Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-27T06:39:45.021Z Has data issue: false hasContentIssue false

5 - Models at the Service of Marine Nature-based Solutions

Published online by Cambridge University Press:  13 March 2020

Neil Sang
Affiliation:
Swedish University of Agricultural Sciences
Get access

Summary

A broad marine management goal is to maintain healthy marine social–ecological systems that sustain desirable marine ecosystem services (MES) and have the capacity to adapt to change. Models, as representations of how systems work, are promising tools for understanding marine ecosystem and socio-economic processes (Addison et al. 2017; Zedler, 2017). Marine models can translate alternative scenarios exploring the projected consequences on marine ecosystem function of possible futures for drivers of change such as greenhouse gas (GhG) emissions, coastal development, and market, political and socio-cultural forces on seafood consumption (Millennium Ecosystem Assessment (MEA), 2005; Inniss et al. 2016; Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), 2016; Katona et al. 2017). They can also help decision-makers to evaluate national or local scenarios examining the effectiveness of alternative past or future policy interventions influencing society’s demand for specific ES and their delivery to society (Guerry et al., 2012; IPBES, 2016; Arkema et al., 2017).

Type
Chapter
Information
Modelling Nature-based Solutions
Integrating Computational and Participatory Scenario Modelling for Environmental Management and Planning
, pp. 152 - 209
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addison, P., Collins, D., Trebilco, R., Howe, S., Bax, N., Hedge, P., et al. 2017. A new wave of marine evidence-based management: emerging challenges and solutions to transform monitoring, evaluating, and reporting. ICES Journal of Marine Science, 75(3), 941952.Google Scholar
Albert, C., Spangenberg, J. H. & Schröter, B. 2017. Nature-based solutions: criteria. Nature, 543(7645), 315.Google Scholar
Aldridge, J., Van De Molen, J. & Forster, R. 2012. Wider Ecological Implications of Macroalgae Cultivation. The Crown Estate. http://stopptt.com/wp-content/uploads/2018/09/Nitrogen-phosphate-uptake-by-cultivated-seaweed.pdf. Accessed: October 2018.Google Scholar
Alexander, S., Aronson, J., Whaley, O. & Lamb, D. 2016. The relationship between ecological restoration and the ecosystem services concept. Ecology and Society, 21(1).Google Scholar
Anderson, O. F., Guinotte, J. M., Rowden, A. A., Clark, M. R., Mormede, S., Davies, A. J., et al. 2016. Field validation of habitat suitability models for vulnerable marine ecosystems in the South Pacific Ocean: implications for the use of broad-scale models in fisheries management. Ocean & Coastal Management, 120, 110126.Google Scholar
Arkema, K. K., Griffin, R., Maldonado, S., Silver, J., Suckale, J. & Guerry, A. D. 2017. Linking social, ecological, and physical science to advance natural and nature‐based protection for coastal communities. Annals of the New York Academy of Sciences, 1399(1), 526.Google Scholar
Arkema, K. K., Verutes, G. M., Wood, S. A., Clarke-Samuels, C., Rosado, S., Canto, M., et al. 2015. Embedding ecosystem services in coastal planning leads to better outcomes for people and nature. Proceedings of the National Academy of Sciences of the United States of America, 112, 73907395.Google Scholar
Bagstad, K. J., Semmens, D. J., Waage, S. & Winthrop, R. 2013. A comparative assessment of decision-support tools for ecosystem services quantification and valuation. Ecosystem Services, 5, 2739.Google Scholar
Bagstad, K. J., Villa, F., Johnson, G. W. & Voigt, B. 2011. ARIES – Artificial Intelligence for Ecosystem Services: a guide to models and data, version 1.0. ARIES report series n. 1. https://unstats.un.org/unsd/envaccounting/seeaRev/meeting2013/EG13-BG-7.pdf. Accessed: October 2018.Google Scholar
Banzhaf, H. S. & Boyd, J. 2012. The architecture and measurement of an ecosystem services index. Sustainability, 4(4), 430461.Google Scholar
Barbier, E. B. 2015. Valuing the storm protection service of estuarine and coastal ecosystems. Ecosystem Services, 11, 3238.CrossRefGoogle Scholar
Baretta, J., Ebenhöh, W. & Ruardij, P. 1995. The European regional seas ecosystem model, a complex marine ecosystem model. Netherlands Journal of Sea Research, 33(3), 233246.Google Scholar
Baretta-Bekker, J., Baretta, J. & Ebenhöh, W. 1997. Microbial dynamics in the marine ecosystem model ERSEM II with decoupled carbon assimilation and nutrient uptake. Journal of Sea Research, 38(3), 195211.Google Scholar
Bastardie, F., Nielsen, J. R. & Miethe, T. 2016. Corrigendum: DISPLACE: a dynamic, individual-based model for spatial fishing planning and effort displacement – integrating underlying fish population models. Canadian Journal of Fisheries and Aquatic Sciences, 73(3), 469469.Google Scholar
Beck, M. & Lange, G. 2016. Managing Coasts with Natural Solutions: Guidelines for Measuring and Valuing the Coastal Protection Services of Mangroves and Coral Reefs. Washington, DC: The World Bank.Google Scholar
Bedri, Z., Bruen, M., Dowley, A. & Masterson, B. 2013. Environmental consequences of a power plant shut-down: a three-dimensional water quality model of Dublin Bay. Marine Pollution Bulletin, 71(1), 117128.CrossRefGoogle Scholar
