Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-14T04:22:14.329Z Has data issue: false hasContentIssue false

Section II - A Metabolism-Based Approach to Movement Disorders and Inherited Metabolic Disorders

Published online by Cambridge University Press:  24 September 2020

Darius Ebrahimi-Fakhari
Affiliation:
Harvard Medical School
Phillip L. Pearl
Affiliation:
Harvard Medical School
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Movement Disorders and Inherited Metabolic Disorders
Recognition, Understanding, Improving Outcomes
, pp. 171 - 364
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Kolker, S, Garcia-Cazorla, A, Valayannopoulos, V, et al. The phenotypic spectrum of organic acidurias and urea cycle disorders. Part 1: The initial presentation. J Inherit Metab Dis. 2015;38(6):1041–57.Google ScholarPubMed
Kolker, S, Valayannopoulos, V, Burlina, AB, et al. The phenotypic spectrum of organic acidurias and urea cycle disorders. Part 2: The evolving clinical phenotype. J Inherit Metab Dis. 2015;38(6):1059–74.Google Scholar
Kolker, S, Sauer, SW, Hoffmann, GF, et al. Pathogenesis of CNS involvement in disorders of amino and organic acid metabolism. J Inherit Metab Dis. 2008;31(2):194204.CrossRefGoogle ScholarPubMed
Baumgartner, MR, Horster, F, Dionisi-Vici, C, et al. Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia. Orphanet J Rare Dis. 2014;9:130.CrossRefGoogle ScholarPubMed
Boy, N, Muhlhausen, C, Maier, EM, et al. Proposed recommendations for diagnosing and managing individuals with glutaric aciduria type I: Second revision. J Inherit Metab Dis. 2017;40(1):75101.CrossRefGoogle ScholarPubMed
Haberle, J, Boddaert, N, Burlina, A, et al. Suggested guidelines for the diagnosis and management of urea cycle disorders. Orphanet J Rare Dis. 2012;7:32.Google Scholar
van Spronsen, FJ, van Wegberg, AM, Ahring, K, et al. Key European guidelines for the diagnosis and management of patients with phenylketonuria. Lancet Diabetes Endocrinol. 2017;5(9):743–56.Google Scholar
Niemi, AK, Kim, IK, Krueger, CE, et al. Treatment of methylmalonic acidemia by liver or combined liver–kidney transplantation. J Pediatr. 2015;166(6):1455–61 e1.Google Scholar
Lindner, M, Gramer, G, Haege, G, et al. Efficacy and outcome of expanded newborn screening for metabolic diseases: Report of 10 years from south-west Germany. Orphanet J Rare Dis. 2011;6:44.Google Scholar
Blau, N, van Spronsen, FJ, Levy, HL. Phenylketonuria. Lancet. 2010;376(9750):1417–27.Google Scholar
Pietz, J, Kreis, R, Rupp, A, et al. Large neutral amino acids block phenylalanine transport into brain tissue in patients with phenylketonuria. J Clin Invest. 1999;103(8):1169–78.CrossRefGoogle ScholarPubMed
Burgard, P, Schmidt, E, Rupp, A, Schneider, W, Bremer, HJ. Intellectual development of the patients of the German collaborative study of children treated for phenylketonuria. Eur J Pediatr. 1996;155 Suppl 1:S33-8.Google Scholar
van Wegberg, AMJ, MacDonald, A, Ahring, K, et al. The complete European guidelines on phenylketonuria: Diagnosis and treatment. Orphanet J Rare Dis. 2017;12:162.CrossRefGoogle ScholarPubMed
Koch, R, Hanley, W, Levy, H, et al. The Maternal Phenylketonuria International Study: 1984–2002. Pediatrics. 2003; 112 (6 Pt 2): 1523–9.Google Scholar
