. H., Olver, J., Norman, T. et al. (2009). A comparison of the CogState schizophrenia battery and the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) battery in assessing cognitive impairment in chronic schizophrenia. Journal of Clinical and Experimental Neuropsychology, 31(7), 848859. doi: 10.1080/13803390802592458Google Scholar
Pirttimaki, T. M., & Parri, H. R. (2013). Astrocyte plasticity: implications for synaptic and neuronal activity. Neuroscientist, 19(6), 604615. doi: 10.1177/1073858413504999Google Scholar
Pittenger, C. (2013). Disorders of memory and plasticity in psychiatric disease. Dialogues in Clinical Neuroscience, 15(4), 455463.Google Scholar
Popov, T., Jordanov, T., Rockstroh, B. et al. (2011). Specific cognitive training normalizes auditory sensory gating in schizophrenia: a randomized trial. Biological Psychiatry, 69(5), 465471. doi: 10.1016/j.biopsych.2010.09.028Google Scholar
Powell, S. B., Weber, M., & Geyer, M. A. (2012). Genetic Models of Sensorimotor Gating: Relevance to Neuropsychiatric Disorders. Current Topics in Behavioral Neuroscience, 12, 251318.Google Scholar
Pratt, J., Winchester, C., Dawson, N., & Morris, B. (2012). Advancing schizophrenia drug discovery: optimizing rodent models to bridge the translational gap. Nature Reviews Drug Discovery, 11, 560579.Google Scholar
Rabany, L., Deutsch, L., & Levkovitz, Y. (2014). Double-blind, randomized sham controlled study of deep-TMS add-on treatment for negative symptoms and cognitive deficits in schizophrenia. Journal of Psychopharmacology, 28(7), 686690. doi: 10.1177/0269881114533600Google Scholar
Raffard, S., Gely-Nargeot, M. C., Capdevielle, D., Bayard, S., & Boulenger, J. P. (2009) [Learning potential and cognitive remediation in schizophrenia]. Encephale, 35(4), 353–60.Google Scholar
Ramon y Cajal, S. (1894). The Croonian lecture: la fine structure des centres nerveux. Proceedings of the Royal Society of London, 55, 331335.Google Scholar
Ramsay, I. S., & MacDonald, A. W. (2015). Brain correlates of cognitive remediation in schizophrenia: activation likelihood analysis shows preliminary evidence of neural target engagement. Schizophrenia Bulletin, 41(6), 12761284. doi: 10.1093/schbul/sbv025Google Scholar
Randolph, C., Tierney, M. C., Mohr, E., & Chase, T. N. (1998). The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS): preliminary clinical validity. Journal of Clinical and Experimental Neuropsychology, 20(3), 310319.Google Scholar
Rector, N. A., & Beck, A. T. (2012). Cognitive behavioral therapy for schizophrenia: an empirical review Neil A. Rector, PhD and Aaron T. Beck, MD (2001). Reprinted from the Journal of Nervous and Mental Disease. 189, 278–287. Journal of Nervous and Mental Disease, 200(10), 832839.Google Scholar
Reeder, C., Huddy, V., Cella, M. et al. (2017). A new generation computerised metacognitive cognitive remediation programme for schizophrenia (CIRCuiTS): a randomised controlled trial. Psychological Medicine, 47(15), 27202730.Google Scholar
Revell, E. R., Neill, J. C., Harte, M., Khan, Z., & Drake, R. J. (2015). A systematic review and meta-analysis of cognitive remediation in early schizophrenia. Schizophrenia Research, 168(1–2), 213222. doi: 10.1016/j.schres.2015.08.017Google Scholar
Roberts, D. L., & Penn, D. L. (2009). Social Cognition and Interaction Training (SCIT) for outpatients with schizophrenia: a preliminary study. Psychiatry Research, 166(2–3), 141147. doi: 10.1016/j.psychres.2008.02.007Google Scholar
Robinson, D. G., Gallego, J. A., John, M. et al. (2015). A randomized comparison of aripiprazole and risperidone for the acute treatment of first-episode schizophrenia and related disorders: 3-month outcomes. Schizophrenia Bulletin, 41(6), 12271236.Google Scholar
Robinson, D. G., Woerner, M. G., McMeniman, M., Mendelowitz, A., & Bilder, R. M. (2004). Symptomatic and functional recovery from a first episode of schizophrenia or schizoaffective disorder. American Journal of Psychiatry, 161(3), 473479. doi: 10.1176/appi.ajp.161.3.473Google Scholar