Bilkovic, D. M., Mitchell, M., Mason, P. & Duhring, K. 2016. The role of living shorelines as estuarine habitat conservation strategies. Coastal Management, 44(3), 161174.Google Scholar
Blackford, J. C., Allen, J. I. & Gilbert, F. J. 2004. Ecosystem dynamics at six contrasting sites: a generic modelling study. Journal of Marine Systems, 52(1–4), 191215.Google Scholar
Bleck, R. 2002. An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modelling, 4(1), 5588.Google Scholar
Bleck, R., Halliwell, G., Wallcraft, A., Carroll, S., Kelly, K. & Rushing, K. 2002. HYCOM User’s Manual, 4 March 2002.Google Scholar
Böhnke-Henrichs, A., Baulcomb, C., Koss, R., Hussain, S. S. & De Groot, R. S. 2013. Typology and indicators of ecosystem services for marine spatial planning and management. Journal of Environmental Management, 130, 135145.Google Scholar
Booij, N., Ris, R. C. & Holthuijsen, L. H. 1999. A third-generation wave model for coastal regions: 1. Model description and validation. Journal of Geophysical Research, 104(C4), 7649.Google Scholar
Borsje, B. W., Van Wesenbeeck, B. K., Dekker, F., Paalvast, P., Bouma, T. J., Van Katwijk, M. M., et al. 2011. How ecological engineering can serve in coastal protection. Ecological Engineering, 37(2), 113122.CrossRefGoogle Scholar
Bouma, T. J., Van Belzen, J., Balke, T., Zhu, Z., Airoldi, L., Blight, A. J., et al. 2014. Identifying knowledge gaps hampering application of intertidal habitats in coastal protection: opportunities & steps to take. Coastal Engineering, 87, 147157.Google Scholar
Brandon, C. M., Woodruff, J. D., Orton, P. M. & Donnelly, J. P. 2016. Evidence for elevated coastal vulnerability following large‐scale historical oyster bed harvesting. Earth Surface Processes and Landforms, 41(8), 11361143.Google Scholar
Bridges, T. S., Burks-Copes, K. A., Bates, M. E., Collier, Z. A., Fischenich, J. C., Piercy, C. D., et al. 2015. Use of Natural and Nature-based Features (NNBF) for Coastal Resilience. Washington, DC: US Army Engineer Research and Development Center, Environmental Laboratory, Coastal and Hydraulics Laboratory.Google Scholar
Bullock, J. & Ding, H. 2018. A guide to selecting ecosystem service models for decision-making: lessons from sub-Saharan Africa. www.wri.org/sites/default/files/guide-selecting-ecosystem-service-model-decision-making_0.pdfGoogle Scholar
Burchard, H. & Bolding, K. 2002. GETM: A General Estuarine Transport Model; Scientific Documentation. Luxembourg: European Commission, Joint Research Centre, Institute for Environment and Sustainability.Google Scholar
Butenschön, M., Clark, J., Aldridge, J. N., Allen, J. I., Artioli, Y., Blackford, J., et al. 2016. ERSEM 15.06: a generic model for marine biogeochemistry and the ecosystem dynamics of the lower trophic levels. Geoscientific Model Development, 9(4), 12931339.Google Scholar
Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., et al. 2012. Biodiversity loss and its impact on humanity. Nature, 486(7401), 59.Google Scholar
Cardone, V. J., Jensen, R. E., Resio, D. T., Swail, V. R. & Cox, A. T. 1996. Evaluation of contemporary ocean wave models in rare extreme events: the ‘Halloween Storm’ of October 1991 and the ‘Storm of the Century’ of March 1993. Journal of Atmospheric and Oceanic Technology, 13(1), 198230.Google Scholar
Chapman, M. & Underwood, A. 2011. Evaluation of ecological engineering of, armoured, shorelines to improve their value as habitat. Journal of Experimental Marine Biology and Ecology, 400(1–2), 302313.Google Scholar
Chatenoux, B., Peduzzi, P. & Velegrakis, A. 2012a. Risk and Vulnerability Assessment Methodology Development Project (RiVAMP): quantifying the role of marine and coastal ecosystems in mitigating beach erosion. https://archive-ouverte.unige.ch/unige:32371. Accessed: October 2018.Google Scholar
Chatenoux, B., Peduzzi, P. & Velegrakis, A. 2012b. RIVAMP Training on the Role of Coastal and Marine Ecosystems for Mitigating Beach Erosion: The Case of Negril Jamaica. Geneva: UNEP/GRID-Geneva.Google Scholar
Christensen, V. & Walters, C. J. 2004. Ecopath with Ecosim: methods, capabilities and limitations. Ecological Modelling, 172(2–4), 109139.Google Scholar
Christensen, V., Walters, C. J. & Pauly, D. 2005. Ecopath with Ecosim: A User’s Guide. Vancouver: Fisheries Centre, University of British Columbia.Google Scholar
Christie, M. R., Tissot, B. N., Albins, M. A., Beets, J. P., Jia, Y., Ortiz, D. M., et al. 2010. Larval connectivity in an effective network of marine protected areas. PLoS ONE, 5(12), e15715.Google Scholar
Christin, Z. L., Bagstad, K. J. & Verdone, M. A. 2016. A decision framework for identifying models to estimate forest ecosystem services gains from restoration. Forest Ecosystems, 3(1), 3.Google Scholar
Cogan, C. B., Todd, B. J., Lawton, P. & Noji, T. T. 2009. The role of marine habitat mapping in ecosystem-based management. ICES Journal of Marine Science, 66(9), 20332042.Google Scholar
Cohen-Shacham, E., Walters, G., Janzen, C. & Maginnis, S. 2016. Nature-based Solutions to Address Global Societal Challenges. Gland: IUCN.Google Scholar
Cullen-Unsworth, L. C., Nordlund, L. M., Paddock, J., Baker, S., McKenzie, L. J. & Unsworth, R. K. 2014. Seagrass meadows globally as a coupled social–ecological system: implications for human wellbeing. Marine Pollution Bulletin, 83(2), 387397.Google Scholar
