Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-13T18:40:51.040Z Has data issue: false hasContentIssue false

Part 7 - Misinterpreting Test Results

Published online by Cambridge University Press:  03 November 2020

Keith Josephs
Affiliation:
Mayo Clinic Alzheimer’s Disease Research Center
Federico Rodriguez-Porcel
Affiliation:
Medical University of South Carolina
Rhonna Shatz
Affiliation:
University of Cincinnati
Daniel Weintraub
Affiliation:
University of Pennsylvania
Alberto Espay
Affiliation:
University of Cincinnati
Get access
Type
Chapter
Information
Common Pitfalls in Cognitive and Behavioral Neurology
A Case-Based Approach
, pp. 99 - 112
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Bonanni, L. et al. 2008. EEG comparisons in early Alzheimer’s disease, dementia with Lewy bodies and Parkinson’s disease with dementia patients with a 2-year follow-up. Brain 131(Pt 3) 690705.CrossRefGoogle ScholarPubMed
Claassen, D. O. et al. 2010. REM sleep behavior disorder preceding other aspects of synucleinopathies by up to half a century. Neurology 75(6) 494499.CrossRefGoogle ScholarPubMed
Escandon, A., Al-Hammadi, N. and Galvin, J. E. 2010. Effect of cognitive fluctuation on neuropsychological performance in aging and dementia. Neurology 74(3) 210217.CrossRefGoogle ScholarPubMed
Fujishiro, H. et al. 2008. Validation of the neuropathologic criteria of the third consortium for dementia with Lewy bodies for prospectively diagnosed cases. J Neuropathol Exp Neurol 67(7) 649656.CrossRefGoogle Scholar
Horvath, J. et al. 2014. Neuropathology of parkinsonism in patients with pure Alzheimer’s disease. J Alzheimers Dis 39(1) 115120.CrossRefGoogle ScholarPubMed
Irwin, D. J. et al. 2017. Neuropathological and genetic correlates of survival and dementia onset in synucleinopathies: a retrospective analysis. Lancet Neurol 16(1) 5565.CrossRefGoogle ScholarPubMed
Josephs, K. A. 2007. Capgras syndrome and its relationship to neurodegenerative disease. Arch Neurol 64(12) 17621766.CrossRefGoogle ScholarPubMed
McKeith, I. G. et al. 2017. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology 89(1) 88100.CrossRefGoogle ScholarPubMed
Postuma, R. B. et al. 2015. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30(12) 15911601.CrossRefGoogle ScholarPubMed
Postuma, R. B., Gagnon, J. F., Vendette, M. and Montplaisir, J. Y. 2009. Idiopathic REM sleep behavior disorder in the transition to degenerative disease. Mov Disord 24(15) 22252232.CrossRefGoogle ScholarPubMed
Yousaf, T., Dervenoulas, G., Valkimadi, P. E. and Politis, M. 2018. Neuroimaging in Lewy body dementia. J Neurol 266 (1) 126.Google Scholar

References

Armangue, T. et al. 2015. Autoimmune post-herpes simplex encephalitis of adults and teenagers. Neurology 85(20) 17361743.CrossRefGoogle ScholarPubMed
Galli, J., Clardy, S. L. and Piquet, A. L. 2017. NMDAR encephalitis following herpes simplex virus encephalitis. Curr Infect Dis Rep 19(1) 1.Google Scholar
Skoldenberg, B. et al. 2006. Incidence and pathogenesis of clinical relapse after herpes simplex encephalitis in adults. J Neurol 253(2) 163170.CrossRefGoogle ScholarPubMed

References

Dalmau, J. et al. 2004. Clinical analysis of anti-Ma2-associated encephalitis. Brain 127(8) 18311844.CrossRefGoogle ScholarPubMed
Gaig, C. et al. 2017. Clinical manifestations of the anti-IgLON5 disease. Neurology 88(18) 17361743.CrossRefGoogle ScholarPubMed
Graus, F. et al. 2016. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 15(4) 391404.CrossRefGoogle ScholarPubMed
Jammoul, A. et al. 2016. Clinical utility of seropositive voltage-gated potassium channel-complex antibody. Neurol Clin Pract 6(5) 409418.CrossRefGoogle ScholarPubMed
van Sonderen, A. et al. 2016. The relevance of VGKC positivity in the absence of LGI1 and Caspr2 antibodies. Neurology 86(18) 16921699.CrossRefGoogle ScholarPubMed
van Sonderen, A., Petit-Pedrol, M., Dalmau, J. and Titulaer, M. J. 2017. The value of LGI1, Caspr2 and voltage-gated potassium channel antibodies in encephalitis. Nat Rev Neurol 13(5) 290301.CrossRefGoogle ScholarPubMed