Roder, V. (2006). Integrated Psychological Therapy (IPT) for schizophrenia: is it effective? Schizophrenia Bulletin, 32(supplement 1), S81S93. doi: 10.1093/schbul/sbl021Google Scholar
Rogasch, N. C., & Fitzgerald, P. B. (2013). Assessing cortical network properties using TMS–EEG. Human Brain Mapping, 34(7), 16521669.Google Scholar
Rosanova, M., & Ulrich, D. (2005). Pattern-specific associative long-term potentiation induced by a sleep spindle-related spike train. Journal of Neuroscience, 25(41), 93989405. doi: 10.1523/JNEUROSCI.2149-05.2005Google Scholar
Rosenthal, M., & Braant, S. (2003). Benefits of adjunct modafinil in an open-label, pilot study in patients with schizophrenia. Schizophrenia Research, 60(1), 301.Google Scholar
Rossi, S., Cappa, S. F., Babiloni, C. et al. (2001). Prefrontal [correction of Prefontal] cortex in long-term memory: an “interference” approach using magnetic stimulation. Nature Neuroscience, 4(9), 4852.Google Scholar
Rund, B. R. (1998). A review of longitudinal studies of cognitive function in schizophrenia patients. Schizophrenia Bulletin, 24(3), 425435.Google Scholar
Ruse, S. A., Harvey, P. D., Davis, V. G. et al. (2014). Virtual reality functional capacity assessment in schizophrenia: Preliminary data regarding feasibility and correlations with cognitive and functional capacity performance. Schizophrenia Research: Cognition, 1(1), pp. e21e26.Google Scholar
Russell, T. A., Chu, E., & Phillips, M. L. (2006). A pilot study to investigate the effectiveness of emotion recognition remediation in schizophrenia using the micro-expression training tool. British Journal of Clinical Psychology, 45(4), 579583. doi: 10.1348/014466505x90866Google Scholar
Ryan, R. M., & Deci, E. L. (2000). Intrinsic and extrinsic motivations: classic definitions and new directions. Contemporary Educational Psychology, 25(1), 5467.Google Scholar
Sabbag, S., Twamley, E. M., Vella, L. et al. (2011). Assessing everyday functioning in schizophrenia: not all informants seem equally informative. Schizophrenia Research, 131(1–3), 250255. doi: 10.1016/j.schres.2011.05.003Google Scholar
Sacks, S., Fisher, M., Garrett, C. et al. (2013). Combining computerized social cognitive training with neuroplasticity-based auditory training in schizophrenia. Clinical Schizophrenia & Related Psychoses, 7(2), 7886A. doi: 10.3371/csrp.safi.012513Google Scholar
Saha, S., Chant, D., Welham, J., & McGrath, J. (2005). A systematic review of the prevalence of schizophrenia. PLoS Medicine, 2(5), e141.Google Scholar
Sahakian, B. J., Morris, R. G., Evenden, J. L. et al. (1988). A comparative study of visuospatial memory and learning in Alzheimer-type dementia and Parkinson's disease. Brain, 111(3), 695718.Google Scholar
Salovey, P., & Mayer, J. D. (1990). Emotional intelligence. Imagination, Cognition and Personality, 9(3), 185211. doi: 10.2190/dugg-p24e-52wk-6cdgGoogle Scholar
Samara, M. T., Leucht, C., Leeflang, M. M. et al. (2015). Early improvement as a predictor of later response to antipsychotics in schizophrenia: a diagnostic test review. American Journal of Psychiatry, 172(7), 617629.Google Scholar
Sandoval, L. R., González, B. L., Stone, W. S. et al. (2017). Effects of peer social interaction on performance during computerized cognitive remediation therapy in patients with early course schizophrenia: a pilot study. Schizophrenia Research. doi: 10.1016/j.schres.2017.08.049. [Epub ahead of print]Google Scholar
Saperstein, A. M., & Medalia, A. (2015). The role of motivation in cognitive remediation for people with schizophrenia. Current Topics in Behavioral Neurosciences, 172, 533546.Google Scholar
Sartory, G., Zorn, C., Groetzinger, G., & Windgassen, K. (2005). Computerized cognitive remediation improves verbal learning and processing speed in schizophrenia. Schizophrenia Research, 75(2–3), 219223. doi: 10.1016/j.schres.2004.10.004Google Scholar