Dadou, I., Lamy, F., Rabouille, C., Ruiz-Pino, D., Andersen, V., Bianchi, M., et al. 2001. An integrated biological pump model from the euphotic zone to the sediment: a 1-D application in the Northeast tropical Atlantic. Deep Sea Research Part II: Topical Studies in Oceanography, 48(10), 23452381.Google Scholar
Daily, G. C., Polasky, S., Goldstein, J., Kareiva, P. M., Mooney, H. A., Pejchar, L., et al. 2009. Ecosystem services in decision making: time to deliver. Frontiers in Ecology and the Environment, 7(1), 2128.Google Scholar
de Groot, R. S., Fisher, B., Christie, M., Aronson, J., Braat, L., Gowdy, J., et al. 2010. Integrating the ecological economic dimensions in biodiversity ecosystem service valuation. In: Kumar, P. (ed.) The Economics of Ecosystems and Biodiversity: Ecological and Economic Foundations, pp. 940. London: Earthscan.Google Scholar
del Monte-Luna, P., Arreguín-Sánchez, F. & Lluch-Belda, D. 2007. Marine ecosystem analyses in the gulf of Ulloa, Mexico: BAC meets Ecopath. In: INCOFISH Ecosystem Models: Transiting from Ecopath to Ecospace. Vancouver: Fisheries Centre Research Reports, 15(6), 114133.Google Scholar
Dippner, J. W. 2006. Future aspects in marine ecosystem modelling. Journal of Marine Systems, 61(3–4), 246267. www.sciencedirect.com/science/article/pii/S0924796306000273Google Scholar
Drakou, E. G., Pendleton, L., Effron, M., Ingram, J. C. & Teneva, L. 2017. When ecosystems and their services are not co-located: oceans and coasts. ICES Journal of Marine Science, 74(6), 15311539.Google Scholar
Dyke, P. P. 2001. Coastal and Shelf Sea Modelling. New York, NY: Springer.CrossRefGoogle Scholar
Edgar, G. J., Bates, A. E., Bird, T. J., Jones, A. H., Kininmonth, S., Stuart-Smith, R. D., et al. 2016. New approaches to marine conservation through the scaling up of ecological data. Annual Review of Marine Science, 8, 435461.CrossRefGoogle ScholarPubMed
Elith, J. & Leathwick, J. R. 2009. Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677697.Google Scholar
Elskens, M., Gourgue, O., Baeyens, W., Chou, L., Deleersnijder, E., Leermakers, M., et al. 2014. Modelling metal speciation in the Scheldt Estuary: combining a flexible-resolution transport model with empirical functions. Science of the Total Environment, 476477, 346358. www.ncbi.nlm.nih.gov/pubmed/24476975Google Scholar
Espinosa-Romero, M. J., Gregr, E. J., Walters, C., Christensen, V. & Chan, K. 2011. Representing mediating effects and species reintroductions in Ecopath with Ecosim. Ecological Modelling, 222(9), 15691579.Google Scholar
Essington, T. E. 2007. Evaluating the sensitivity of a trophic mass-balance model (Ecopath) to imprecise data inputs. Canadian Journal of Fisheries and Aquatic Sciences, 64(4), 628637.CrossRefGoogle Scholar
European Commission. 2015. Towards an EU Research and Innovation Policy Agenda for Nature-based Solutions & Re-naturing Cities. Final Report of the Horizon 2020 Group on ‘Nature-based Solutions & Re-naturing Cities’. Brussels: European Commission.Google Scholar
Falk-Petersen, J. 2004. Ecosystem effects of red king crab invasion. A modelling approach using Ecopath with Ecosim. Master’s thesis, University of Tromsø.Google Scholar
Fay, G., Link, J. S. & Hare, J. A. 2017. Assessing the effects of ocean acidification in the Northeast US using an end-to-end marine ecosystem model. Ecological Modelling, 347, 110. www.sciencedirect.com/science/article/pii/S0304380016308237CrossRefGoogle Scholar
Fennel, K., Losch, M., Schröter, J. & Wenzel, M. 2001. Testing a marine ecosystem model: sensitivity analysis and parameter optimization. Journal of Marine Systems, 28(1–2), 4563. www.sciencedirect.com/science/article/pii/S092479630000083XGoogle Scholar
Fulton, E. A. 2010. Approaches to end-to-end ecosystem models. Journal of Marine Systems, 81(1–2), 171183. www.sciencedirect.com/science/article/pii/S0924796309003509Google Scholar
Fulton, E. A., Link, J. S., Kaplan, I. C., Savina‐Rolland, M., Johnson, P., Ainsworth, C., et al. 2011. Lessons in modelling and management of marine ecosystems: the Atlantis experience. Fish and Fisheries, 12(2), 171188.Google Scholar
Fulton, E. A., Smith, A. D. & Johnson, C. R. 2003. Effect of complexity on marine ecosystem models. Marine Ecology Progress Series, 253, 116.Google Scholar
Fung, T., Farnsworth, K. D., Reid, D. G. & Rossberg, A. G. 2015. Impact of biodiversity loss on production in complex marine food webs mitigated by prey-release. Nature Communications, 6, 6657.Google Scholar
Ganguly, D., Singh, G., Purvaja, R., Bhatta, R., Selvam, A. P., Banerjee, K., et al. 2018. Valuing the carbon sequestration regulation service by seagrass ecosystems of Palk Bay and Chilika, India. Ocean & Coastal Management, 159, 2633.Google Scholar
GETM. n.d. GETM: a 3D hydrodynamic model for coastal oceans. https://getm.eu/. Accessed: October 2018.Google Scholar
Gimenez, O., Buckland, S. T., Morgan, B. J., Bez, N., Bertrand, S., Choquet, R., et al. 2014. Statistical ecology comes of age. Biology Letters, 10(12), 20140698.Google Scholar
Gittman, R. K., Peterson, C. H., Currin, C. A., Fodrie, F. J., Piehler, M. F. & Bruno, J. F. 2016. Living shorelines can enhance the nursery role of threatened estuarine habitats. Ecological Applications, 26(1), 249263.Google Scholar
