Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T15:15:17.291Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  14 May 2018

Samuel Schindler
Affiliation:
Aarhus Universitet, Denmark
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Theoretical Virtues in Science
Uncovering Reality through Theory
, pp. 225 - 244
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achinstein, P. 1974. History and Philosophy of Science: A Reply to Cohen. In The Structure of Scientific Theories, Suppe, F. (ed.), Urbana: University of Illinois Press, 350360.Google Scholar
Achinstein, P. 1994. Explanation v. Prediction: Which Carries More Weight? PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, Vol. 2: Symposia and Invited Papers, 156164.Google Scholar
Acuña, P. 2014. On the Empirical Equivalence between Special Relativity and Lorentz׳s Ether Theory. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 46 (May): 283302.CrossRefGoogle Scholar
Aubert, J. J., Becker, U., Biggs, P. J., et al. 1974. Experimental Observation of a Heavy Particle J. Physical Review Letters, 33 (23): 14041406.Google Scholar
Augustin, J. E., Boyarski, A. M., Breidenbach, M., et al. 1974. Discovery of a Narrow Resonance in e+e– Annihilation. Physical Review Letters, 33 (23): 14061408.Google Scholar
Baker, A. 2003. Quantitative Parsimony and Explanatory Power. British Journal for the Philosophy of Science, 54 (2): 245259.CrossRefGoogle Scholar
Baker, A. 2013. Simplicity. Stanford Encyclopedia of Philosophy (fall 2013 edition), Zalta, E. N. (ed.), http://plato.stanford.edu/archives/fall2013/entries/simplicity/.Google Scholar
Bamford, G. 1993. Popper’s Explications of Ad Hocness: Circularity, Empirical Content, and Scientific Practice. British Journal for the Philosophy of Science, 44 (2): 335355.CrossRefGoogle Scholar
Bamford, G. 1996. Popper and His Commentators on the Discovery of Neptune: A Close Shave for the Law of Gravitation? Studies in History and Philosophy of Science Part A, 27 (2): 207232.CrossRefGoogle Scholar
Barnes, E. C. 1992. Explanatory Unification and the Problem of Asymmetry. Philosophy of Science, 59 (4): 558571.CrossRefGoogle Scholar
Barnes, E. C. 2000. Ockham’s Razor and the Anti-Superfluity Principle. Erkenntnis, 53 (3): 353374.CrossRefGoogle Scholar
Barnes, E. C. 2005. On Mendeleev’s Predictions: Comment on Scerri and Worrall. Studies in History and Philosophy of Science Part A, 36 (4): 801812.CrossRefGoogle Scholar
Barnes, E. C. 2008. The Paradox of Predictivism. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Baron, S. and Tallant, J.. in press. Do Not Revise Ockham’s Razor without Necessity. Philosophy and Phenomenological Research, https://onlinelibrary.wiley.com/doi/full/10.1111/phpr.12337.Google Scholar
Bellaimey, J. E. 1990. Family Resemblances and the Problem of the Under‐Determination of Extension. Philosophical Investigations, 13 (1): 3143.CrossRefGoogle Scholar
Bernabeu, J. and Jarlskog, C.. 1977. Relations among Neutral Current Couplings to Test the SU (2)⊗ U (1) Gauge Group Structure. Physics Letters B, 69 (1): 7176.CrossRefGoogle Scholar
Bjorken, J. D. 1972. Theories of Weak and Electromagnetic Interactions Employing the Higgs Phenomenon. In 16th International Conference on High-Energy Physics, Batavia, Illinois, 6–13 Sept. 1972, Bjorken, J. D., Jackson, J. D., Roberts, A., and Donaldson, R. (eds.).Google Scholar
Bjorken, J. D. 1977. Alternatives to Gauge Theories. In Unification of Elementary Forces and Gauge Theories, Cline, D. B. and Mills, F. E. (eds.), London: Harwood Academic Publishers, 701726.Google Scholar
Bjorken, J. D. 1979. Neutral-Current Results without Gauge Theories. Physical Review D, 19 (1): 335.CrossRefGoogle Scholar
Bjorken, J. D. and Llewellyn Smith, C. H.. 1973. Spontaneously Broken Gauge Theories of Weak Interactions and Heavy Leptons. Physical Review D, 7 (3): 887902.CrossRefGoogle Scholar
Bogen, J. and Woodward, J.. 1988. Saving the Phenomena. Philosophical Review, 97 (3): 303352.CrossRefGoogle Scholar
Bohr, N. 1915. On the Series Spectrum of Hydrogen and the Structure of the Atom. Philosophical Magazine, 29: 332335.Google Scholar
Bondi, H. 1960/1952. Cosmology. London: Cambridge University Press.Google Scholar
Bondi, H. and Gold, T.. 1948. The Steady-State Theory of the Expanding Universe. Monthly Notices of the Royal Astronomical Society, 108: 252.CrossRefGoogle Scholar
BonJour, L. 1985. The Structure of Empirical Knowledge. Cambridge: Cambridge University Press.Google Scholar
Boudry, M. and Leuridan, B.. 2011. Where the Design Argument Goes Wrong: Auxiliary Assumptions and Unification. Philosophy of Science, 78 (4): 558578.CrossRefGoogle Scholar
Boyd, R. N. 1983. On the Current Status of the Issue of Scientific Realism. Erkenntnis, 19 (1–3): 4590.CrossRefGoogle Scholar
Brössel, P., Eder, A.-M. A., and Huber, F.. 2013. Evidential Support and Instrumental Rationality. Philosophy and Phenomenological Research, 87 (2): 279300.CrossRefGoogle Scholar
Brown, M. J. and Kidd, I. J.. 2016. Introduction: Reappraising Paul Feyerabend. Studies in History and Philosophy of Science Part A, 57 (June): 18.CrossRefGoogle ScholarPubMed
Brush, S. G. 1976. The Kind of Motion We Call Heat: A History of the Kinetic Theory of Gases in the 19th Century. Amsterdam: North-Holland Publishing Company.Google Scholar
Brush, S. G. 1989. Prediction and Theory Evaluation: The Case of Light Bending. Science, 246 (4934): 1124.CrossRefGoogle ScholarPubMed
Brush, S. G. 1994. Dynamics of Theory Change: The Role of Predictions. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, Vol. 2: Symposia and Invited Papers, 133145.Google Scholar
Brush, S. G. 1996. The Reception of Mendeleev’s Periodic Law in America and Britain. Isis, 87 (4): 595628.CrossRefGoogle Scholar
Burian, R. M. 1990. Review: Andrew Pickering, Constructing Quarks. Synthese, 82: 163174.Google Scholar
Camilleri, K. and Ritson, S.. 2015. The Role of Heuristic Appraisal in Conflicting Assessments of String Theory. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 51: 4456.Google Scholar
Carlson, S. 1985. A Double-Blind Test of Astrology. Nature, 318 (6045): 419425.CrossRefGoogle Scholar
Carman, C. and Díez, J.. 2015. Did Ptolemy Make Novel Predictions? Launching Ptolemaic Astronomy into the Scientific Realism Debate. Studies in History and Philosophy of Science Part A, 52: 2034.CrossRefGoogle ScholarPubMed
Carnap, R. 1937. The Logical Syntax of Language. London: K. Paul, Trench, Trubner & Co.Google Scholar
Carnap, R. 1950. Logical Foundations of Probability. Chicago, IL: Chicago University Press.Google Scholar
Carrier, M. 1991. What Is Wrong with the Miracle Argument? Studies in History and Philosophy of Science, 22 (1): 2336.CrossRefGoogle Scholar
Cartwright, N. 1983. How the Laws of Physics Lie. Oxford: Oxford University Press.CrossRefGoogle Scholar
Cartwright, N. and Frigg, R.. 2007. String Theory under Scrutiny. Physics World, 20 (9): 14.CrossRefGoogle Scholar
Chakravartty, A. 2007. A Metaphysics for Scientific Realism: Knowing the Unobservable. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Chakravartty, A. 2008. What You Don’t Know Can’t Hurt You: Realism and the Unconceived. Philosophical Studies, 137 (1): 149158.CrossRefGoogle Scholar
