Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-04-30T21:37:29.696Z Has data issue: false hasContentIssue false

4 - Sea Ice Data Assimilation

Published online by Cambridge University Press:  12 October 2017

Tom Carrieres
Affiliation:
Environment and Climate Change Canada
Mark Buehner
Affiliation:
Environment and Climate Change Canada
Jean-Franҫois Lemieux
Affiliation:
Environment and Climate Change Canada
Leif Toudal Pedersen
Affiliation:
Technical University of Denmark, Lyngby
Get access

Summary

Data assimilation is a critical component of any automated prediction system used to forecast the weather, ocean or sea ice with lead times from hours to weeks. In the context of sea ice prediction, it enables the vast amount of information from all available in situ and remote sensing sea ice observations and forecasts from large-scale sea ice models to be optimally combined. Several existing sea ice prediction systems use data assimilation techniques for this purpose. The merging of the information from observations and model forecasts results in more accurate and useful estimates of the sea ice conditions than could otherwise be obtained using either the observations or model forecasts in isolation. The goal of this chapter is to provide an overview of data assimilation with an emphasis on the particular challenges posed by its application to operational sea ice prediction.
Type
Chapter
Information
Sea Ice Analysis and Forecasting
Towards an Increased Reliance on Automated Prediction Systems
, pp. 51 - 108
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barth, A., Canter, M. and Van Schaeybroeck, B. (2015). Assimilation of sea surface temperature, sea ice concentration and sea ice drift in a model of the Southern Ocean. Ocean Modelling, 93, 2239. doi: 10.1016/j.ocemod.2015.07.011Google Scholar
Bertino, L., Evensen, G. and Wackernagel, H. (2003). Sequential data assimilation techniques in oceanography. International Statistical Review, 71, 223241. doi: 10.1111/j.1751-5823.2003.tb00194.xGoogle Scholar
Borup, M., Grum, M., Madsen, H. and Mikkelsen, P. S. (2015). A partial ensemble Kalman filtering approach to enable use of range limited observations. Stochastic Environmental Research and Risk Assessment, 29, 119129. doi: 10.1007/s00477-014-0908-1Google Scholar
Buehner, M., Caya, A., Carrieres, T. and Pogson, L. (2014). Assimilation of SSMIS and ASCAT data and the replacement of highly uncertain estimates in the Environment Canada Regional Ice Prediction System. Quarterly Journal of the Royal Meteorological Society, 142, 562573. doi: 10.1002/qj.2408Google Scholar
Buehner, M. and Shlyaeva, A. (2015). Scale-dependent background-error covariance localisation. Tellus A, 67, 28027. doi: 10.3402/tellusa.v67.28027Google Scholar
Fenty, I. and Heimbach, P. (2013a). Hydrographic preconditioning for seasonal sea ice anomalies in the Labrador Sea. Journal of Physical Oceanography, 43, 863883. doi: 10.1175/JPO-D-12-064.1Google Scholar
Fenty, I. and Heimbach, P. (2013b). Coupled sea ice–ocean-state estimation in the Labrador Sea and Baffin Bay. Journal of Physical Oceanography, 43, 884904. doi: 10.1175/JPO-D-12-065.1Google Scholar
Heimbach, P., Menemenlis, D., Losch, M., Campin, J.-M. and Hill, C. (2010). On the formulation of sea-ice models. Part 2: Lessons from multi-year adjoint sea-ice export sensitivities through the Canadian Arctic Archipelago. Ocean Modelling, 33, 145158. doi: 10.1016/j.ocemod.2010.02.002Google Scholar
Helfrich, S. R., McNamara, D., Ramsay, B. H., Baldwin, T. and Kasheta, T. (2007). Enhancements to, and forthcoming developments in the Interactive Multisensor Snow and Ice Mapping System (IMS). Hydrological Processes, 21, 15761586. doi: 10.1002/hyp.6720Google Scholar