Gourgue, O., Baeyens, W., Chen, M. S., De Brauwere, A., De Brye, B., Deleersnijder, E., et al. 2013. A depth-averaged two-dimensional sediment transport model for environmental studies in the Scheldt Estuary and tidal river network. Journal of Marine Systems, 128, 2739. www.sciencedirect.com/science/article/pii/S0924796313000833Google Scholar
Gray, R., Fulton, B., Little, R., Scott, R., Hatfield, B., Lyne, V., et al. 2006. North West Shelf Joint Environmental Management Study: Software Description – In Vitro. Canberra: CSIRO Oceans and Atmosphere – Information and Data Centre.Google Scholar
Gregr, E. J. & Chan, K. M. 2014. Leaps of faith: how implicit assumptions compromise the utility of ecosystem models for decision-making. Bioscience, 65, 4354.CrossRefGoogle Scholar
Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., et al. 2017. Natural climate solutions. Proceedings of the National Academy of Sciences of the United States of America, 114(44), 11,645–11,650.Google Scholar
Guannel, G., Ruggiero, P., Faries, J., Arkema, K., Pinsky, M., Gelfenbaum, G., et al. 2015. Integrated modeling framework to quantify the coastal protection services supplied by vegetation. Journal of Geophysical Research: Oceans, 120(1), 324345.Google Scholar
Guerry, A. D., Ruckelshaus, M. H., Arkema, K. K., Bernhardt, J. R., Guannel, G., Kim, C.-K., et al. 2012. Modeling benefits from nature: using ecosystem services to inform coastal and marine spatial planning. International Journal of Biodiversity Science, Ecosystem Services & Management, 8(1–2), 107121.CrossRefGoogle Scholar
Guerry, A. D., Ruckelshaus, M. H., Plummer, M. L. & Holland, D. 2013. Modeling marine ecosystem services. In: Levin, S. A. (ed.) Encyclopedia of Biodiversity. 2nd ed., Vol. 5, pp. 329346. Waltham, MA: Academic Press.Google Scholar
Harrison, P. A., Dunford, R., Barton, D. N., Kelemen, E., Martín-López, B., Norton, L., et al. 2018. Selecting methods for ecosystem service assessment: a decision tree approach. Ecosystem Services, 29, 481498.Google Scholar
Hattam, C., Atkins, J. P., Beaumont, N., Bӧrger, T., Bӧhnke-Henrichs, A., Burdon, D., et al. 2015. Marine ecosystem services: linking indicators to their classification. Ecological Indicators, 49, 6175.Google Scholar
Heenan, A., Gorospe, K., Williams, I., Levine, A., Maurin, P., Nadon, M., et al. 2016. Ecosystem monitoring for ecosystem‐based management: using a polycentric approach to balance information trade‐offs. Journal of Applied Ecology, 53(3), 699704.Google Scholar
Herr, D. & Landis, E. 2016. Coastal blue carbon ecosystems. Opportunities for nationally determined contributions. Policy Brief. Gland: IUCN.Google Scholar
Hervouet, J.-M. 2007. Hydrodynamics of Free Surface Flows: Modelling with the Finite Element Method. Chichester: John Wiley & Sons.Google Scholar
Heymans, J., Coll, M., Libralato, S. & Christensen, V. 2012. Ecopath theory, modelling and application to coastal ecosystems. In: Treatise on Estuarine and Coastal Science, pp. 93113. Oxford: Elsevier.Google Scholar
Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. 2006. Evaluating the ability of habitat suitability models to predict species presences. Ecological Modelling, 199(2), 142152.Google Scholar
Ho, T. V. T., Woodley, S., Cottrell, A. & Valentine, P. 2014. A multilevel analytical framework for more-effective governance in human-natural systems: a case study of marine protected areas in Vietnam. Ocean & Coastal Management, 90, 1119.Google Scholar
Hollowed, A. B., Bax, N., Beamish, R., Collie, J., Fogarty, M., Livingston, P., et al. 2000. Are multispecies models an improvement on single-species models for measuring fishing impacts on marine ecosystems? ICES Journal of Marine Science, 57(3), 707719.Google Scholar
Howell, K. L., Holt, R., Endrino, I. P. & Stewart, H. 2011. When the species is also a habitat: comparing the predictively modelled distributions of Lophelia pertusa and the reef habitat it forms. Biological Conservation, 144(11), 26562665.Google Scholar
Hyder, K., Rossberg, A. G., Allen, J. I., Austen, M. C., Barciela, R. M., Bannister, H. J., et al. 2015. Making modelling count – increasing the contribution of shelf-seas community and ecosystem models to policy development and management. Marine Policy, 61, 291302.Google Scholar
Ingram, R. J., Oleson, K. L. & Gove, J. M. 2018. Revealing complex social–ecological interactions through participatory modeling to support ecosystem-based management in Hawai’i. Marine Policy, 94, 180188.Google Scholar
Inniss, L., Simcock, A., Ajawin, A., Alcala, A., Bernal, P., Calumpong, H., et al. 2016 . The First Global Integrated Marine Assessment: World Ocean Assessment I. New York, NY: United Nations.Google Scholar
IPBES. 2016. The Methodological Assessment Report on Scenarios and Models of Biodiversity and Ecosystem Services. Bonn: Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services.Google Scholar
IPCC. 2018. Global warming of 1.5°C www.ipcc.ch/report/sr15/Google Scholar
IUCN. 2017. IUCN Position on SDG14 – Call for Action.Google Scholar
Kaplan, I. C., Horne, P. J. & Levin, P. S. 2012. Screening California current fishery management scenarios using the Atlantis end-to-end ecosystem model. Progress in Oceanography, 102, 518. www.sciencedirect.com/science/article/pii/S0079661112000262Google Scholar
Karanci, A., Berglund, E. & Overton, M. 2017. An agent-based model to evaluate housing dynamics of coastal communities facing storms and sea level rise. Coastal Engineering Proceedings, 1(35), 23.Google Scholar