Chalmers, A. 2011. Drawing Philosophical Lessons from Perrin’s Experiments on Brownian Motion: A Response to van Fraassen. British Journal for the Philosophy of Science, 62 (4): 711732.CrossRefGoogle Scholar
Chang, H. 2004. Inventing Temperature: Measurement and Scientific Progress. Oxford: Oxford University Press.CrossRefGoogle Scholar
Churchland, P. M. and Hooker, C. A., eds. 1985. Images of Science: Essays on Realism and Empiricism. Chicago, IL: University of Chicago Press.Google Scholar
Clark, P. 1976. Atomism versus Theromodynamics. In Method and Appraisal in the Physical Sciences: The Critical Background to Modern Science, 1800–1905, Howson, C. (ed.), Cambridge: Cambridge University Press.Google Scholar
Cochran, W., Crick, F., and Vand, V.. 1952. The Structure of Synthetic Polypeptides. I. The Transform of Atoms on a Helix. Acta Crystallographica, 5 (5): 581586.CrossRefGoogle Scholar
Collins, H. M. and Pinch, T. J.. 1998. The Golem: What You Should Know about Science. Cambridge: Cambridge University Press.Google Scholar
Copernicus, N. 1543/1992. On the Revolutions (with a commentary by Rosen, E.). Baltimore, MD: Johns Hopkins University Press.Google Scholar
Crick, F. 1954. The Structure of the Hereditary Material. Scientific American, 191 (October): 5461.CrossRefGoogle Scholar
Crick, F. 1988. What Mad Pursuit: A Personal View of Science. New York, NY: Basic Books.Google Scholar
Curtis, W. E. 1914. Wave-Lengths of Hydrogen Lines and Determination of the Series Constant. Proceedings of the Royal Society of London. Series A, 90 (622): 605620.Google Scholar
Cushing, J. T. 1981. Electromagnetic Mass, Relativity, and the Kaufmann Experiments. American Journal of Physics, 49: 11331149.Google Scholar
Dawid, R. 2013. String Theory and the Scientific Method. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
de Regt, H. W. 1996. Philosophy and the Kinetic Theory of Gases. British Journal for the Philosophy of Science, 47 (1): 3162.CrossRefGoogle Scholar
de Regt, H. W. 2001. Spacetime Visualisation and the Intelligibility of Physical Theories. Studies in History and Philosophy of Science Part B: Studies In History and Philosophy of Modern Physics, 32 (2): 243265.CrossRefGoogle Scholar
de Regt, H. W. 2004. Discussion Note: Making Sense of Understanding. Philosophy of Science, 71 (1): 98109.CrossRefGoogle Scholar
de Regt, H. W. and Dieks, D.. 2005. A Contextual Approach to Scientific Understanding. Synthese, 144 (1): 137170.CrossRefGoogle Scholar
De Rújula, A., Georgi, H., Glashow, S. L., and Quinn, H. R.. 1974. Fact and Fancy in Neutrino Physics. Reviews of Modern Physics, 46: 391407.CrossRefGoogle Scholar
Devitt, M. 2011. Are Unconceived Alternatives a Problem for Scientific Realism? Journal for General Philosophy of Science, 42 (2): 285293.Google Scholar
Dicken, P. 2013. Normativity, the Base-Rate Fallacy, and Some Problems for Retail Realism. Studies in History and Philosophy of Science Part A, 44 (4): 563570.CrossRefGoogle Scholar
Donovan, A., Laudan, L., and Laudan, R.. 1988. Scrutinizing Science: Empirical Studies of Scientific Change, Vol. 193. Baltimore, MD: John Hopkins University Press.Google Scholar
Douglas, H. 2009. Science, Policy, and the Value-Free Ideal. Pittsburgh, PA: University of Pittsburgh Press.Google Scholar
Dupré, J. 1993. The Disorder of Things: Metaphysical Foundations of the Disunity of Science. Cambridge, MA: Harvard University Press.Google Scholar
Dyson, F. W., Eddington, A. S., and Davidson, C.. 1920. A Determination of the Deflection of Light by the Sun’s Gravitational Field, from Observations Made at the Total Eclipse of May 29, 1919. Philosophical Transactions of the Royal Society of London. Series A, 220 (571–581): 291333.Google Scholar
Earman, J. 2000. Hume’s Abject Failure: The Argument against Miracles. Oxford: Oxford University Press.Google Scholar
Earman, J. and Glymour, C.. 1980. Relativity and Eclipses: The British Eclipse Expeditions of 1919 and Their Predecessors. Historical Studies in the Physical Sciences, 11 (1): 4985.CrossRefGoogle Scholar
Eckert, M. and Märker, K.. 2000. Arnold Sommerfeld. Wissenschaftlicher Briefwechsel. Band 1: 1892–1918. Munich: Deutsches Museum Verlag für Geschichte der Naturwissenschaften und der Technik.Google Scholar
Egg, M. 2016. Expanding Our Grasp: Causal Knowledge and the Problem of Unconceived Alternatives. British Journal for the Philosophy of Science, 67 (1): 115141.CrossRefGoogle Scholar
Einstein, A. 1907. Über das Relativistätsprinzip und die aus demselben gezogenen Folgerungen. Jahrbuch der Radioaktivität und Elektronik, 4: 411–62.Google Scholar
Einstein, A. 1982. Ideas and Opinions. New York, NY: Crown Publishers Inc.Google Scholar
Einstein, A., Lorentz, H., Weyl, H., and Minkowski, H.. 1952. The Principle of Relativity. New York, NY: Dover.Google Scholar
Elkin, L. O. 2003. Rosalind Franklin and the Double Helix. Physics Today, 56 (3): 4248.CrossRefGoogle Scholar
Ellis, G. and Silk, J.. 2014. Scientific Method: Defend the Integrity of Physics. Nature, 516 (18 December 2014): 321-323.CrossRefGoogle ScholarPubMed
Everitt, C. W. F. 1980. Experimental Tests of General Relativity: Past, Present and Future. In Physics and Contemporary Needs, Vol. 4, Riazuddin, (ed.), Boston, MA: Springer US, 529555.CrossRefGoogle Scholar
Fahrbach, L. 2011. How the Growth of Science Ends Theory Change. Synthese, 180 (2): 139155.CrossRefGoogle Scholar
Feng, J. L. 2013. Naturalness and the Status of Supersymmetry. Annual Review of Nuclear and Particle Science, 63: 351382.CrossRefGoogle Scholar
Feyerabend, P. 1975. Against Method. London: Verso.Google Scholar
Feynman, R. P. and Gell-Mann, M.. 1958. Theory of the Fermi Interaction. Physical Review, 109 (1): 193.CrossRefGoogle Scholar
Fine, A. 1986. Unnatural Attitudes: Realist and Instrumentalist Attachments to Science. Mind, 95 (378): 149179.CrossRefGoogle Scholar
Fine, A. 1991. Piecemeal Realism. Philosophical Studies, 61 (1): 7996.Google Scholar
Fitzpatrick, S. 2013. Simplicity in the Philosophy of Science. Internet Encyclopedia of Philosophy, www.iep.utm.edu/simplici/.Google Scholar
Forman, P. 1968. The Doublet Riddle and Atomic Physics circa 1924. Isis: 156174.CrossRefGoogle Scholar
Forster, M. and Sober, E.. 1994. How to Tell When Simpler, More Unified, or Less Ad Hoc Theories Will Provide More Accurate Predictions. British Journal for the Philosophy of Science, 45 (1): 135.Google Scholar
Frankel, H. 1982. The Development, Reception, and Acceptance of the Vine-Matthews-Morley Hypothesis. Historical Studies in the Physical Sciences, 13 (1): 139.CrossRefGoogle Scholar
Frankel, H. 2012. The Continental Drift Controversy: Evolution into Plate Tectonics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Franklin, R. E. and Gosling, R. G.. 1953. The Structure of Sodium Thymonucleate Fibres. I. The Influence of Water Content. Acta Crystallographica, 6 (8–9): 673677.CrossRefGoogle Scholar
Friederich, S., Harlander, R.V., and Karaca, K.. 2014. Philosophical Perspectives on Ad Hoc Hypotheses and the Higgs Mechanism. Synthese, 191 (16): 38973917.CrossRefGoogle Scholar
Friedman, M. 1974. Explanation and Scientific Understanding. Journal of Philosophy, 71 (1): 519.CrossRefGoogle Scholar
Frigg, R. and Hartmann, S.. 2012. Models in Science. Stanford Encyclopedia of Philosophy (fall 2012 edition), Zalta, E. N. (ed.), http://plato.stanford.edu/archives/fall2012/entries/models-science/.Google Scholar