Satogami, K., Takahashi, S., Yamada, S., Ukai, S., & Shinosaki, K. (2017). Omega-3 fatty acids related to cognitive impairment in patients with schizophrenia. Schizophrenia Research: Cognition, 9, 812.Google Scholar
Savla, G. N., Vella, L., Armstrong, C. C., Penn, D. L., & Twamley, E. W. (2012). Deficits in domains of social cognition in schizophrenia: a meta-analysis of the empirical evidence. Schizophrenia Bulletin, 39(5), 979992. doi: 10.1093/schbul/sbs080Google Scholar
Saxe, R., & Kanwisher, N. (2003). People thinking about thinking people. The role of the temporo-parietal junction in “theory of mind”. Neuroimage, 19(4), 18351842.Google Scholar
Schmidt, S. J., Mueller, D. R., & Roder, V. (2011). Social cognition as a mediator variable between neurocogition and functional outcome in schizophrenia: empirical review and new results by structural equation modeling. Schizophrenia Bulletin, 37(supplement 2), S41S54.Google Scholar
Schneider, L. C., & Struening, E. L. (1983). SLOF: a behavioral rating scale for assessing the mentally ill. Social Work Research and Abstracts, 19(3), 921. doi: 10.1093/swra/19.3.9Google Scholar
Schoenwald, S. K., Kelleher, K., & Weisz, J. R. (2008). The research network on youth mental health. Building bridges to evidence-based practice: The MacArthur Foundation Child System and Treatment Enhancement Projects (Child STEPs). Administration and Policy in Mental Health and Mental Health Services Research, 35(1–2), 6672.Google Scholar
Scoriels, L., Barnett, J. H., Soma, P. K., Sahakian, B. J., & Jones, P. B. (2012). Effects of modafinil on cognitive functions in first episode psychosis. Psychopharmacology (Berl.), 220, 249258.Google Scholar
Seidman, L. J., Giuliano, A. J., Meyer, E. C. et al. (2010). Neuropsychology of the prodrome to psychosis in the NAPLS consortium: relationship to family history and conversion to psychosis. Archives of General Psychiatry, 67(6), 578588.Google Scholar
Sergi, M. J., Fiske, A. P., Horan, W. P. et al. (2009). Development of a measure of relationship perception in schizophrenia. Psychiatry Research, 166(1), 5462. doi: 10.1016/j.psychres.2008.03.010Google Scholar
Sergi, M. J., Rassovsky, Y., Nuechterlein, K. H., & Green, M. F. (2006). Social perception as a mediator of the influence of early visual processing on functional status in schizophrenia. American Journal of Psychiatry, 163(3), 448454.Google Scholar
Sergi, M. J., Rassovsky, Y., Widmark, C. et al. (2007). Social cognition in schizophrenia: relationships with neurocognition and negative symptoms. Schizophrenia Research, 90(1–3), 316324.Google Scholar
Shah, J. L., Tandon, N., Montrose, D. M. et al. (2017). Clinical psychopathology in youth at familial high risk for psychosis. Early Intervention in Psychiatry. doi: 10.1111/eip.12480. [Epub ahead of print]Google Scholar
Shashi, V., Harrell, W., Eack, S. et al. (2015). Social cognitive training in adolescents with chromosome 22q11.2 deletion syndrome: feasibility and preliminary effects of the intervention. Journal of Intellectual Disability Research, 59(10), 902913. doi: 10.1111/jir.12192Google Scholar
Shenton, M. E., Kikinis, R., Jolesz, F. A. et al. (1992). Abnormalities of the left temporal lobe and thought disorder in schizophrenia: a quantitative magnetic resonance imaging study. New England Journal of Medicine, 327(9), 604612.Google Scholar
Silver, H., Goodman, C., Knoll, G., & Isakov, V. (2004). Brief emotion training improves recognition of facial emotions in chronic schizophrenia. A pilot study. Psychiatry Research, 128(2), 147154. doi: 10.1016/j.psychres.2004.06.002Google Scholar
Silverstein, S. M., Hatashita-Wong, M., Solak, B. A. et al. (2005). Effectiveness of a two-phase cognitive rehabilitation intervention for severely impaired schizophrenia patients. Psychological Medicine, 35(6), 829837.Google Scholar