Katona, S., Polsenberg, J., Lowndes, J., Halpern, B. S., Pacheco, E., Mosher, L., et al. 2017. Navigating the Seascape of Ocean Management: Waypoints on the Voyage Toward Sustainable Use. Seattle, WA: OpenChannels.Google Scholar
Kelble, C. R., Loomis, D. K., Lovelace, S., Nuttle, W. K., Ortner, P. B., Fletcher, P., et al. 2013. The EBM-DPSER conceptual model: integrating ecosystem services into the DPSIR framework. PLoS ONE, 8(8), e70766.Google Scholar
Koné, N. V., Machu, E., Penven, P., Andersen, V., Garçon, V., Fréon, P., et al. 2005. Modeling the primary and secondary productions of the southern Benguela upwelling system: a comparative study through two biogeochemical models. Global Biogeochemical Cycles, 19(4).Google Scholar
Kwiatkowski, L., Yool, A., Allen, J., Anderson, T., Barciela, R., Buitenhuis, E., et al. 2014. iMarNet: an ocean biogeochemistry model inter-comparison project within a common physical ocean modelling framework. Biogeosciences Discussions, 11(7), 10,537–10,569.Google Scholar
Landuyt, D., Broekx, S., D’hondt, R., Engelen, G., Aertsens, J. & Goethals, P. L. 2013. A review of Bayesian belief networks in ecosystem service modelling. Environmental Modelling & Software, 46, 111.Google Scholar
Lauria, V., Vaz, S., Martin, C. S., Mackinson, S. & Carpentier, A. 2011. What influences European plaice (Pleuronectes platessa) distribution in the eastern English Channel? Using habitat modelling and GIS to predict habitat utilization. ICES Journal of Marine Science, 68(7), 15001510.Google Scholar
Le Pape, O., Delavenne, J. & Vaz, S. 2014. Quantitative mapping of fish habitat: a useful tool to design spatialised management measures and marine protected area with fishery objectives. Ocean & Coastal Management, 87, 819.CrossRefGoogle Scholar
Legrand, S., Deleersnijder, E., Hanert, E., Legat, V. & Wolanski, E. 2006. High-resolution, unstructured meshes for hydrodynamic models of the Great Barrier Reef, Australia. Estuarine, Coastal and Shelf Science, 68(1), 3646.Google Scholar
Levin, P. S., Fogarty, M. J., Murawski, S. A. & Fluharty, D. 2009. Integrated ecosystem assessments: developing the scientific basis for ecosystem-based management of the ocean. PLoS Biology, 7(1), e1000014.Google Scholar
Levin, S. A. & Lubchenco, J. 2008. Resilience, robustness, and marine ecosystem-based management. AIBS Bulletin, 58(1), 2732.Google Scholar
Levine, A. S. & Feinholz, C. L. 2015. Participatory GIS to inform coral reef ecosystem management: mapping human coastal and ocean uses in Hawaii. Applied Geography, 59, 6069.Google Scholar
Link, J. S., Fulton, E. A. & Gamble, R. J. 2010. The northeast US application of ATLANTIS: a full system model exploring marine ecosystem dynamics in a living marine resource management context. Progress in Oceanography, 87(1–4), 214234.CrossRefGoogle Scholar
Link, J. S., Gamble, R. J. & Fulton, E. A. 2011. NEUS–Atlantis: construction, calibration, and application of an ecosystem model with ecological interactions, physiographic conditions, and fleet behavior. NOAA Technical Memo NMFS NE, 218(247), 02543–1026.Google Scholar
Liquete, C., Piroddi, C., Drakou, E. G., Gurney, L., Katsanevakis, S., Charef, A., et al. 2013. Current status and future prospects for the assessment of marine and coastal ecosystem services: a systematic review. PLoS ONE, 8(7), e67737.Google Scholar
Luettich, R. A. Jr, Westerink, J. J. & Scheffner, N. W. 1992. ADCIRC: an advanced three-dimensional circulation model for shelves, coasts, and estuaries. Report 1. Theory and methodology of ADCIRC-2DDI and ADCIRC-3DL. Technical report.Google Scholar
Maes, J., Egoh, B., Willemen, L., Liquete, C., Vihervaara, P., Schägner, J. P., et al. 2012. Mapping ecosystem services for policy support and decision making in the European Union. Ecosystem Services, 1(1), 3139.Google Scholar
Marzloff, M., Shin, Y.-J., Tam, J., Travers, M. & Bertrand, A. 2009. Trophic structure of the Peruvian marine ecosystem in 2000–2006: insights on the effects of management scenarios for the hake fishery using the IBM trophic model Osmose. Journal of Marine Systems, 75(1–2), 290304.Google Scholar
Mason, E., Molemaker, J., Shchepetkin, A. F., Colas, F., Mcwilliams, J. C. & Sangrà, P. 2010. Procedures for offline grid nesting in regional ocean models. Ocean Modelling, 35(1–2), 115.Google Scholar
McCall, R. T., De Vries, J. V. T., Plant, N., Van Dongeren, A., Roelvink, J., Thompson, D., et al. 2010. Two-dimensional time dependent hurricane overwash and erosion modeling at Santa Rosa Island. Coastal Engineering, 57(7), 668683.Google Scholar
McMichael, A., Scholes, R., Hefny, M., Pereira, E., Palm, C. & Foale, S. 2005. Linking Ecosystem Services and Human Well-being. Washington, DC: Island Press.Google Scholar
Mendoza, E., Oderiz, I., Martinez, M. L. & Silva, R. 2017. Measurements and modelling of small scale processes of vegetation preventing dune erosion. Journal of Coastal Research, 77, 1927.Google Scholar
Millennium Ecosystem Assessment (MEA). 2005. Current State and Trends. Washington, DC: Island Press.Google Scholar
Moloney, C. L. & Field, J. G. 1991. The size-based dynamics of plankton food webs. I. A simulation model of carbon and nitrogen flows. Journal of Plankton Research, 13(5), 10031038.CrossRefGoogle Scholar