Frigg, R. and Votsis, I.. 2011. Everything You Always Wanted to Know about Structural Realism but Were Afraid to Ask. European Journal for Philosophy of Science, 1 (2): 227276.CrossRefGoogle Scholar
Frisch, M. 2005. Inconsistency, Asymmetry, and Non-Locality: A Philosophical Investigation of Classical Electrodynamics. Oxford: Oxford University Press.CrossRefGoogle Scholar
Frisch, M. 2015. Predictivism and Old Evidence: A Critical Look at Climate Model Tuning. European Journal for Philosophy of Science, 5 (2): 171190.CrossRefGoogle Scholar
Galison, P. 1983. How the First Neutral-Current Experiments Ended. Reviews of Modern Physics, 55 (2): 477.CrossRefGoogle Scholar
Galison, P. 1987. How Experiments End. Chicago, IL: University of Chicago Press.Google Scholar
Gamow, G. 1952. The Creation of the Universe. 1st ed. London: MacMillan and Co.Google Scholar
Gamow, G. 1954. Modern Cosmology. Scientific American, 190 (3): 5463.CrossRefGoogle Scholar
Gamow, G. 1961. The Creation of the Universe. 2nd ed. (1st ed. 1952) London: MacMillan and Co.Google Scholar
Gardner, M.R. 1982. Predicting Novel Facts. British Journal for the Philosophy of Science, 33 (1): 115.CrossRefGoogle Scholar
Georgi, H. and Glashow, S. L.. 1972. Unified Weak and Electromagnetic Interactions without Neutral Currents. Physical Review Letters, 28 (22): 14941497.CrossRefGoogle Scholar
Georgi, H. and Glashow, S. L.. 1974. Unity of all Elementary-Particle Forces. Physical Review Letters, 32 (8): 438441.CrossRefGoogle Scholar
Giere, R. N. 1973. History and Philosophy of Science: Marriage of Convenience or Intimate Relationship. British Journal for the Philosophy of Science, 24 (3): 282297.CrossRefGoogle Scholar
Giere, R. N. 1985. Philosophy of Science Naturalized. Philosophy of Science, 52: 331356.Google Scholar
Gijsbers, V. 2007. Why Unification Is Neither Necessary Nor Sufficient for Explanation. Philosophy of Science, 74 (4): 481500.Google Scholar
Gingerich, O. 1975. ‘Crisis’ versus Aesthetic in the Copernican Revolution. Vistas in Astronomy, 17 (1): 8595.Google Scholar
Glashow, S. L. 1961. Partial-Symmetries of Weak Interactions. Nuclear Physics, 22: 579588.CrossRefGoogle Scholar
Glashow, S. L. 1980. Toward a Unified Theory: Threads in a Tapestry. Science, 210 (4476): 13191323.CrossRefGoogle Scholar
Glymour, C. 1980. Theory and Evidence. Princeton, NJ: Princeton University Press.Google Scholar
Goldhaber, G., Pierre, F., Abrams, G., et al. 1976. Observation in e+ e− Annihilation of a Narrow State at 1865 MeV/c 2 Decaying to K π and K π π π. Physical Review Letters, 37 (5): 255259.Google Scholar
Goodman, N. 1972. Seven Strictures on Similarity. In Problems and Projects, Indianapolis, IN: Bobs-Merril.Google Scholar
Gould, S. J. 1976. This View of Life: Darwin’s Untimely Burial. Natural History, 85 (8): 24p.Google Scholar
Grant, R. 1852. History of Physical Astronomy. London: Henry G. Bohn.Google Scholar
Grosser, M. 1962. The Discovery of Neptune. Cambridge, MA: Harvard University Press.Google Scholar
Grünbaum, A. 1959. The Falsifiability of the Lorentz-Fitzgerald Contraction Hypothesis. British Journal for the Philosophy of Science, 10 (37): 4850.Google Scholar
Grünbaum, A. 1976. Ad Hoc Auxiliary Hypotheses and Falsificationism. British Journal for the Philosophy of Science, 27 (4): 329362.CrossRefGoogle Scholar
Grünbaum, A. 1979. Is Freudian Psychoanalytic Theory Pseudo-Scientific by Karl Popper’s Criterion of Demarcation? American Philosophical Quarterly, 16 (2): 131141.Google Scholar
Hacking, I. 1982. Experimentation and Scientific Realism. Philosophical Topics, 13 (1): 7187.CrossRefGoogle Scholar
Hacking, I. 1983. Representing and Intervening. Cambridge: Cambridge Univiersity Press.CrossRefGoogle Scholar
Hanson, N. R. 1962. The Irrelevance of History of Science to Philosophy of Science to Philosophy of Science. Journal of Philosophy, 59 (21): 574586.CrossRefGoogle Scholar
Harker, D. 2006. Accommodation and Prediction: The Case of the Persistent Head. British Journal for the Philosophy of Science, 57 (2): 309321.Google Scholar
Harker, D. 2008. On the Predilections for Predictions. British Journal for the Philosophy of Science, 59 (3): 429.CrossRefGoogle Scholar
Harker, D. 2013. How to Split a Theory: Defending Selective Realism and Convergence without Proximity. British Journal for the Philosophy of Science, 64 (1): 79106.Google Scholar
Harre, R. 1960. An Introduction to the Logic of the Sciences. London: MacMillan.Google Scholar
Heilprin, J. 2013. Higgs Boson Discovery Confirmed after Physicists Review Large Hadron Collider Data At CERN. Huffington Post, 14/03/13. www.huffingtonpost.com/2013/03/14/higgs-boson-discovery-confirmed-cern-large-hadron-collider_n_2874975.html.Google Scholar
Held, C. 2011. Truth Does Not Explain Predictive Success. Analysis, 71 (2), 232234.Google Scholar
Henderson, L. 2015. The No Miracles Argument and the Base Rate Fallacy. Synthese, 4 (194): 12951302.Google Scholar
Hess, H. H. 1962. History of Ocean Basins. Petrologic Studies, 4: 599620.Google Scholar
Hitchcock, C. and Sober, E.. 2004. Prediction versus Accommodation and the Risk of Overfitting. British Journal for the Philosophy of Science, 55 (1): 134.Google Scholar
Holton, G. J. 1969. Einstein, Michelson, and the ‘Crucial’ Experiment. Isis, 60 (2): 133197.Google Scholar
Holton, G.J. 1973. Thematic Origins of Scientific Thought: Kepler to Einstein. Cambridge, MA: Harvard University Press.Google Scholar
Hon, G. 1995. Is the Identification of Experimental Error Contextually Dependent? The Case of Kaufmann’s Experiment and Its Varied Reception. In Scientific Practice: Theories and Stories of Doing Physics, Buchwald, J. (ed.), Chicago, IL: University of Chicago Press, 170223.Google Scholar
Howson, C. 2000. Hume’s Problem: Induction and the Justification of Belief. Oxford: Clarendon Press.Google Scholar
Howson, C. 2013. Exhuming the No-Miracles Argument. Analysis, 73 (2): 205211.CrossRefGoogle Scholar
Howson, C. and Franklin, A.. 1991. Maher, Mendeleev and Bayesianism. Philosophy of Science, 58 (4): 574585.CrossRefGoogle Scholar
Howson, C. and Urbach, P.. 2006. Scientific Reasoning: The Bayesian Approach. LaSalle, IL: Open Court Publishing.Google Scholar
Hoyer, U. 1981. Work on Atomic Physics (1912–1917), Vol. 2, Niels Bohr Collected Works. Amsterdam: North-Holland.Google Scholar
Hoyle, F. 1948. A New Model for the Expanding Universe. Monthly Notices of the Royal Astronomical Society, 108: 372.Google Scholar
Hoyle, F. 1949. March 11 Meeting of the Royal Astronomical Society. The Observatory, 69: 4754.Google Scholar
Hoyle, F. 1955. Frontiers of Astronomy. London: Heinemann Education Books Limited.Google Scholar
Hoyningen-Huene, P. 2013. Systematicity: The Nature of Science. Oxford: Oxford University Press.Google Scholar
Hudson, R. G. 2007. What’s Really at Issue with Novel Predictions? Synthese, 155 (1): 120.Google Scholar
Hudson, R. G. 2013. Seeing Things: The Philosophy of Reliable Observation. Oxford: Oxford University Press.Google Scholar
Hunt, J. C. 2012. On Ad Hoc Hypotheses. Philosophy of Science, 79 (1): 114.Google Scholar
Irzik, G. and Nola, R.. 2011. A Family Resemblance Approach to the Nature of Science for Science Education. Science & Education, 20 (7–8): 591607.CrossRefGoogle Scholar