Muntau, AC, Roschinger, W, Habich, M, et al. Tetrahydrobiopterin as an alternative treatment for mild phenylketonuria. N Engl J Med. 2002;347(26):2122–32.CrossRefGoogle ScholarPubMed
Kolker, S, Burgard, P, Sauer, SW, Okun, JG. Current concepts in organic acidurias: Understanding intra- and extracerebral disease manifestation. J Inherit Metab Dis. 2013;36(4):635–44.Google Scholar
Morath, MA, Okun, JG, Muller, IB, et al. Neurodegeneration and chronic renal failure in methylmalonic aciduria: A pathophysiological approach. J Inherit Metab Dis. 2008;31(1):3543.CrossRefGoogle ScholarPubMed
Schwab, MA, Sauer, SW, Okun, JG, et al. Secondary mitochondrial dysfunction in propionic aciduria: A pathogenic role for endogenous mitochondrial toxins. Biochem J. 2006;398(1):107–12.CrossRefGoogle ScholarPubMed
Luciani, A, Schumann, A, Berquez, M, et al. Impaired mitophagy links mitochondrial disease to epithelial stress in methylmalonyl-CoA mutase deficiency. Nat Commun. 2020;11(1):970.Google Scholar
Chandler, RJ, Zerfas, PM, Shanske, S, et al. Mitochondrial dysfunction in MUT methylmalonic acidemia. FASEB J. 2009;23(4):1252–61.CrossRefGoogle ScholarPubMed
de Keyzer, Y, Valayannopoulos, V, Benoist, JF, et al. Multiple OXPHOS deficiency in the liver, kidney, heart, and skeletal muscle of patients with methylmalonic aciduria and propionic aciduria. Pediatr Res. 2009;66(1):91–5.CrossRefGoogle ScholarPubMed
Horster, F, Baumgartner, MR, Viardot, C, et al. Long-term outcome in methylmalonic acidurias is influenced by the underlying defect (mut0, mut, cblA, cblB). Pediatr Res. 2007;62(2):225–30.Google Scholar
Baker, EH, Sloan, JL, Hauser, NS, et al. MRI characteristics of globus pallidus infarcts in isolated methylmalonic acidemia. AJNR Am J Neuroradiol. 2015;36(1):194201.Google Scholar
Valayannopoulos, V, Baruteau, J, Delgado, MB, et al. Carglumic acid enhances rapid ammonia detoxification in classical organic acidurias with a favourable risk–benefit profile: A retrospective observational study. Orphanet J Rare Dis. 2016;11:32.Google Scholar
Sauer, SW, Okun, JG, Fricker, G, et al. Intracerebral accumulation of glutaric and 3-hydroxyglutaric acids secondary to limited flux across the blood–brain barrier constitute a biochemical risk factor for neurodegeneration in glutaryl-CoA dehydrogenase deficiency. J Neurochem. 2006;97(3):899910.Google Scholar
Sauer, SW, Okun, JG, Schwab, MA, et al. Bioenergetics in glutaryl-coenzyme A dehydrogenase deficiency: A role for glutaryl-coenzyme A. J Biol Chem. 2005;280(23):21830–6.Google Scholar
Strauss, KA, Donnelly, P, Wintermark, M. Cerebral haemodynamics in patients with glutaryl-coenzyme A dehydrogenase deficiency. Brain. 2010;133(Pt 1):7692.CrossRefGoogle ScholarPubMed
Tan, M, Peng, C, Anderson, KA, et al. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab. 2014;19(4):605–17.Google Scholar
Harting, I, Neumaier-Probst, E, Seitz, A, et al. Dynamic changes of striatal and extrastriatal abnormalities in glutaric aciduria type I. Brain. 2009;132(Pt 7):1764–82.CrossRefGoogle ScholarPubMed
Funk, CB, Prasad, AN, Frosk, P et al. Neuropathological, biochemical and molecular findings in a glutaric acidemia type 1 cohort. Brain. 2005;128(Pt 4):711–22.CrossRefGoogle Scholar
Gitiaux, C, Roze, E, Kinugawa, K, et al. Spectrum of movement disorders associated with glutaric aciduria type 1: A study of 16 patients. Mov Disord. 2008;23(16):2392–7.Google Scholar