Mongin, M., Baird, M. E., Tilbrook, B., Matear, R. J., Lenton, A., Herzfeld, M., et al. 2016. The exposure of the Great Barrier Reef to ocean acidification. Nature Communications, 7, 10732.Google Scholar
Moosavi, S. 2017. Ecological coastal protection: pathways to living shorelines. In: Hajdu, M. & Skibniewski, M. E. (eds.) Creative Construction Conference 2017, pp. 930938. Oxford: Elsevier.Google Scholar
Morris, R. L., Konlechner, T. M., Ghisalberti, M. & Swearer, S. E. 2018. From grey to green: efficacy of eco‐engineering solutions for nature‐based coastal defence. Global Change Biology, 24, 18371842.Google Scholar
Narayan, S., Beck, M. W., Reguero, B. G., Losada, I. J., Van Wesenbeeck, B., Pontee, N., et al. 2016. The effectiveness, costs and coastal protection benefits of natural and nature-based defences. PLoS ONE, 11(5), e0154735.Google Scholar
Narayan, S., Beck, M. W., Wilson, P., Thomas, C. J., Guerrero, A., Shepard, C. C., et al. 2017. The value of coastal wetlands for flood damage reduction in the northeastern USA. Scientific Reports, 7, 9463.Google Scholar
Nature Conservancy. 2018. Coastal Resilience toolkit http://coastalresilience.org/natural-solutions/toolkit/Google Scholar
Nesshöver, C., Assmuth, T., Irvine, K. N., Rusch, G. M., Waylen, K. A., Delbaere, B., et al. 2017. The science, policy and practice of nature-based solutions: an interdisciplinary perspective. Science of the Total Environment, 579, 12151227.Google Scholar
Niemeijer, D. & De Groot, R. S. 2008. A conceptual framework for selecting environmental indicator sets. Ecological Indicators, 8(1), 1425.Google Scholar
Nordhaus, W. 2014. Estimates of the social cost of carbon: concepts and results from the DICE-2013R model and alternative approaches. Journal of the Association of Environmental and Resource Economists, 1(1/2), 273312.CrossRefGoogle Scholar
Nordhaus, W. D. 2017. Revisiting the social cost of carbon. Proceedings of the National Academy of Sciences of the United States of America, 114, 15181823.CrossRefGoogle ScholarPubMed
Novak, A. B. & Short, F. T. 2012. Creating the Basis for Successful Restoration: An Eelgrass Habitat Suitability Model in GIS for Plum Island Sound, Massachusetts. Fall River, MA: Office of Energy and Environmental Affairs (Massachusetts). www.mass.gov/eea/docs/mbp/publications/eelgrassGoogle Scholar
Nowacki, D. J., Beudin, A. & Ganju, N. K. 2017. Spectral wave dissipation by submerged aquatic vegetation in a back-barrier estuary. Limnology and Oceanography, 62(2), 736753.Google Scholar
O’Donnell, J. E. D. 2016. Regulatory issues for implementing living shorelines. National Wetlands Newsletter, 38(2). www.eli.org/sites/default/files/nwn/issue/38.2_Odonnell.pdfGoogle Scholar
Osorio-Cano, J., Osorio, A. & Peláez-Zapata, D. 2019. Ecosystem management tools to study natural habitats as wave damping structures and coastal protection mechanisms. Ecological Engineering, 130, 282295.Google Scholar
Ostrom, E. 2009. A general framework for analyzing sustainability of social–ecological systems. Science, 325(5939), 419422.Google Scholar
Pauly, D., Christensen, V. & Walters, C. 2000. Ecopath, Ecosim, and Ecospace as tools for evaluating ecosystem impact of fisheries. ICES Journal of Marine Science: Journal du Conseil, 57(3), 697706.Google Scholar
Pendleton, L., Donato, D. C., Murray, B. C., Crooks, S., Jenkins, W. A., Sifleet, S., et al. 2012. Estimating global ‘blue carbon’ emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE, 7(9), e43542.Google Scholar
Piroddi, C., Teixeira, H., Lynam, C. P., Smith, C., Alvarez, M. C., Mazik, K., et al. 2015. Using ecological models to assess ecosystem status in support of the European Marine Strategy Framework Directive. Ecological Indicators, 58, 175191.Google Scholar
Plagányi, É. E. 2007. Models for an Ecosystem Approach to Fisheries. Technical Paper No. 477. Rome: Food & Agriculture Organization.Google Scholar
Plaganyi, E. & Butterworth, D. 2004. A critical look at the potential of Ecopath with Ecosim to assist in practical fisheries management. African Journal of Marine Science, 26(1), 261287.Google Scholar
Pontee, N., Narayan, S., Beck, M. W. & Hosking, A. H. 2016. Nature-based solutions: lessons from around the world. Proceedings of the Institution of Civil Engineers-Maritime Engineering, 169(1), 2936.Google Scholar
Radach, G. & Moll, A. 2006. Review of the three-dimensional ecological modelling related to the North Sea shelf system – Part 2: model validation and data needs. Oceanography and Marine Biology; an Annual Review, 44, 160.Google Scholar
Randall, D. A., Wood, R. A., Bony, S., Colman, R., Fichefet, T., Fyfe, J., et al. 2007. Climate models and their evaluation. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC (FAR), pp. 589662. Cambridge: Cambridge University Press.Google Scholar
Reddy, S. M., Guannel, G., Griffin, R., Faries, J., Boucher, T., Thompson, M., et al. 2016. Evaluating the role of coastal habitats and sea‐level rise in hurricane risk mitigation: an ecological economic assessment method and application to a business decision. Integrated Environmental Assessment and Management, 12(2), 328344.Google Scholar
Rizvi, A. R. & Van Riel, K. 2013. Nature Based Solutions for Climate Change Adaptation–Knowledge Gaps. Gland: IUCN. www.iucn.org/sites/dev/files/eba_knowledge_gaps.pdf. Accessed: October 2018.Google Scholar