Ivanova, M. 2010. Pierre Duhem’s Good Sense as a Guide to Theory Choice. Studies in History and Philosophy of Science Part A, 41 (1): 5864.CrossRefGoogle Scholar
Jammer, M. 1989. The Conceptual Development of Quantum Mechanics. Los Angeles, CA: Tomash Publishers.Google Scholar
Janssen, M. 2002a. COI Stories: Explanation and Evidence in the History of Science. Perspectives on Science, 10 (4): 457522.CrossRefGoogle Scholar
Janssen, M. 2002b. Reconsidering a Scientific Revolution: The Case of Einstein versus Lorentz. Physics in Perspective, 4 (4): 421446.Google Scholar
Jansson, L. and Tallant, J.. 2017. Quantitative Parsimony: Probably for the Better. British Journal for the Philosophy of Science, 68 (3): 781803.Google Scholar
Jeffreys, H. 1973. Scientific Inference. Cambridge: Cambridge University Press.Google Scholar
Johansson, L. G. and Matsubara, K.. 2011. String Theory and General Methodology: A Mutual Evaluation. Studies In History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 42 (3): 199210.CrossRefGoogle Scholar
Judson, H. F. 1996. The Eighth Day of Creation: Makers of the Revolution in Biology. New York, NY: Cold Spring Harbor Laboratory Press.Google Scholar
Kelly, T. 2003. Epistemic Rationality as Instrumental Rationality: A Critique. Philosophy and Phenomenological Research, 66 (3): 612640.Google Scholar
Kemeny, J. G. and Oppenheim, P.. 1952. Degree of Factual Support. Philosophy of Science, 19 (4): 307324.Google Scholar
Kennefick, D. 2007. Not Only because of Theory: Dyson, Eddington and the Competing Myths of the 1919 Eclipse Expedition. Arxiv preprint: arXiv:0709.0685.Google Scholar
Khalifa, K. 2012. Inaugurating Understanding or Repackaging Explanation? Philosophy of Science, 79 (1): 1537.Google Scholar
Khalifa, K. 2013. The Role of Explanation in Understanding. British Journal for the Philosophy of Science, 64 (1): 161187.CrossRefGoogle Scholar
Kinzel, K. 2015. Narrative and Evidence. How Can Case Studies from the History of Science Support Claims in the Philosophy of Science? Studies in History and Philosophy of Science Part A, 49: 4857.Google Scholar
Kitcher, P. 1976. Explanation, Conjunction, and Unification. Journal of Philosophy, 73 (8): 207212.Google Scholar
Kitcher, P. 1981. Explanatory Unification. Philosophy of Science, 48 (4): 507531.CrossRefGoogle Scholar
Kitcher, P. 1993. The Advancement of Science. Oxford: Oxford University Press.Google Scholar
Klug, A. 1968. Rosalind Franklin and the Discovery of the Structure of DNA. Nature, 219 (24 August): 808844.CrossRefGoogle Scholar
Klug, A. 2004. The Discovery of the DNA Double Helix. Journal of Molecular Biology, 335 (1): 326.CrossRefGoogle ScholarPubMed
Koester, D., Sullivan, D., and White, D. H.. 1982. Theory Selection in Particle Physics: A Quantitative Case Study of the Evolution of Weak-Electromagnetic Unification Theory. Social Studies of Science, 12 (1): 73100.CrossRefGoogle Scholar
Kragh, H. 1985. The Fine Structure of Hydrogen and the Gross Structure of the Physics Community, 1916–26. Historical Studies in the Physical Sciences, 15 (2): 67125.Google Scholar
Kragh, H. 1996. Cosmology and Controversy: The Historical Development of Two Theories of the Universe. Princeton, NJ: Princeton University Press.Google Scholar
Kragh, H. 1999. Steady-State Cosmology and General Relativity: Reconciliation or Conflict? In The Expanding Worlds of General Relativity, Goenner, H., Renn, J., Ritter, J., and Sauer, T. (eds.), Boston, MA: Birkhäuser, 377404.Google Scholar
Kragh, H. 2012. Niels Bohr and the Quantum Atom: The Bohr Model of Atomic Structure 1913–1925. Oxford: Oxford University Press.Google Scholar
Krämer, M. 2013. The Landscape of New Physics. The Guardian, January 9, 2013. www.theguardian.com/science/life-and-physics/2013/jan/09/physics-particlephysics.Google Scholar
Kuhn, T. S. 1957. The Copernican Revolution: Planetary Astronomy in the Development of Western Thought. Cambridge, MA: Harvard University Press.Google Scholar
Kuhn, T. S. 1962/1996. The Structure of Scientific Revolutions. Chicago, IL: University of Chicago Press.Google Scholar
Kuhn, T. S. 1970a. Logic of Discovery or Psychology of Research. In Criticism and the Growth of Knowledge, Proceedings of the International Colloquium in the Philosophy of Science, Lakatos, I. and Musgrave, A. (eds.), Cambridge: Cambridge University Press, 124.Google Scholar
Kuhn, T. S. 1970b. Notes on Lakatos. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, 137146.Google Scholar
Kuhn, T. S. 1970c. Reflections on My Critics. In Criticism and the Growth of Knowledge, Proceedings of the International Colloquium in the Philosophy of Science, Lakatos, I. and Musgrave, A. (eds.), Cambridge: Cambridge University Press, 231278.Google Scholar
Kuhn, T. S. 1977a. Objectivity, Value Judgment, and Theory Choice. In The Essential Tension, Chicago, IL: University of Chicago Press, 320333.CrossRefGoogle Scholar
Kuhn, T. S. 1977b. The Relations between the History and the Philosophy of Science. In The Essential Tension. Chicago, IL: University of Chicago Press, 320.CrossRefGoogle Scholar
Kuhn, T. S. 1987. Black-Body Theory and the Quantum Discontinuity, 1894–1912. Chicago, IL: University of Chicago Press.Google Scholar
Kuhn, T. S. 1990. Dubbing and Redubbing: The Vulnerability of Rigid Designation. Minnesota Studies in the Philosophy of Science, 14: 298318.Google Scholar
Kukla, A. 1996. Does Every Theory Have Empirically Equivalent Rivals? Erkenntnis, 44: 137166.CrossRefGoogle Scholar
Ladyman, J. 1998. What Is Structural Realism? Studies in History and Philosophy of Science Part A, 29 (3): 409424.CrossRefGoogle Scholar
Ladyman, J. 1999. Review: A Novel Defense of Scientific Realism. Jarrett Leplin. British Journal for the Philosophy of Science, 50 (1): 181188.CrossRefGoogle Scholar
Ladyman, J. 2011. Structural Realism versus Standard Scientific Realism: The Case of Phlogiston and Dephlogisticated Air. Synthese, 180: 87101.Google Scholar
Ladyman, J., Douven, I., Horsten, L., and Fraassen, B.. 1997. A Defence of van Fraassen’s Critique of Abductive Inference: Reply to Psillos. Philosophical Quarterly, 47 (188): 305321.Google Scholar
Lakatos, I. 1970a. Falsification and the Methodology of Scientific Research Programmes. In Criticism and the Growth of Knowledge, Lakatos, I. and Musgrave, A. (eds.), Cambridge: Cambridge University Press, 91196.Google Scholar
Lakatos, I. 1970b. History of Science and Its Rational Reconstructions. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, 1970, 91136.Google Scholar
Lakatos, I. 1976. Proofs and Refutations. Cambridge: Cambridge University Press.Google Scholar
Lakatos, I. 1978. The Methodology of Scientific Research Programmes: Volume 1: Philosophical Papers. Worrall, J. and Currie, G. (eds.). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Lange, M. 2001. The Apparent Superiority of Prediction to Accommodation as a Side Effect: A Reply to Maher. British Journal for the Philosophy of Science, 52 (3): 575588.Google Scholar
Lange, M. 2002. Baseball, Pessimistic Inductions and the Turnover Fallacy. Analysis, 62 (276): 281285.CrossRefGoogle Scholar
LaPorte, J. 2009. Natural Kinds and Conceptual Change. Cambridge: Cambridge University Press.Google Scholar