References

Geschwind, M. D. 2016. Rapidly progressive dementia. Continuum 22(2) 510537.Google ScholarPubMed
Geschwind, M. D. et al. 2003. Challenging the clinical utility of the 14–3–3 protein for the diagnosis of sporadic Creutzfeldt–Jakob disease. Arch Neurol 60(6) 813816.CrossRefGoogle ScholarPubMed
McGuire, L. I. et al. 2012. RT-QuIC analysis of cerebrospinal fluid in sporadic Creutzfeldt–Jakob disease. Ann Neurol 72(2) 278285.CrossRefGoogle ScholarPubMed
Meissner, B. et al. 2009. MRI lesion profiles in sporadic Creutzfeldt–Jakob disease. Neurology 72(23) 19942001.CrossRefGoogle ScholarPubMed
Steinhoff, B. J. et al. 1996. Accuracy and reliability of periodic sharp wave complexes in Creutzfeldt–Jakob disease. Arch Neurol 53(2) 162166.CrossRefGoogle ScholarPubMed
Tschampa, H. J. et al. 2007. Pattern of cortical changes in sporadic Creutzfeldt–Jakob disease. AJNR Am J Neuroradiol 28(6) 11141118.CrossRefGoogle ScholarPubMed
Vitali, P. et al. 2011. Diffusion-weighted MRI hyperintensity patterns differentiate CJD from other rapid dementias. Neurology 76(20) 17111719.CrossRefGoogle ScholarPubMed
Zeidler, M. and Green, A. 2004. Advances in diagnosing Creutzfeldt–Jakob disease with MRI and CSF 14–3–3 protein analysis. Neurology 63(3) 410411.CrossRefGoogle ScholarPubMed
Zerr, I. et al. 1996. Diagnosis of Creutzfeldt–Jakob disease by two-dimensional gel electrophoresis of cerebrospinal fluid. The Lancet 348(9031) 846849.CrossRefGoogle ScholarPubMed

References

Bateman, R. J. et al. 2012. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 367(9) 795804.Google Scholar
Berti, V., Mosconi, L. and Pupi, A. 2014. Brain: normal variations and benign findings in fluorodeoxyglucose-PET/computed tomography imaging. PET Clin 9(2) 129140.CrossRefGoogle ScholarPubMed
Bohnen, N. I. et al. 2012. Effectiveness and safety of 18F-FDG PET in the evaluation of dementia: a review of the recent literature. J Nucl Med 53(1) 5971.CrossRefGoogle ScholarPubMed
Buckner, R. L. et al. 2005. Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci 25(34) 77097717.Google Scholar
Daulatzai, M. A. 2017. Cerebral hypoperfusion and glucose hypometabolism: key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer’s disease. J Neurosci Res 95(4) 943972.CrossRefGoogle ScholarPubMed
Dubois, B. et al. 2016. Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria. Alzheimers Dement 12(3) 292323.CrossRefGoogle ScholarPubMed
Engler, H. et al. 2006. Two-year follow-up of amyloid deposition in patients with Alzheimer’s disease. Brain 129(Pt 11) 28562866.CrossRefGoogle ScholarPubMed
Foster, N. L. et al. 2007. FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer’s disease. Brain 130(Pt 10) 26162635.CrossRefGoogle ScholarPubMed
Furst, A. J. et al. 2012. Cognition, glucose metabolism and amyloid burden in Alzheimer’s disease. Neurobiol Aging 33(2) 215225.CrossRefGoogle ScholarPubMed
Jagust, W. et al. 2007. What does fluorodeoxyglucose PET imaging add to a clinical diagnosis of dementia? Neurology 69(9) 871877.CrossRefGoogle ScholarPubMed
Johnson, K. A., Fox, N. C., Sperling, R. A. and Klunk, W. E. 2012. Brain imaging in Alzheimer disease. Cold Spring Harb Perspect Med 2(4) a006213.CrossRefGoogle ScholarPubMed
Landau, S. M. et al. 2010. Comparing predictors of conversion and decline in mild cognitive impairment. Neurology 75(3) 230238.CrossRefGoogle ScholarPubMed
Mosconi, L. et al. 2008. Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer’s disease, and other dementias. J Nucl Med 49(3) 390398.CrossRefGoogle ScholarPubMed
Perani, D. et al. 2014. Validation of an optimized SPM procedure for FDG-PET in dementia diagnosis in a clinical setting. Neuroimage Clin 6 445454.CrossRefGoogle ScholarPubMed
Raichle, M. E. 2015. The brain’s default mode network. Annu Rev Neurosci 38 433447.CrossRefGoogle ScholarPubMed
Roberts, R. O. et al. 2014. Diabetes and elevated hemoglobin A1c levels are associated with brain hypometabolism but not amyloid accumulation. J Nucl Med 55(5) 759764.CrossRefGoogle Scholar
Rocher, A. B. et al. 2003. Resting-state brain glucose utilization as measured by PET is directly related to regional synaptophysin levels: a study in baboons. Neuroimage 20(3) 18941898.CrossRefGoogle Scholar
Villemagne, V. L. et al. 2013. Amyloid beta deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol 12(4) 357367.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×