Singh, J., Kour, K., & Jayaram, M. B. (2012). Acetylcholinesterase inhibitors for schizophrenia. Cochrane Database of Systematic Reviews, 18(1), CD007967. doi: 10.1002/14651858.CD007967.pub2Google Scholar
Siskind, D., McCartney, L., Goldschlager, R., & Kisely, S. (2016). Clozapine v. first- and second-generation antipsychotics in treatment-refractory schizophrenia: systematic review and meta-analysis. British Journal of Psychiatry, 209(5), 385392. doi: 10.1192/bjp.bp.115.177261Google Scholar
Skevington, S. M., Lotfy, M., & O'Connell, K. A. (2004). The World Health Organization's WHOQOL-BREF quality of life assessment: psychometric properties and results of the international field trial. A report from the WHOQOL Group. Quality of Life Research, 13(2), 299310. doi: 10.1023/b:qure.0000018486.91360.00Google Scholar
Sliwinski, M. J., Mogle, J. A., Hyun, J. et al. (2016). Reliability and validity of ambulatory cognitive assessments. Assessment, 5(1), 1430. doi: 1073191116643164Google Scholar
Spaulding, W. D. (1992). Design prerequisites for research on cognitive therapy for schizophrenia. Schizophrenia Bulletin, 18(1), 39.Google Scholar
Spencer, K. M., Nestor, P. G., Perlmutter, R. et al. (2004). Neural synchrony indexes disordered perception and cognition in schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 101(49), 1728817293.Google Scholar
Squire, L. R., & Zola-Morgan, S. (1991). The medial temporal lobe memory system. Science, 253(5026), 1380.Google Scholar
Srihari, V. H., Shah, J., & Keshavan, M. S. (2012). Is early intervention for psychosis feasible and effective? Psychiatric Clinics of North America, 35(3), 613631.Google Scholar
Stahnisch, F. W., & Nitsch, R. (2002). Santiago Ramon y Cajal's concept of neuronal plasticity: the ambiguity lives on. Trends in Neurosciences, 25(11), 589591.Google Scholar
Stein, L. I. (1980). Alternative to mental hospital treatment. Archives of General Psychiatry, 37(4), 392. doi: 10.1001/archpsyc.1980.01780170034003Google Scholar
Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer's disease. Lancet Neurology, 11(11), 10061012. doi: 10.1016/s1474-4422(12)70191-6Google Scholar
Stone, W. S., Seidman, L. J., Wojcik, J. D., & Green, A. I. (2003). Glucose effects on cognition in schizophrenia. Schizophrenia Research, 62(1), 93103.Google Scholar
Stovell, D., Morrison, A. P., Panayiotou, M., & Hutton, P. (2016). Shared treatment decision-making and empowerment-related outcomes in psychosis: systematic review and meta-analysis. British Journal of Psychiatry, 209(1), 2328.Google Scholar
Subramaniam, K., Luks, T. L., Fisher, M. et al. (2012). Computerized cognitive training restores neural activity within the reality monitoring network in schizophrenia. Neuron, 73(4), 842853. doi: 10.1016/j.neuron.2011.12.024Google Scholar
Swerdlow, N. R., & Light, G. A. (2016). Animal models of deficient sensorimotor gating in schizophrenia: are they still relevant? Current Topics in Behavioral Neurosciences, 28, 305325.Google Scholar
Szymanski, L., & King, B. H. (1999). Practice parameters for the assessment and treatment of children, adolescents, and adults with mental retardation and comorbid mental disorders. Journal of the American Academy of Child & Adolescent Psychiatry, 38(12), 5S31S. doi: 10.1016/s0890-8567(99)80002-1Google Scholar
Tacchino, A., Pedullà, L., Bonzano, L. et al. (2015). A new app for at-home cognitive training: description and pilot testing on patients with multiple sclerosis. JMIR mHealth and uHealth, 3(3), e85.Google Scholar
Takesian, A. E., & Hensch, T. K. (2013). Balancing plasticity/stability across brain development. Progress in Brain Research, 207, 334. doi: 10.1016/B978-0-444-63327-9.00001-1Google Scholar
Tamminen, J., Payne, J. D., Stickgold, R., Wamsley, E. J., & Gaskell, M. G. (2010). Sleep spindle activity is associated with the integration of new memories and existing knowledge. Journal of Neuroscience, 30(43), 1435614360.Google Scholar