Laudan, L. 1977. Progress and Its Problems: Towards a Theory of Scientific Growth. Berkeley: University of California Press.Google Scholar
Laudan, L. 1981. A Confutation of Convergent Realism. Philosophy of Science, 48 (1): 1949.Google Scholar
Laudan, L. 1982. Commentary: Science at the Bar – Causes for Concern. Science, Technology & Human Values, 7 (4): 1619.Google Scholar
Laudan, L. 1983. The Demise of the Demarcation Problem. In Physics, Philosophy and Psychoanalysis: Essays in Honour of A. Grünbaum, Cohen, R. S. and Laudan, L. (eds.), Dordrecht: Reidel, 111127.Google Scholar
Laudan, L. 1986. Some Problems Facing Intuitionist Meta-Methodologies. Synthese, 67 (1): 115129.Google Scholar
Laudan, L. 1987a. Progress or Rationality? The Prospects for Normative Naturalism. American Philosophical Quarterly, 24 (1): 1931.Google Scholar
Laudan, L. 1987b. Relativism, Naturalism and Reticulation. Synthese, 71 (3): 221234.Google Scholar
Laudan, L. 1989. If It Ain’t Broke, Don’t Fix It. British Journal for the Philosophy of Science, 40 (3): 369375.CrossRefGoogle Scholar
Laudan, L. 1990. Normative Naturalism. Philosophy of Science, 57 (1): 4459.CrossRefGoogle Scholar
Laudan, L., Donovan, A., Laudan, R., et al. 1986. Scientific Change: Philosophical Models and Historical Research. Synthese, 69 (2): 141223.Google Scholar
Laudan, L. and Leplin, J.. 1991. Empirical Equivalence and Underdetermination. Journal of Philosophy, 88 (9): 449472.CrossRefGoogle Scholar
Lee, W.-Y. 2013. Akaike’s Theorem and Weak Predictivism in Science. Studies in History and Philosophy of Science Part A, 44 (4): 594599.Google Scholar
Leite, A. 2007. Epistemic Instrumentalism and Reasons for Belief: A Reply to Tom Kelly’s ‘Epistemic Rationality as Instrumental Rationality: A Critique’. Philosophy and Phenomenological Research, 75 (2): 456464.CrossRefGoogle Scholar
Leplin, J. 1975. The Concept of an Ad Hoc Hypothesis. Studies in History and Philosophy of Science Part A, 5 (4): 309345.CrossRefGoogle Scholar
Leplin, J. 1982. The Assessment of Auxiliary Hypotheses. British Journal for the Philosophy of Science, 33 (3): 235249.CrossRefGoogle Scholar
Leplin, J. 1984. Scientific Realism. Berkeley: University of California Press.Google Scholar
Leplin, J. 1997. A Novel Defense of Scientific Realism. Oxford: Oxford University Press.CrossRefGoogle Scholar
Lewis, C. I. 1946. An Analysis of Knowledge and Valuation. LaSalle, IL: Open Court.Google Scholar
Lewis, D. 1973. Counterfactuals. Oxford: Blackwell.Google Scholar
Lewis, D. 1986. Philosophical Papers. Oxford: Oxford University Press.Google Scholar
Lewis, P. J. 2001. Why the Pessimistic Induction Is a Fallacy. Synthese, 129 (3): 371380.Google Scholar
Lipton, P. 1991/2004. Inference to the Best Explanation. London: Routledge.CrossRefGoogle Scholar
Lycan, W. G. 2002. Explanation and Epistemology. In The Oxford Handbook of Epistemology, Moser, P. K. (ed.), Oxford: Oxford University Press, 408433.CrossRefGoogle Scholar
Lyons, T. D. 2006. Scientific Realism and the Stratagema de Divide et Impera. British Journal for the Philosophy of Science, 57 (3): 537560.Google Scholar
Maddox, B. 2002. Rosalind Franklin: The Dark Lady of DNA. New York, NY: HarperCollins.Google Scholar
Magnus, P. 2010. Inductions, Red Herrings, and the Best Explanation for the Mixed Record of Science. British Journal for the Philosophy of Science, 61 (4): 803819.Google Scholar
Magnus, P. and Callender, C.. 2004. Realist Ennui and the Base Rate Fallacy. Philosophy of Science, 71 (3): 320338.CrossRefGoogle Scholar
Maher, P. 1988. Prediction, Accommodation, and the Logic of Discovery. PSA: Proceedings of the 1988 Biennial Meeting of the Philosophy of Science Association, Fine, A. and Leplin, J. (eds.), Vol. 1: Contributed Papers, 273285.Google Scholar
Mathews, C. K., van Holde, K. E., and Ahern, K. G.. 2000. Biochemistry. 3rd ed. New York, NY: Pearson Education.Google Scholar
Maxwell, N. 2002. Karl Raimund Popper. In British Philosophers, 1800–2000, McHenry, L., Dematteis, P., and Fosl, P. (eds.), Columbia, SC: Bruccoli Clark Layman, 176194.Google Scholar
Mayo, D. G. 1996. Error and the Growth of Experimental Knowledge. Chicago, IL: University of Chicago Press.CrossRefGoogle Scholar
McAllister, J. W. 1997. Phenomena and Patterns in Data Sets. Erkenntnis, 47: 217228.CrossRefGoogle Scholar
McAllister, J. W. 1999. Beauty and Revolution in Science: Ithaca, NY: Cornell University Press.CrossRefGoogle Scholar
McIntyre, L. 2001. Accommodation, Prediction, and Confirmation. Perspectives on Science, 9 (3): 308323.Google Scholar
McMullin, E. 1968. What Do Physical Models Tell Us? Studies in Logic and the Foundations of Mathematics, 52: 385396.Google Scholar
McMullin, E. 1974. History and Philosophy of Science: A Marriage of Convenience? In Cohen, R. S. et al. (eds.) PSA 1974: Boston Studies in the Philosophy of Science, Vol. 32. Dordrecht: Springer, 585601.CrossRefGoogle Scholar
McMullin, E. 1976. The Fertility of Theory and the Unit for Appraisal in Science. In Essays in the Memory of Imre Lakatos, Cohen, R. S. (ed.), Dordrecht: D. Reidel Publishing Company, 395432.CrossRefGoogle Scholar
McMullin, E. 1983. Values in Science. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, Asquith, P. and Nickles, T. (eds.), Vol. 2: Symposia and Invited Papers, 328.Google Scholar
McMullin, E. 1984. A Case for Scientific Realism. In Scientific Realism, Leplin, J. (ed.), Berkeley: University of California Press, 841.Google Scholar
McMullin, E. 1985. Galilean Idealization. Studies in History and Philosophy of Science Part A, 16 (3): 247273.CrossRefGoogle Scholar
McMullin, E. 1998. Rationality and Paradigm Change in Science. In Philosophy of Science: The Central Issues, Curd, M. and Cover, J. (eds.), New York, NY: W. W. Norton & Company, 5578.Google Scholar
McVittie, G. C. 1949. March 11 Meeting of the Royal Astronomical Society. The Observatory, 69: 4754.Google Scholar
McVittie, G. C. 1951. The Cosmological Problem. Science News, 21: 6175.Google Scholar
Mehra, J. and Rechenberg, H.. 1982. The Historical Development of Quantum Theory. Vol. 1 (2 vols.). New York, NY: Springer.CrossRefGoogle Scholar
Mendeleev, D. 1879. The Periodic Law of the Chemical Elements. Chemical News, 40.Google Scholar
Mendeleev, D. 1889. The Periodic Law of the Chemical Elements. Journal of the Chemical Society, 55: 634–56.Google Scholar
Mendeleev, D. 1901. The Principles of Chemistry. (6th ed.; trans. from Russian by Kamensky, George; Greenaway, A. J., ed.). New York, NY: Collier.Google Scholar
Menke, C. 2014. Does the Miracle Argument Embody a Base Rate Fallacy? Studies in History and Philosophy of Science Part A, 45 (March), 103108.CrossRefGoogle ScholarPubMed
Meyer, L. 1870. Die Natur der chemischen Elemente als Funktion ihrer Atomgewichte. Supplements to Justig Liebig’s Annalen der Chemie, VII: 354.Google Scholar
Mill, J. S. 1867. An Examination of Sir William Hamilton’s Philosophy: And of the Principal Philosophical Questions Discussed in His Writings. London: Walter Scott.Google Scholar
Miller, A. I. 1981. Albert Einstein’s Special Theory of Relativity: Emergence (1905) and Early Interpretation (1905–1911). Reading, MA: Addison-Wesley.Google Scholar
Miller, D. 2014. Representing Space in the Scientific Revolution. Cambridge: Cambridge University Press.Google Scholar