Roberts, C. M., O’Leary, B. C., McCauley, D. J., Cury, P. M., Duarte, C. M., Lubchenco, J., et al. 2017. Marine reserves can mitigate and promote adaptation to climate change. Proceedings of the National Academy of Sciences of the United States of America, 114, 15181523.Google Scholar
Rockström, J. & Tyrrell, T. D. 2017. Nature-based solutions for better climate resilience: the need to scale up ambition and action. Expert Perspective for the NDC Partnership. www.ndcpartnership.org/sites/default/files/NDCP_Expert_Perspectives_SRC_Climate_Action_v5.pdf. Accessed: October 2018Google Scholar
Roelvink, D., Reniers, A., Van Dongeren, A., Van Thiel De Vries, J., Lescinski, J. & McCall, R. 2010. XBEACH model description and manual. UNESCO–IHE Institute for Water Education, Deltares and Delft University of Tecnhology Report, 21 June 2010.Google Scholar
Rooper, C. N., Zimmermann, M., Prescott, M. M. & Hermann, A. J. 2014. Predictive models of coral and sponge distribution, abundance and diversity in bottom trawl surveys of the Aleutian Islands, Alaska. Marine Ecology Progress Series, 503, 157176.Google Scholar
Ruardij, P., Veldhuis, M. J. & Brussaard, C. P. 2005. Modeling the bloom dynamics of the polymorphic phytoplankter Phaeocystis globosa: impact of grazers and viruses. Harmful Algae, 4(5), 941963.Google Scholar
Ruckelshaus, M., Mckenzie, E., Tallis, H., Guerry, A., Daily, G., Kareiva, P., et al. 2015. Notes from the field: lessons learned from using ecosystem service approaches to inform real-world decisions. Ecological Economics, 115, 1121. www.sciencedirect.com/science/article/pii/S0921800913002498Google Scholar
Schueler, K. 2017. Nature-based solutions to enhance coastal resilience. Inter-American Development Bank: 13. https://publications.iadb.org/bitstream/handle/11319/8526/Nature_based_solutions_to_enhance_coastal_resilience.pdf?sequence=1&isAllowed=yGoogle Scholar
Schulze, J., Müller, B., Groeneveld, J. & Grimm, V. 2017. Agent-based modelling of social–ecological systems: achievements, challenges, and a way forward. Journal of Artificial Societies and Social Simulation, 20(2), 8.Google Scholar
Seppelt, R., Dormann, C. F., Eppink, F. V., Lautenbach, S. & Schmidt, S. 2011. A quantitative review of ecosystem service studies: approaches, shortcomings and the road ahead. Journal of Applied Ecology, 48(3), 630636.Google Scholar
Shin, Y.-J. & Cury, P. 2001. Exploring fish community dynamics through size-dependent trophic interactions using a spatialized individual-based model. Aquatic Living Resources, 14(2), 6580.Google Scholar
Shin, Y.-J., Shannon, L. & Cury, P. 2004. Simulations of fishing effects on the southern Benguela fish community using an individual-based model: learning from a comparison with ECOSIM. African Journal of Marine Science, 26(1), 95114.Google Scholar
Smallegan, S. M., Irish, J. L. & Van Dongeren, A. R. 2017. Developed barrier island adaptation strategies to hurricane forcing under rising sea levels. Climatic Change, 143(1–2), 173184.Google Scholar
Spalding, M. D., Ruffo, S., Lacambra, C., et al. 2014. The role of ecosystems in coastal protection: adapting to climate change and coastal hazards. Ocean & Coastal Management, 90, 5057.Google Scholar
Stark, J., Plancke, Y., Ides, S., Meire, P. & Temmerman, S. 2016. Coastal flood protection by a combined nature-based and engineering approach: modeling the effects of marsh geometry and surrounding dikes. Estuarine Coastal and Shelf Science, 175, 3445.Google Scholar
Stelzenmüller, V., Lee, J., Garnacho, E. & Rogers, S. 2010. Assessment of a Bayesian belief network–GIS framework as a practical tool to support marine planning. Marine Pollution Bulletin, 60(10), 17431754.Google Scholar
Stock, C. A., Alexander, M. A., Bond, N. A., Brander, K. M., Cheung, W. W., Curchitser, E. N., et al. 2011. On the use of IPCC-class models to assess the impact of climate on living marine resources. Progress in Oceanography, 88(1–4), 127.Google Scholar
Storlazzi, C., Reguero, B., Lowe, E., Shope, J., Gibbs, A., Beck, M., et al. 2017. Rigorously valuing the role of coral reefs in coastal protection: an example from Maui, Hawaii, USA. Coastal Dynamics, 2017, 665674.Google Scholar
Sutton-Grier, A. E., Wowk, K. & Bamford, H. 2015. Future of our coasts: the potential for natural and hybrid infrastructure to enhance the resilience of our coastal communities, economies and ecosystems. Environmental Science & Policy, 51, 137148.Google Scholar
Tallis, H., Ricketts, T., Guerry, A., Nelson, E., Ennaanay, D., Wolny, S., et al. 2011. InVEST 2.1 Beta User’s Guide. Stanford, CA: The Natural Capital Project.Google Scholar
TELEMAC-MASCARET. n.d. open TELEMAC-MASCARET: the mathematically superior suite of solvers www.opentelemac.org/Google Scholar
Temmerman, S., Meire, P., Bouma, T. J., Herman, P. M., Ysebaert, T. & De Vriend, H. J. 2013. Ecosystem-based coastal defence in the face of global change. Nature, 504(7478), 79.Google Scholar
Thorslund, J., Jarsjo, J., Jaramillo, F., Jawitz, J. W., Manzoni, S., Basu, N. B., et al. 2017. Wetlands as large-scale nature-based solutions: status and challenges for research, engineering and management. Ecological Engineering, 108, 489497.Google Scholar
Tolman, H. L. 2009. User manual and system documentation of WAVEWATCH III TM version 3.14. Technical note, MMAB Contribution, 276: 220.Google Scholar