Bjugstad, KB, Goodman, SI, Freed, CR. Age at symptom onset predicts severity of motor impairment and clinical outcome of glutaric acidemia type 1. J Pediatr. 2000;137(5):681–6.Google Scholar
Boy, N, Mengler, K, Thimm, E, et al. Newborn screening: A disease-changing intervention for glutaric aciduria type 1. Ann Neurol. 2018;83(5):970–9.CrossRefGoogle ScholarPubMed
Sauer, SW, Opp, S, Hoffmann, GF, et al. Therapeutic modulation of cerebral L-lysine metabolism in a mouse model for glutaric aciduria type I. Brain. 2011;134(Pt 1):157–70.Google Scholar
Topcu, M, Jobard, F, Halliez, S, et al. L-2-Hydroxyglutaric aciduria: Identification of a mutant gene C14orf160, localized on chromosome 14q22.1. Hum Mol Genet. 2004;13(22):2803–11.Google Scholar
Van Schaftingen, E, Rzem, R, Marbaix, A, et al. Metabolite proofreading, a neglected aspect of intermediary metabolism. J Inherit Metab Dis. 2013;36(3):427–34.Google Scholar
Steenweg, ME, Jakobs, C, Errami, A, et al. An overview of L-2-hydroxyglutarate dehydrogenase gene (L2HGDH) variants: A genotype–phenotype study. Hum Mutat. 2010;31(4):380–90.CrossRefGoogle ScholarPubMed
Moroni, I, Bugiani, M, D’Incerti, L, et al. L-2-hydroxyglutaric aciduria and brain malignant tumors: A predisposing condition? Neurology. 2004;62(10):1882–4.Google Scholar
Patay, Z, Mills, JC, Lobel, U, et al. Cerebral neoplasms in L-2 hydroxyglutaric aciduria: 3 new cases and meta-analysis of literature data. AJNR Am J Neuroradiol. 2012;33(5):940–3.Google Scholar
Burgard, P, Kolker, S, Haege, G, Lindner, M, Hoffmann, GF. Neonatal mortality and outcome at the end of the first year of life in early onset urea cycle disorders: Review and meta-analysis of observational studies published over more than 35 years. J Inherit Metab Dis. 2016;39(2):219–29.CrossRefGoogle Scholar
Martinelli, D, Diodato, D, Ponzi, E, et al. The hyperornithinemia–hyperammonemia–homocitrullinuria syndrome. Orphanet J Rare Dis. 2015;10:29.Google Scholar
An, D, Schneller, JL, Frassetto, A, et al. Systemic messenger RNA therapy as a treatment for methylmalonic acidemia. Cell Rep. 2017;21(12):3548–58.CrossRefGoogle ScholarPubMed

References

De Vivo, DC, Trifiletti, RR, Jacobson, RI, et al. Defective glucose transport across the blood–brain barrier as a cause of persistent hypoglycorrhachia, seizures, and developmental delay. N Engl J Med. 1991;325(10):703–9.Google Scholar
Wang, D, Pascual, JM, Yang, H, et al. Glut-1 deficiency syndrome: Clinical, genetic, and therapeutic aspects. Ann Neurol. 2005;57(1):111–8.CrossRefGoogle ScholarPubMed
Leen, WG, Klepper, J, Verbeek, MM, et al. Glucose transporter-1 deficiency syndrome: The expanding clinical and genetic spectrum of a treatable disorder. Brain. 2010;133(Pt 3):655–70.Google Scholar
Pearson, TS, Akman, C, Hinton, VJ, Engelstad, K, De Vivo, DC. Phenotypic spectrum of glucose transporter type 1 deficiency syndrome (Glut1 DS). Curr Neurol Neurosci Rep. 2013;13(4):342.CrossRefGoogle ScholarPubMed
Alter, AS, Engelstad, K, Hinton, VJ, et al. Long-term clinical course of Glut1 deficiency syndrome. J Child Neurol. 2015;30(2):160–9.CrossRefGoogle ScholarPubMed
Hully, M, Vuillaumier-Barrot, S, Le Bizec, C, et al. From splitting GLUT1 deficiency syndromes to overlapping phenotypes. Eur J Med Genet. 2015;58(9):443–54.Google Scholar