Milne, E. A. 1949. March 11 Meeting of the Royal Astronomical Society. The Observatory, 69: 4754.Google Scholar
Morganti, M. 2011. Truth and Success: Reply to Held. The Reasoner, 5 (7): 106–7.Google Scholar
Morganti, M. 2012. Truth and Success, Again: Reply to Held on Generalist versus Particularist (Anti-)Realism. The Reasoner, 6 (6): 99100.Google Scholar
Morrison, M. 2000. Unifying Scientific Theories. Cambridge: Cambridge University Press.Google Scholar
Musgrave, A. 1974. Logical versus Historical Theories of Confirmation. British Journal for the Philosophy of Science, 25 (1): 123.Google Scholar
Musgrave, A. 1988. The Ultimate Argument for Scientific Realism. In Relativism and Realism in Science, Nola, R. (ed.), Dordrecht: Kluwer Academic Publishers, 229252.Google Scholar
Nolan, D. 1997. Quantitative Parsimony. British Journal for the Philosophy of Science, 48 (3): 329343.Google Scholar
Nolan, D. 1999. Is Fertility Virtuous in Its Own Right? British Journal for the Philosophy of Science, 50 (2): 265282.CrossRefGoogle Scholar
Norton, J. D. 1987. The Logical Inconsistency of the Old Quantum Theory of Black Body Radiation. Philosophy of Science, 54 (3): 327350.CrossRefGoogle Scholar
Norton, J. D. 2002. A Paradox in Newtonian Gravitation Theory II. In Inconsistency in Science, Meheus, J. (ed.), Dordrecht: Kluwer Academic Publishers, 185195.CrossRefGoogle Scholar
Nyhof, J. 1988. Philosophical Objections to the Kinetic Theory. British Journal for the Philosophy of Science, 39 (1): 81109.CrossRefGoogle Scholar
Okasha, S. 2011. Theory Choice and Social Choice: Kuhn versus Arrow. Mind, 120 (477): 83115.CrossRefGoogle Scholar
Olby, R. C. 1974. The Path to the Double Helix: The Discovery of DNA. New York, NY: Courier Corporation.Google Scholar
Olsson, E. 2012. Coherentist Theories of Epistemic Justification. In Stanford Encyclopedia of Philosophy (spring 2013 edition), Zalta, E. N. (ed.), http://plato.stanford.edu/archives/spr2013/entries/justep-coherence/.Google Scholar
Oreskes, N. 2003. Plate Tectonics: An Insider’s History of the Modern Theory of the Earth. Boulder, CO: Westview Press.Google Scholar
Overbye, D. 2011. Scientists Report Second Sighting of Faster-than-Light Neutrinos. New York Times, 18/11/2011. www.nytimes.com/2011/11/19/science/space/neutrino-finding-is-confirmed-in-second-experiment-opera-scientists-say.html?partner=rss&emc=rss.Google Scholar
Overbye, D. 2012. ‘Physicists Find Elusive Particle Seen as Key to Universe.’ New York Times, 05/07/2012. www.nytimes.com/2012/07/05/science/cern-physicists-may-have-discovered-higgs-boson-particle.html?_r=2&pagewanted=all&.Google Scholar
Pais, A. 1991. Neils Bohr’s Times: In Physics, Philosophy, and Polity. Oxford: Clarendon Press.Google Scholar
Palter, R. 1970. An Approach to the History of Early Astronomy. Studies in History and Philosophy of Science Part A, 1 (2): 93133.Google Scholar
Papineau, D. 2015. Naturalism. In Stanford Encyclopedia of Philosophy (fall 2015 edition), Zalta, E. N. (ed.), http://plato.stanford.edu/archives/spr2009/entries/naturalism/.Google Scholar
Paschen, F. 1916. Bohr’s Heliumlinien. Annalen der Physik, 355 (16): 901940.Google Scholar
Pashby, T. 2012. Dirac’s Prediction of the Positron: A Case Study for the Current Realism Debate. Perspectives on Science, 20 (4): 440475.CrossRefGoogle Scholar
Pauli, W. 1946. Lecture: Exclusion Principle and Quantum Mechanics. Nobelprize.org. Nobel Media AB 2014, accessed 13 Feb. www.nobelprize.org/nobel_prizes/physics/laureates/1945/pauli-lecture.html.Google Scholar
Pauli, W. 1979. Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg, ua, Bd. 1, 1919–1924. New York, NY: Springer.Google Scholar
Peters, D. 2014. What Elements of Successful Scientific Theories Are the Correct Targets for ‘Selective’ Scientific Realism? Philosophy of Science, 81 (3): 377397.Google Scholar
Pickering, A. 1984a. Against Putting the Phenomena First: The Discovery of the Weak Neutral Current. Studies in History and Philosophy of Science, 15 (2): 85117.CrossRefGoogle Scholar
Pickering, A. 1984b. Constructing Quarks: A Sociological History of Particle Physics. Chicago, IL: University of Chicago Press.Google Scholar
Pigliucci, M. 2013. The Demarcation Problem: A (Belated) Response to Laudan. In Philosophy of Pseudoscience: Reconsidering the Demarcation Problem, Pigliucci, M. and Boudry, M. (eds.), Chicago, IL: University of Chicago Press.Google Scholar
Pigliucci, M. and Boudry, M.. 2013. Philosophy of Pseudoscience: Reconsidering the Demarcation Problem. Chicago, IL: University of Chicago Press.Google Scholar
Poincaré, H. 1914. Science and Method, trans. by Maitland, F., London: Thomas Nelson.Google Scholar
Pompa, L. 1967. Family Resemblance. Philosophical Quarterly, 17 (66): 6369.CrossRefGoogle Scholar
Popper, K. R. 1940. What Is Dialectic? Mind, 49 (196): 403426.CrossRefGoogle Scholar
Popper, K. R. 1959a. The Logic of Scientific Discovery. London: Routledge.Google Scholar
Popper, K. R. 1959b. Testability and ‘Ad-Hocness’ of the Contraction Hypothesis. British Journal for the Philosophy of Science, 10 (37): 50.Google Scholar
Popper, K. R. 1963/1978. Conjectures and Refutations: The Growth of Scientific Knowledge. 4th ed. London: Butler & Tanner Limited.Google Scholar
Popper, K. R. 1966. A Note on the Difference between the Lorentz-Fitzgerald Contraction and the Einstein Contraction. British Journal for the Philosophy of Science, 16 (64): 332333.CrossRefGoogle Scholar
Popper, K. R. 1970. Normal Science and Its Dangers. In Criticism and the Growth of Knowledge, Proceedings of the International Colloquium in the Philosophy of Science, Lakatos, I. and Musgrave, A. (eds.), Cambridge: Cambridge University Press, 5158.Google Scholar
Popper, K. R. 1976. Unended Quest: An Intellectual Autobiography. London: Routledge.Google Scholar
Popper, K. R. 1978. Natural Selection and the Emergence of Mind. Dialectica, 32 (3–4): 339355.CrossRefGoogle Scholar
Popper, K. R. and Schilpp, P. A.. 1974. The Philosophy of Karl Popper. LaSalle, IL: Open Court.Google Scholar
Psillos, S. 1999. Scientific Realism: How Science Tracks Truth. London: Routledge.Google Scholar
Psillos, S. 2001. Predictive Similarity and the Success of Science: A Reply to Stanford. Philosophy of Science, 68 (3): 346355.Google Scholar
Psillos, S. 2009. Knowing the Structure of Nature: Essays on Realism and Explanation. London: Palgrave Macmillan.CrossRefGoogle Scholar
Psillos, S. 2011. Making Contact with Molecules: On Perrin and Achinstein. In Philosophy of Science Matters: The Philosophy of Peter Achinstein, Morgan, G. J. (ed.), Oxford: Oxford University Press, 177190.CrossRefGoogle Scholar
Putnam, H. 1979. Philosophical Papers: Volume 1, Mathematics, Matter and Method. Cambridge: Cambridge University Press.Google Scholar
Quine, W. V. 1969. Ontological Relativity and Other Essays. New York, NY: Columbia University Press.Google Scholar
Quine, W. V. and Ullian, J. S.. 1970. Web of Belief. New York, NY: Random House.Google Scholar
Reich, E. S. 2011. Speedy Neutrinos Challenge Physicists, Nature, 477 (September 27): 520.Google ScholarPubMed
Reich, E. S. 2012. Timing Glitches Dog Neutrino Claim: Team Admits to Possible Errors in Faster-than-Light Finding. Nature, 483 (7387): 1718.Google Scholar
Richman, R. J. 1962. Something Common. Journal of Philosophy, 59 (26): 821830.CrossRefGoogle Scholar