Tamminga, C. A., Stan, A. D., & Wagner, A. D. (2010). The hippocampal formation in schizophrenia. American Journal of Psychiatry, 167(10), 11781193.Google Scholar
Tandon, R., Nasrallah, H. A., & Keshavan, M. S. (2010). Schizophrenia, “Just the Facts” 5. Treatment and prevention. Past, present, and future. Schizophrenia Research, 122(1), 123.Google Scholar
Tcheremissine, O. V., Rossman, W. E., Castro, M. A., & Gardner, D. R. (2014). Conducting clinical research in community mental health settings: opportunities and challenges. World Journal of Psychiatry, 4(3), 4955.Google Scholar
Thermenos, H., Keshavan, M., Juelich, R. et al. (2013). A review of neuroimaging studies of young relatives of individuals with schizophrenia: a developmental perspective from schizotaxia to schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 162(7), 604635.Google Scholar
Thiede, K. W., Anderson, M., & Therriault, D. (2003). Accuracy of metacognitive monitoring affects learning of texts. Journal of Educational Psychology, 95(1), 6673.Google Scholar
Thoma, P., & Daum, I. (2008). Working memory and multi-tasking in paranoid schizophrenia with and without comorbid substance use disorder. Addiction, 103(5), 774786.Google Scholar
Thompson, P. M., Vidal, C., Giedd, J. N. et al. (2001). Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proceedings of the National Academy of Sciences, 98(20), 1165011655.Google Scholar
Tononi, G., & Cirelli, C. (2014). Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron, 81(1), 1234. doi: 10.1016/j.neuron.2013.12.025Google Scholar
Torous, J., Onnela, J. P., & Keshavan, M. (2017). New dimensions and new tools to realize the potential of RDoC: digital phenotyping via smartphones and connected devices. Translational Psychiatry, 7(3), e1053.Google Scholar
Torous, J., Staples, P., Fenstermacher, E., Dean, J., & Keshavan, M. (2016). Barriers, benefits, and beliefs of brain training smartphone apps: an Internet survey of younger US consumers. Frontiers in Human Neuroscience, 20(10), 180. doi: 10.3389/fnhum.2016.00180Google Scholar
Tse, S., Davidson, L., Chung, K. F., Ng, K. L., & Yu, C. H. (2014). Differences and similarities between functional and personal recovery in an Asian population: a cluster analytic approach. Psychiatry: Interpersonal and Biological Processes, 77(1), 4156.Google Scholar
Tullis, J. G., & Benjamin, A. S. (2011). On the effectiveness of self-paced learning. Journal of Memory and Language, 64(2), 109118.Google Scholar
Turner, D. C., Clark, L., Pomarol-Clotet, E. et al. (2004). Modafinil improves cognition and attentional set shifting in patients with chronic schizophrenia. Neuropsychopharmacology, 29(7), 13631373.Google Scholar
Twamley, E. W., Burton, C. Z., & Vella, L. (2011). Compensatory cognitive training for psychosis: who benefits? Who stays in treatment? Schizophrenia Bulletin, 37(supplement 2), S5562.Google Scholar
Twamley, E. W., Vella, L., Burton, C. Z., Heaton, R. K., & Jeste, D. V. (2012). Compensatory cognitive training for psychosis: effects in a randomized controlled trial. Journal of Clinical Psychiatry, 73(9), 12121219.Google Scholar
Velligan, D. I., Bow-Thomas, C. C., Huntzinger, C. et al. (2000). Randomized controlled trial of the use of compensatory strategies to enhance adaptive functioning in outpatients with schizophrenia. American Journal of Psychiatry, 157(8), 13171323.Google Scholar
Velligan, D. I., Roberts, D., Mintz, J. et al. (2015). A randomized pilot study of MOtiVation and Enhancement (MOVE) Training for negative symptoms in schizophrenia. Schizophrenia Research, 165(2), 175180.Google Scholar
Ventura, J., Cienfuegos, A., Boxer, O., & Bilder, R. (2008). Clinical global impression of cognition in schizophrenia (CGI-CogS): reliability and validity of a co-primary measure of cognition. Schizophrenia Research, 106(1), 5969. doi: 10.1016/j.schres.2007.07.025Google Scholar