Akman, CI, Yu, J, Alter, A, Engelstad, K, De Vivo, DC. Diagnosing glucose transporter 1 deficiency at initial presentation facilitates early treatment. J Pediatr. 2016;171:220–6.CrossRefGoogle ScholarPubMed
Pearson, TS, Pons, R, Engelstad, K, et al. Paroxysmal eye-head movements in Glut1 deficiency syndrome. Neurology. 2017;88(17):1666–73.Google Scholar
Hao, J, Kelly, DI, Su, J, Pascual, JM. Clinical aspects of glucose transporter type 1 deficiency: Information from a global registry. JAMA Neurol. 2017;74(6):727–32.Google Scholar
Coman, DJ, Sinclair, KG, Burke, CJ, et al. Seizures, ataxia, developmental delay and the general paediatrician: Glucose transporter 1 deficiency syndrome. J Paediatr Child Health. 2006;42(5):263–7.CrossRefGoogle ScholarPubMed
Larsen, J, Johannesen, KM, Ek, J, et al. The role of SLC2A1 mutations in myoclonic astatic epilepsy and absence epilepsy, and the estimated frequency of GLUT1 deficiency syndrome. Epilepsia. 2015;56(12):e203-8.Google Scholar
Ramm-Pettersen, A, Nakken, KO, Haavardsholm, KC, Selmer, KK. GLUT1-deficiency syndrome: Report of a four-generation Norwegian family with a mild phenotype. Epilepsy Behav. 2017;70(Pt A):14.Google Scholar
Symonds, JD, Zuberi, SM, Stewart, K, et al. Incidence and phenotypes of childhood-onset genetic epilepsies: A prospective population-based national cohort. Brain. 2019;142:2303–18.CrossRefGoogle ScholarPubMed
Brockmann, K. The expanding phenotype of GLUT1-deficiency syndrome. Brain Dev. 2009;31(7):545–52.CrossRefGoogle ScholarPubMed
Suls, A, Dedeken, P, Goffin, K, et al. Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1. Brain. 2008;131(Pt 7):1831–44.CrossRefGoogle ScholarPubMed
Arsov, T, Mullen, SA, Rogers, S, et al. Glucose transporter 1 deficiency in the idiopathic generalized epilepsies. Ann Neurol. 2012;72(5):807–15.CrossRefGoogle ScholarPubMed
Ivanova, N, Peycheva, V, Kamenarova, K, et al. Three novel SLC2A1 mutations in Bulgarian patients with different forms of genetic generalized epilepsy reflecting the clinical and genetic diversity of GLUT1-deficiency syndrome. Seizure. 2018;54:41–4.Google Scholar
Liu, Y, Bao, X, Wang, D, et al. Allelic variations of Glut-1 deficiency syndrome: The Chinese experience. Pediatr Neurol. 2012;47(1):30–4.Google Scholar
Rotstein, M, Engelstad, K, Yang, H, et al. Glut1 deficiency: Inheritance pattern determined by haploinsufficiency. Ann Neurol. 2010;68(6):955–8.Google Scholar
Barros, LF, Bittner, CX, Loaiza, A, Porras, OH. A quantitative overview of glucose dynamics in the gliovascular unit. Glia. 2007;55(12):1222–37.Google Scholar
Chugani, HT, Phelps, ME, Mazziotta, JC. Positron emission tomography study of human brain functional development. Ann Neurol. 1987;22(4):487–97.Google Scholar
Tang, M, Gao, G, Rueda, CB, et al. Brain microvasculature defects and Glut1 deficiency syndrome averted by early repletion of the glucose transporter-1 protein. Nat Commun. 2017;8:14152.CrossRefGoogle ScholarPubMed
Pascual, JM, Van Heertum, RL, Wang, D, Engelstad, K, De Vivo, DC. Imaging the metabolic footprint of Glut1 deficiency on the brain. Ann Neurol. 2002;52(4):458–64.Google Scholar
Akman, CI, Provenzano, F, Wang, D, et al. Topography of brain glucose hypometabolism and epileptic network in glucose transporter 1 deficiency. Epilepsy Res. 2015;110:206–15.CrossRefGoogle ScholarPubMed