Robotti, N. 1983. The Spectrum of ζ Puppis and the Historical Evolution of Empirical Data. Historical Studies in the Physical Sciences, 14 (1), 123145.CrossRefGoogle Scholar
Roush, S. 2010. Optimism about the Pessimistic Induction. In New Waves in Philosophy of Science, Magnus, P. D. and Busch, J. (eds.), London: Palgrave Macmillan.Google Scholar
Ruhmkorff, S. 2011. Some Difficulties for the Problem of Unconceived Alternatives. Philosophy of Science, 78 (5): 875886.Google Scholar
Ruse, M. 1977. Karl Popper’s Philosophy of Biology. Philosophy of Science, 44 (4): 638661.Google Scholar
Saatsi, J. 2005a. On the Pessimistic Induction and Two Fallacies. Philosophy of Science, 72 (5): 10881098.Google Scholar
Saatsi, J. 2005b. Reconsidering the Fresnel–Maxwell Theory Shift: How the Realist Can Have Her Cake and EAT It Too. Studies in History and Philosophy of Science Part A, 36 (3): 509538.Google Scholar
Saatsi, J. 2009. Form vs. Content-Driven Arguments for Realism. In New Waves in Philosophy of Science, Magnus, P. D. and Busch, J. (eds.), London: Palgrave Macmillan, 828.Google Scholar
Saatsi, J. in press. Historical Inductions, Old and New. Synthese, https://link.springer.com/article/10.1007/s11229-015-0855-5.Google Scholar
Saatsi, J. and Vickers, P.. 2011. Miraculous Success? Inconsistency and Untruth in Kirchhoff’s Diffraction Theory. British Journal for the Philosophy of Science, 62 (1): 2946.CrossRefGoogle Scholar
Sakurai, J. 1974. Remarks on Neutral Current Interactions. In Neutrinos-1974, American Institute for Physics Conference Proceedings, 26–28 April 1974, Philadelphia, Baltay, C. (ed.), New York, NY: American Institute for Physics, 5763.Google Scholar
Sakurai, J. 1978. Neutral Currents and Gauge Theories – Past, Present, and Future. In Current Trends in the Theory of Fields (Tallahassee-1978): A Symposium in Honor of P. A. M. Dirac, Lannutti, D. and Williams, E. (eds.), College Park, MD: American Institute of Physics, 38.Google Scholar
Salmon, W. 1984. Scientific Explanation and Causal Structure of the World. Princeton, NJ: Princeton University Press.Google Scholar
Salmon, W. 1990. The Appraisal of Theories: Kuhn Meets Bayes. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, Vol. 2: Symposia and Invited Papers, 325332.Google Scholar
Scerri, E. R. 2007. The Periodic Table: Its Story and Its Significance. Oxford: Oxford University Press.Google Scholar
Scerri, E. R. and Worrall, J.. 2001. Prediction and the Periodic Table. Studies in History and Philosophy of Science Part A, 32 (3): 407452.Google Scholar
Schaffner, K. F. 1974. Einstein versus Lorentz: Research Programmes and the Logic of Comparative Theory Evaluation. British Journal for the Philosophy of Science, 25 (1): 4578.CrossRefGoogle Scholar
Schindler, S. 2007. Rehabilitating Theory: Refusal of the ‘Bottom-Up’ Construction of Scientific Phenomena. Studies in History and Philosophy of Science Part A, 38 (1): 160184.CrossRefGoogle Scholar
Schindler, S. 2008a. Model, Theory, and Evidence in the Discovery of the DNA Structure. British Journal for the Philosophy of Science, 59 (4): 619658.Google Scholar
Schindler, S. 2008b. Use-Novel Predictions and Mendeleev’s Periodic Table: Response to Scerri and Worrall (2001). Studies in History and Philosophy of Science Part A, 39 (2): 265269.Google Scholar
Schindler, S. 2011. Bogen and Woodward’s Data-Phenomena Distinction, Forms of Theory-Ladenness, and the Reliability of Data. Synthese, 182 (1): 3955.CrossRefGoogle Scholar
Schindler, S. 2013a. The Kuhnian Mode of HPS. Synthese, 190 (18): 41374154.Google Scholar
Schindler, S. 2013b. Theory-Laden Experimentation. Studies in History and Philosophy of Science Part A, 44 (1): 89101.Google Scholar
Schindler, S. 2014a. Novelty, Coherence, and Mendeleev’s Periodic Table. Studies in History and Philosophy of Science Part A, 45 (March): 6269.Google Scholar
Schindler, S. 2014b. A Matter of Kuhnian Theory Choice. The GWS Model and the Neutral Current. Perspectives on Science, 22 (4): 491522.Google Scholar
Schindler, S. 2015. Scientific Discovery: That-Whats and What-Thats. Ergo, 2 (6): 123148.Google Scholar
Schulmann, R., Kox, A. J., Janssen, M., and Illy, J., eds. 1998. The Collected Papers of Albert Einstein. Vol. 8: The Berlin Years: Correspondence 1914–1918. Princeton, NJ: Princeton University Press.Google Scholar
Schupbach, J.N. 2017. Experimental Explication. Philosophy and Phenomenological Research, 94 (3): 672710.Google Scholar
Schurz, G. 2011. Structural Correspondence, Indirect Reference, and Partial Truth: Phlogiston Theory and Newtonian Mechanics. Synthese, 180 (2): 103120.CrossRefGoogle Scholar
Sciama, D. 1955. Evolutionary Processes in Cosmology. Advancement of Science, 12 (45): 3842.Google Scholar
Sciama, D. 1959. The Unity of the Universe. London: Faber and Faber.Google Scholar
Sciama, D. 1960. Observational Aspects of Cosmology. Vistas in Astronomy, 3: 311328.Google Scholar
Sciama, D. 1961. New Developments in Cosmology. La Nuova Critica, 11: 316.Google Scholar
Segall, R. 2008. Fertility and Scientific Realism. British Journal for the Philosophy of Science, 59 (2): 237246.Google Scholar
Serwer, D. 1977. Unmechanischer Zwang: Pauli, Heisenberg, and the Rejection of the Mechanical Atom, 1923–1925. Historical Studies in the Physical Sciences, 8: 189256.Google Scholar
Simon, M. A. 1969. When Is a Resemblance a Family Resemblance? Mind, 78 (311): 408416.Google Scholar
Smith, J. R. 1976. Persistence and Periodicity: A Study of Mendeleev’s Contribution to the Foundations of Chemistry. PhD dissertation, University of London.Google Scholar
Smolin, L. 2007. The Trouble with Physics: The Rise of String Theory, the Fall of a Science, and What Comes Next. Boston, MA: Houghton Mifflin Harcourt.Google Scholar
Sober, E. 1981. The Principle of Parsimony. British Journal for the Philosophy of Science, 32 (1), 145156.Google Scholar
Sober, E. 1990. Let’s Razor Ockham’s Razor. Explanation and Its Limits, Royal Institute of Philosophy Supplementary, 27: 7394.Google Scholar
Sober, E. 2001. Simplicity. In A Companion to the Philosophy of Science, Newton-Smith, W. H. (ed.), Oxford: Blackwell, 433442.Google Scholar
Sober, E. 2008. Evidence and Evolution: The Logic behind the Science. Cambridge: Cambridge University Press.Google Scholar
Sober, E. 2015. Ockham’s Razors. Cambridge: Cambridge University Press.Google Scholar
Sommerfeld, A. 1916a. Zur quantentheorie der spektrallinien. Annalen der Physik, 356 (17): 194.Google Scholar
Sommerfeld, A. 1916b. Zur Theorie der Balmerschen Serie. Sitzungsberichte der Königlich Bayerischen Akademie der Wissenschaften Matematisch-physikalische Klasse: 425500.Google Scholar
Sommerfeld, A. 1923. Atomic Structure and Spectral Lines. Trans. by Brose, Henry. London: Methuen & Co. Ltd.Google Scholar
Stanford, P. K. 2000. An Antirealist Explanation of the Success of Science. Philosophy of Science, 67 (2): 266284.Google Scholar
Stanford, P. K. 2001. Refusing the Devil’s Bargain: What Kind of Underdetermination Should We Take Seriously? Philosophy of Science, 68 (3), Supplement: Proceedings of the 2000 Biennial Meeting of the Philosophy of Science Association. Part I: Contributed Papers: S1S12.Google Scholar
Stanford, P. K. 2006. Exceeding Our Grasp: Science, History, and the Problem of Unconceived Alternatives. Oxford: Oxford University Press.Google Scholar