Ventura, J., Green, M. F., Shaner, A., & Liberman, R. P. (1993). Training and quality assurance with the brief psychiatric rating scale: the drift busters. International Journal of Methods in Psychiatric Research, 3(4), 221244.Google Scholar
Ventura, J., Reise, S. P., Keefe, R. S. et al. (2010). Nuechterlein, K.H., Seidman, L.J. and Bilder, R.M., 2010. The Cognitive Assessment Interview (CAI): development and validation of an empirically derived, brief interview-based measure of cognition. Schizophrenia Research, 121(1–3), 2431.Google Scholar
Ventura, J., Reise, S. P., Keefe, R. S. et al. (2013). The Cognitive Assessment Interview (CAI): reliability and validity of a brief interview-based measure of cognition. Schizophrenia Bulletin, 39(3), 583591.Google Scholar
Vinogradov, S., Fisher, M., Holland, C. et al. (2009). Is serum brain-derived neurotrophic factor a biomarker for cognitive enhancement in schizophrenia? Biological Psychiatry, 66(6), 549553. doi: 10.1016/j.biopsych.2009.02.017Google Scholar
Vita, A., Deste, G., De Peri, L. et al. (2013). Predictors of cognitive and functional improvement and normalization after cognitive remediation in patients with schizophrenia. Schizophrenia Research, 150(1), 5157.Google Scholar
Vizi, E. S. (1979). Presynaptic modulation of neurochemical transmission. Progress in Neurobiology, 12(3–4), 181290.Google Scholar
Volkow, N. D. (2009). Substance use disorders in schizophrenia–clinical implications of comorbidity. Schizophrenia Bulletin, 35(3), 469472. doi: 10.1093/schbul/sbp016Google Scholar
Wallace, C. J., & Liberman, R. P. (1985). Social skills training for patients with schizophrenia: a controlled clinical trial. Psychiatry Research, 15(3), 239247. doi: 10.1016/0165-1781(85)90081-2Google Scholar
Wamsley, E. J., Tucker, M. A., Shinn, A. K. et al. (2012). Reduced sleep spindles and spindle coherence in schizophrenia: mechanisms of impaired memory consolidation? Biological Psychiatry, 71(2), 154161. doi: 10.1016/j.biopsych.2011.08.008Google Scholar
Ward, J. (2007). We are all Larry David: Curb Your Enthusiasm and Psychology. The Newyorker. October 29, 2007 IssueGoogle Scholar
Wechsler, D. (1981). Wechsler Adult Intelligence Scale-Revised. San Antonio, TX: Psychological Corp.Google Scholar
Weisz, J. R., Ugueto, A. M., Cheron, D. M., & Herren, J. (2013). Evidence-based youth psychotherapy in the mental health ecosystem. Journal of Clinical Child & Adolescent Psychology, 42(2), 274286.Google Scholar
Whoqol, (1998). Development of the World Health Organization WHOQOL-BREF quality of life assessment. Psychological Medicine, 28(3), 551558.Google Scholar
Wiers, R. W., Gladwin, T. E., Hofmann, W., Salemink, E., & Ridderinkhof, K. R. (2013). Cognitive bias modification and cognitive control training in addiction and related psychopathology. Clinical Psychological Science, 1(2), 192212. doi: 10.1177/2167702612466547Google Scholar
Wilk, C. M., Gold, J. M., Bartko, J. J., et al. (2002). Test-retest stability of the Repeatable Battery for the Assessment of Neuropsychological Status in schizophrenia. American Journal of Psychiatry, 159(5), 838–44.Google Scholar
Wojtalik, J. A., Eack, S. M., Pollock, B. G., & Keshavan, M. S. (2012). Prefrontal gray matter morphology mediates the association between serum anticholinergicity and cognitive functioning in early course schizophrenia. Psychiatry Research, 204(2–3), 6167.Google Scholar
Wölwer, W., Frommann, N., Halfmann, S. et al. (2005). Remediation of impairments in facial affect recognition in schizophrenia: efficacy and specificity of a new training program. Schizophrenia Research, 80(2–3), 295303. doi: 10.1016/j.schres.2005.07.018Google Scholar
Woodberry, K. A., Giuliano, A. J., & Seidman, L. J. (2008). Premorbid IQ in schizophrenia: a meta-analytic review. American Journal of Psychiatry, 165(5), 579587.Google Scholar