Travers, M., Shin, Y.-J., Shannon, L. & Cury, P. 2006. Simulating and testing the sensitivity of ecosystem-based indicators to fishing in the southern Benguela ecosystem. Canadian Journal of Fisheries and Aquatic Sciences, 63(4), 943956.Google Scholar
UNFCCC. 2015. Decision 1/CP.21: Adoption of the Paris Agreement. FCCC/CP/2015/10/Add.1. Bonn: UNFCCC Secretariat.Google Scholar
United Nations. 2015. Sustainable Development Goals Report 2015. https://sustainabledevelopment.un.org/content/documents/1758GSDR%202015%20Advance%20Unedited%20Version.pdf. Accessed: October 2018.Google Scholar
UN-Water. 2018. The United Nations World Water Development Report 2018: Nature-based Solutions for Water. UN World Water Assessment Programme (WWAP). Paris: UNESCO.Google Scholar
van Wesenbeeck, B. K., de Boer, W., Narayan, S., van der Star, W. R. & de Vries, M. B. 2017. Coastal and riverine ecosystems as adaptive flood defenses under a changing climate. Mitigation and Adaptation Strategies for Global Change, 22(7), 10871094.Google Scholar
Vaudrey, J. M., Eddings, J., Pickerell, C., Brousseau, L. & Yarish, C. 2013. Development and Application of a GIS-based Long Island Sound Eelgrass Habitat Suitability Index Model. Storrs, CT: University of Connecticut Department of Marine Science.Google Scholar
Verutes, G. M., Arkema, K. K., Clarke-Samuels, C., Wood, S. A., Rosenthal, A., Rosado, S., et al. 2017. Integrated planning that safeguards ecosystems and balances multiple objectives in coastal Belize. International Journal of Biodiversity Science, Ecosystem Services & Management, 13(3), 117.Google Scholar
Vichi, M., Masina, S. & Navarra, A. 2007. A generalized model of pelagic biogeochemistry for the global ocean ecosystem. Part II: numerical simulations. Journal of Marine Systems, 64(1–4), 110134. www.sciencedirect.com/science/article/pii/S0924796306001096Google Scholar
Villa, F., Bagstad, K. J., Voigt, B., Johnson, G. W., Portela, R., Honzák, M., et al. 2014. A methodology for adaptable and robust ecosystem services assessment. PLoS ONE, 9(3), e91001.Google Scholar
Vitolo, C., Elkhatib, Y., Reusser, D., Macleod, C. J. & Buytaert, W. 2015. Web technologies for environmental Big Data. Environmental Modelling & Software, 63, 185198.Google Scholar
Vuik, V., Jonkman, S. N., Borsje, B. W. & Suzuki, T. 2016. Nature-based flood protection: the efficiency of vegetated foreshores for reducing wave loads on coastal dikes. Coastal Engineering, 116, 4256.Google Scholar
Wallcraft, A., Carroll, S., Kelly, K. & Rushing, K. 2003. Hybrid Coordinate Ocean Model (HYCOM) Version 2.1. User’s Guide https://apps.dtic.mil/docs/citations/ADA588120. Accessed: October 2018.Google Scholar
Wallcraft, A., Metzger, E. & Carroll, S. 2009. Software design description for the Hybrid Coordinate Ocean Model (HYCOM) Version 2.2 https://apps.dtic.mil/docs/citations/ADA494779. Accessed: October 2018.Google Scholar
WAMDI Group. 1988. The WAM model – a third generation ocean wave prediction model. Journal of Physical Oceanography, 18(12), 17751810.Google Scholar
Weijerman, M., Gove, J. M., Williams, I. D., Walsh, W. J., Minton, D. & Polovina, J. J. 2018. Evaluating management strategies to optimise coral reef ecosystem services. Journal of Applied Ecology, 55(4), 18231833.Google Scholar
Westerink, J. J., Luettich, R. A., Feyen, J. C., Atkinson, J. H., Dawson, C., Roberts, H. J., et al. 2008. A basin-to channel-scale unstructured grid hurricane storm surge model applied to southern Louisiana. Monthly Weather Review, 136(3), 833864.Google Scholar
White, C., Halpern, B. S. & Kappel, C. V. 2012. Ecosystem service tradeoff analysis reveals the value of marine spatial planning for multiple ocean uses. Proceedings of the National Academy of Sciences of the United States of America, 109, 46964701.Google Scholar
Wilson, A. M. W. & Forsyth, C. 2018. Restoring near-shore marine ecosystems to enhance climate security for island ocean states: aligning international processes and local practices. Marine Policy, 93, 284294.Google Scholar
World Bank & UNDESA. 2017. The Potential of the Blue Economy: Increasing Long-term Benefits of the Sustainable Use of Marine Resources for Small Island Developing States and Coastal Least Developed Countries. Washington, DC: World Bank.Google Scholar
Wylie, L., Sutton-Grier, A. E. & Moore, A. 2016. Keys to successful blue carbon projects: lessons learned from global case studies. Marine Policy, 65, 7684.Google Scholar
XBEACH. n.d. XBeach Open Source Community. https://oss.deltares.nl/web/xbeach/Google Scholar
Yemane, D., Shin, Y. J. & Field, J. G. 2009. Exploring the effect of marine protected areas for the dynamics of fish communities in the southern Benguela ecosystem: an individual based modelling IBM approach. ICES Journal of Marine Science, 66, 378387.Google Scholar
Ysebaert, T., Jansen, H. M. & Poelman, M. 2017. Coastal protection and seafood security in Bangladesh: food for thought. Presented at The Ocean/Blue Economy for Bangladesh Workshop, Dhaka, 23–23 November 2017.Google Scholar
Zedler, J. B. 2017. What’s new in adaptive management and restoration of coasts and estuaries? Estuaries and Coasts, 40(1), 121.Google Scholar
Zhou, J., Wang, Q., Zhao, W., Yu, D. & Guan, S. 2016. Habitat suitability analysis of eelgrass Zostera marina L. in the subtidal zone of Xiaoheishan Island. Chinese Journal of Oceanology and Limnology, 34(1), 6978.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×