Steele, K. and Werndl, C.. 2013. Climate Models, Calibration, and Confirmation. British Journal for the Philosophy of Science, 64 (3): 609635.Google Scholar
Steele, K. and Werndl, C.. 2016. Model-Selection Theory: The Need for a More Nuanced Picture of Use-Novelty and Double-Counting. British Journal for the Philosophy of Science: axw024.Google Scholar
Stump, D. J. 2007. Pierre Duhem’s Virtue Epistemology. Studies in History and Philosophy of Science, 18 (1): 149159.Google Scholar
Swinburne, R. 1997. Simplicity as Evidence of Truth, Vol. 61, Aquinus Lecture. Milwaukee, WI: Marquette University Press.Google Scholar
Swinburne, R. 2001. Epistemic Justification, Vol. 81. Oxford: Oxford University Press.Google Scholar
’t Hooft, G. 1971. Renormalizable Lagrangians for Massive Yang-Mills Fields. Nuclear Physics B, 35 (1): 167188.Google Scholar
’t Hooft, G. 1980. Gauge Theories of the Forces between Elementary Particles. Scientific American, 242.Google Scholar
Taylor, C. 1967. The Patterson Function. Physics Education, 2 (5): 276.Google Scholar
Thomson, J. 1919. Joint Eclipse Meeting of the Royal Society and the Royal Astronomical Society, 6 November 1919. The Observatory, London, 42 (545): 389398.Google Scholar
Thorburn, W. M. 1918. The Myth of Occam’s Razor. Mind, 27 (107): 345353.CrossRefGoogle Scholar
Trout, J. D. 2002. Scientific Explanation and the Sense of Understanding. Philosophy of Science, 69 (2): 212233.Google Scholar
van Fraassen, B. 1980. The Scientific Image. Oxford: Oxford University Press.Google Scholar
van Fraassen, B. 1989. Laws and Symmetry. Oxford: Oxford University Press.Google Scholar
van Fraassen, B. 2000. The False Hopes of Traditional Epistemology. Philosophy and Phenomenological Research, 60 (2): 253280.CrossRefGoogle Scholar
van Fraassen, B. 2009. The Perils of Perrin, in the Hands of Philosophers. Philosophical Studies, 143 (1): 524.Google Scholar
van Spronsen, J. W. 1969. The Priority Conflict between Mendeleev and Meyer. Journal of Chemical Education, 46 (3): 136.Google Scholar
Vickers, P. 2012. Historical Magic in Old Quantum Theory? European Journal for Philosophy of Science, 2 (1): 119.Google Scholar
Vickers, P. 2013a. A Confrontation of Convergent Realism. Philosophy of Science, 80 (2): 189211.Google Scholar
Vickers, P. 2013b. Understanding Inconsistent Science. Oxford: Oxford University Press.Google Scholar
Vine, F. and Matthews, D.. 1963. Magnetic Anomalies over Oceanic Ridges. Nature, 199 (4897): 947949.Google Scholar
von Klüber, H. 1960. The Determination of Einstein’s Light-Deflection in the Gravitational Field of the Sun. Vistas in Astronomy, 3: 4777.Google Scholar
Votsis, I. 2011. The Prospective Stance in Realism. Philosophy of Science, 78 (5): 12231234.Google Scholar
Warburg, E. 1915. Die Physik: Die Kultur der Gegenwart. Leipzig: Teubner.Google Scholar
Watson, J. 1968. The Double Helix: A Personal Account of the Discovery of the Structure of DNA. New York, IL: New American.Google Scholar
Weinberg, S. 1967. A Model of Leptons. Physical Review Letters, 19 (21): 1264.Google Scholar
Weinberg, S. 1974. Recent Progress in Gauge Theories of the Weak, Electromagnetic and Strong Interactions. Reviews of Modern Physics, 46: 255277.Google Scholar
Weinberg, S. 1979. Conceptual Foundations of the Unified Theory of Weak and Electromagnetic Interactions/Nobel Lecture, 8 December 1979.Google Scholar
Weinberg, S. 1993. Dreams of a Final Theory. London: Vintage.Google Scholar
Wetterich, C. 2012. Where to Look for Solving the Gauge Hierarchy Problem? Physics Letters B, 718 (2): 573576.Google Scholar
White, R. 2003. The Epistemic Advantage of Prediction over Accommodation. Mind, 112 (448): 653683.Google Scholar
Wilkins, M. 2003. The Third Man of the Double Helix: Memoirs of a Life in Science. Oxford: Oxford University Press.Google Scholar
Will, C. M. 1993. Was Einstein Right?: Putting General Relativity to the Test, New York, NY: Basic Books.Google Scholar
Wittgenstein, L. 1953. Philosophical Investigations. Anscombe, G.E.M. and Rhees, R. (eds.), Anscombe, G.E.M. (trans.), Oxford: Blackwell.Google Scholar
Woit, P. 2011. Not Even Wrong: The Failure of String Theory and the Continuing Challenge to Unify the Laws of Physics. London: Random House.Google Scholar
Woodward, J. 2003. Making Things Happen: A Theory of Causal Explanation. Oxford: Oxford University Press.Google Scholar
Woodward, J. 2014a. Scientific Explanation. In Stanford Encyclopedia of Philosophy, Zalta, E. N. (ed.), http://plato.stanford.edu/archives/win2014/entries/scientific-explanation/.Google Scholar
Woodward, J. 2014b. Simplicity in the Best Systems Account of Laws of Nature. British Journal for the Philosophy of Science, 65 (1): 91123.Google Scholar
Worrall, J. 1976. Thomas Young and the ‘Refutation’ of Newtonian Opticas: A Case-Study in the Interaction of Philosophy of Science and History of Science. In Method and Appraisal in the Physical Sciences, Howson, C. (ed.), London: Cambridge University Press, 107180.Google Scholar
Worrall, J. 1985. Scientific Discovery and Theory-Confirmation. In Change and Progress in Modern Science, Pitt, J. C. (ed.), Dordrecht: D. Reidel, 301331.Google Scholar
Worrall, J. 1988. The Value of a Fixed Methodology. British Journal for the Philosophy of Science, 39 (2): 263275.Google Scholar
Worrall, J. 1989a. Fix It and Be Damned: A Reply to Laudan. British Journal for the Philosophy of Science, 40 (3): 376388.Google Scholar
Worrall, J. 1989b. Fresnel, Poisson and the ‘White Spot’: The Role of Successful Prediction in Theory-Acceptance. In The Uses of Experiment, Gooding, D., Pinch, T., and Schaffer, S. (eds.), Cambridge: Cambridge University Press, 135157.Google Scholar
Worrall, J. 1989c. Structural Realism: The Best of Both Worlds? Dialectica, 43 (1–2): 99124.Google Scholar
Worrall, J. 2002. New Evidence for Old. In In the Scope of Logic, Methodology and Philosophy of Science, Gardenfors, P. (ed.), Dordrecht: Kluwer, 191209.Google Scholar
Worrall, J. 2005. Prediction and the ‘Periodic Law’: A Rejoinder to Barnes. Studies in History and Philosophy of Science Part A, 36 (4): 817826.Google Scholar
Worrall, J. 2014. Prediction and Accommodation Revisited. Studies in History and Philosophy of Science Part A, 45: 5461.Google Scholar
Zahar, E. 1973a. Why Did Einstein’s Programme Supersede Lorentz’s? (I). British Journal for the Philosophy of Science, 24 (2): 95123.Google Scholar
Zahar, E. 1973b. Why Did Einstein’s Programme Supersede Lorentz’s? (II). British Journal for the Philosophy of Science, 24 (3): 223262.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Samuel Schindler, Aarhus Universitet, Denmark
  • Book: Theoretical Virtues in Science
  • Online publication: 14 May 2018
  • Chapter DOI: https://doi.org/10.1017/9781108381352.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Samuel Schindler, Aarhus Universitet, Denmark
  • Book: Theoretical Virtues in Science
  • Online publication: 14 May 2018
  • Chapter DOI: https://doi.org/10.1017/9781108381352.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Samuel Schindler, Aarhus Universitet, Denmark
  • Book: Theoretical Virtues in Science
  • Online publication: 14 May 2018
  • Chapter DOI: https://doi.org/10.1017/9781108381352.011
Available formats
×