Woodward, N. D., Purdon, S. E., Meltzer, H. Y., & Zald, D. H. (2005). A meta-analysis of neuropsychological change to clozapine, olanzapine, quetiapine, and risperidone in schizophrenia. International Journal of Neuropsychopharmacology, 8(3), 457472.Google Scholar
World Health Organization. (1996). WHOQOL-BREF: Introduction, Administration, Scoring and Generic Version of the Assessment: Field Trial Version. Geneva: World Health Organization.Google Scholar
Wu, C., Dagg, P., Molgat, C. (2014). A pilot study to measure cognitive impairment in patients with severe schizophrenia with the Montreal Cognitive Assessment (MoCA). Schizophrenia Research, 158(1–3), 151–5.Google Scholar
Wunderink, L., Nieboer, R. M., Wiersma, D., Sytema, S., & Nienhuis, F. J. (2013). Recovery in remitted first-episode psychosis at 7 years of follow-up of an early dose reduction/discontinuation or maintenance treatment strategy: long-term follow-up of a 2-year randomized clinical trial. JAMA Psychiatry, 70(9), 913920.Google Scholar
Wykes, T., Brammer, M., Mellers, J. et al. (2002). Effects on the brain of a psychological treatment: cognitive remediation therapy. British Journal of Psychiatry, 181(2), 144152.Google Scholar
Wykes, T., Huddy, V., Cellard, C., McGurk, S. R., & Czobor, P. (2011). A meta-analysis of cognitive remediation for schizophrenia: methodology and effect sizes. American Journal of Psychiatry, 168(5), 472485. doi: 10.1176/appi.ajp.2010.10060855Google Scholar
Wykes, T., & Reeder, C. (2005). Cognitive Remediation Therapy for Schizophrenia: An Introduction. New York, NY: Brunner-Routledge.Google Scholar
Wykes, T., Reeder, C., Corner, J., Williams, C., & Everitt, B. (1999). The effects of neurocognitive remediation on executive processing in patients with schizophrenia. Schizophrenia Bulletin, 25(2), 291307. doi: 10.1093/oxfordjournals.schbul.a033379Google Scholar
Wykes, T., Reeder, C., Williams, C. et al. (2003). Are the effects of cognitive remediation therapy (CRT) durable? Results from an exploratory trial in schizophrenia. Schizophrenia Research, 61(2–3), 163174.Google Scholar
Wykes, T., Reeder, C., Landau, S. et al. (2007). Cognitive remediation therapy in schizophrenia. British Journal of Psychiatry, 190(5), 421427.Google Scholar
Yamaguchi, S., Sato, S., Horio, N. et al. (2017). Cost-effectiveness of cognitive remediation and supported employment for people with mental illness: a randomized controlled trial. Psychological Medicine, 47(1), 5365.Google Scholar
Zhang, J. P., Gallego, J. A., Robinson, D. G. et al. (2013). Efficacy and safety of individual second-generation vs. first-generation antipsychotics in first-episode psychosis: a systematic review and meta-analysis. International Journal of Neuropsychopharmacology, 16(6), 12051218.Google Scholar
Zortea, K., Franco, V. C., Guimarães, P., & Belmonte-de-Abreu, P. S. (2016). Resveratrol supplementation did not improve cognition in patients with schizophrenia: results from a randomized clinical trial. Frontiers in Psychiatry, 7(159).Google Scholar
Zubin, J., & Spring, B. (1977). Vulnerability – a new view of schizophrenia. Journal of Abnormal Psychology, 86(2), 103126.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Matcheri Keshavan, Shaun Eack, University of Pittsburgh
  • Book: Cognitive Enhancement in Schizophrenia and Related Disorders
  • Online publication: 18 March 2019
  • Chapter DOI: https://doi.org/10.1017/9781108163682.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Matcheri Keshavan, Shaun Eack, University of Pittsburgh
  • Book: Cognitive Enhancement in Schizophrenia and Related Disorders
  • Online publication: 18 March 2019
  • Chapter DOI: https://doi.org/10.1017/9781108163682.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Matcheri Keshavan, Shaun Eack, University of Pittsburgh
  • Book: Cognitive Enhancement in Schizophrenia and Related Disorders
  • Online publication: 18 March 2019
  • Chapter DOI: https://doi.org/10.1017/9781108163682.015
Available formats
×