Kauker, F., Kaminski, T., Karcher, M., Giering, R., Gerdes, R. and Voßbeck, M. (2009). Adjoint analysis of the 2007 all time Arctic sea-ice minimum. Geophysical Research Letters, 36(3), L03707. doi:10.1029/2008GL036323Google Scholar
Lahoz, W. A., Khattatov, B. and Menard, R. (2010). Data Assimilation: Making Sense of Observations. Germany: Springer-Verlag Berlin Heidelberg. doi: 10.1007/978-3-540-74703-1Google Scholar
Leigh, S., Wang, Z. and Clausi, D. A. (2014). Automated ice-water classification using dual polarization SAR satellite imagery, IEEE Transactions on Geoscience and Remote Sensing, 52, 55295539. doi: 10.1109/TGRS.2013.2290231Google Scholar
Lisæter, K. A., Evensen, G. and Laxon, S. (2007). Assimilating synthetic CryoSat sea ice thickness in a coupled ice-ocean model, Journal of Geophysical Research Oceans, 112, C07023. doi: 10.1029/2006JC003786Google Scholar
Massonnet, F., Goosse, H., Fichefet, T. and Counillon, F. (2014). Calibration of sea ice dynamic parameters in an ocean-sea ice model using an ensemble Kalman filter. Journal of Geophysical Research Oceans, 119, 41684184. doi: 10.1002/2013JC009705Google Scholar
Massonnet, F., Mathiot, P., Fichefet, T., Goosse, H., König Beatty, C., Vancoppenolle, M., and Lavergne, T. (2013). A model reconstruction of the Antarctic sea ice thickness and volume changes over 1980–2008 using data assimilation. Ocean Modelling, 64, 6775. doi: 10.1016/j.ocemod.2013.01.003Google Scholar
Sakov, P., Counillon, F., Bertino, L., Lisæter, K. A., Oke, P. R., and Korablev, A. (2012). TOPAZ4: an ocean-sea ice data assimilation system for the North Atlantic and Arctic. Ocean Science, 8, 633656. doi: 10.5194/os-8-633-2012Google Scholar
Scott, K. A., Ashouri, Z., Buehner, M., Pogson, L. and Carrieres, T. (2015). Assimilation of ice and water observations from SAR imagery to improve estimates of sea ice concentration. Tellus A, 67, 27218. doi: 10.3402/tellusa.v67.27218Google Scholar
Shlyaeva, A., Buehner, M., Caya, A., Lemieux, J.-F., Smith, G. C., Roy, F., Dupont, F. and Carrieres, T. (2016). Towards ensemble data assimilation for the Environment Canada Regional Ice Prediction System. Quarterly Journal of the Royal Meteorological Society, 142, 10901099. doi: 10.1002/qj.2712Google Scholar
Smith, G. C., Roy, F., Reszka, M., Surcel Colan, D., He, Z., Deacu, D., Belanger, J.-M., Skachko, S., Liu, Y., Dupont, F., Lemieux, J.-F., Beaudoin, C., Tranchant, B., Drévillon, M., Garric, G., Testut, C.-E., Lellouche, J.-M., Pellerin, P., Ritchie, H., Lu, Y., Davidson, F., Buehner, M., Caya, A. and Lajoie, M. (2015). Sea ice forecast verification in the Canadian Global Ice Ocean Prediction System. Quarterly Journal of the Royal Meteorological Society, 142, 659671. doi: 10.1002/qj.2555Google Scholar
Stammer, D., Wunsch, C., Giering, R., Eckert, C., Heimbach, P., Marotzke, J., Adcroft, A., Hill, C. N. and Marshall, J. (2002). Global ocean circulation during 1992–1997, estimated from ocean observations and a general circulation model. Journal of Geophysical Research, 107(C9), 3118. doi: 10.1029/2001JC000888Google Scholar
Stark, J. D., Ridley, J., Martin, M. and Hines, A. (2008). Sea ice concentration and motion assimilation in a sea iceocean model. Journal of Geophysical Research, 113, C05S91. doi: 10.1029/2007JC004224Google Scholar
Tippett, M. K., Anderson, J. L., Bishop, C. H., Hamill, T. M. and Whitaker, J. S. (2003). Ensemble square root filters. Monthly Weather Review, 131, 14851490. doi: 10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;22.0.CO;2>Google Scholar
Toyoda, T., Fujii, Y., Yasuda, T., Usui, N., Ogawa, K., Kuragano, T., Tsujino, H. and Kamachi, M. (2016). Data assimilation of sea ice concentration into a global ocean–sea ice model with corrections for atmospheric forcing and ocean temperature fields. Journal of Oceanography, 72, 235262. doi: 10.1007/s10872-015-0326-0Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×