Pons, R, Collins, A, Rotstein, M, Engelstad, K, De Vivo, DC. The spectrum of movement disorders in Glut-1 deficiency. Mov Disord. 2010;25(3):275–81.CrossRefGoogle ScholarPubMed
De Giorgis, V, Teutonico, F, Cereda, C, et al. Sporadic and familial Glut1 DS Italian patients: A wide clinical variability. Seizure. 2015;24:2832.CrossRefGoogle Scholar
Schneider, SA, Paisan-Ruiz, C, Garcia-Gorostiaga, I, et al. GLUT1 gene mutations cause sporadic paroxysmal exercise-induced dyskinesias. Mov Disord. 2009;24(11):1684–8.Google Scholar
Koy, A, Assmann, B, Klepper, J, Mayatepek, E. Glucose transporter type 1 deficiency syndrome with carbohydrate-responsive symptoms but without epilepsy. Dev Med Child Neurol. 2011;53(12):1154–6.Google Scholar
Weber, YG, Kamm, C, Suls, A, et al. Paroxysmal choreoathetosis/spasticity (DYT9) is caused by a GLUT1 defect. Neurology. 2011;77(10):959–64.Google Scholar
Leen, WG, Taher, M, Verbeek, MM, et al. GLUT1 deficiency syndrome into adulthood: A follow-up study. J Neurol. 2014;261(3):589–99.Google Scholar
Ito, Y, Takahashi, S, Kagitani-Shimono, K, et al. Nationwide survey of glucose transporter-1 deficiency syndrome (GLUT-1DS) in Japan. Brain Dev. 2015;37(8):780–9.Google Scholar
Leary, LD, Wang, D, Nordli, DR Jr., Engelstad, K, De Vivo, DC. Seizure characterization and electroencephalographic features in Glut-1 deficiency syndrome. Epilepsia. 2003;44(5):701–7.Google Scholar
Pong, AW, Geary, BR, Engelstad, KM, et al. Glucose transporter type I deficiency syndrome: Epilepsy phenotypes and outcomes. Epilepsia. 2012;53(9):1503–10.CrossRefGoogle ScholarPubMed
Yang, H, Wang, D, Engelstad, K, et al. Glut1 deficiency syndrome and erythrocyte glucose uptake assay. Ann Neurol. 2011;70(6):9961005.Google Scholar
Willemsen, MA, Vissers, LE, Verbeek, MM, et al. Upstream SLC2A1 translation initiation causes GLUT1 deficiency syndrome. Eur J Hum Genet. 2017;25(6):771–4.Google Scholar
Levy, B, Wang, D, Ullner, PM, et al. Uncovering microdeletions in patients with severe Glut-1 deficiency syndrome using SNP oligonucleotide microarray analysis. Mol Genet Metab. 2010;100(2):129–35.CrossRefGoogle ScholarPubMed
Friedman, JR, Thiele, EA, Wang, D, et al. Atypical GLUT1 deficiency with prominent movement disorder responsive to ketogenic diet. Mov Disord. 2006;21(2):241–5.Google Scholar
Weber, YG, Storch, A, Wuttke, TV, et al. GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak. J Clin Invest. 2008;118(6):2157–68.Google Scholar
Zorzi, G, Castellotti, B, Zibordi, F, Gellera, C, Nardocci, N. Paroxysmal movement disorders in GLUT1 deficiency syndrome. Neurology. 2008;71(2):146–8.Google Scholar
Perez-Duenas, B, Prior, C, Ma, Q, et al. Childhood chorea with cerebral hypotrophy: A treatable GLUT1 energy failure syndrome. Arch Neurol. 2009;66(11):1410–4.Google Scholar
Blumenschine, M, Montes, J, Rao, AK, Engelstad, K, De Vivo, DC. Analysis of gait disturbance in Glut 1 deficiency syndrome. J Child Neurol. 2016;31(13):1483–8.Google Scholar
Anand, G, Padeniya, A, Hanrahan, D, et al. Milder phenotypes of glucose transporter type 1 deficiency syndrome. Dev Med Child Neurol. 2011;53(7):664–8.Google Scholar
Roubergue, A, Apartis, E, Mesnage, V, et al. Dystonic tremor caused by mutation of the glucose transporter gene GLUT1. J Inherit Metab Dis. 2011;34(2):483–8.Google Scholar
Gumus, H, Bayram, AK, Kardas, F, et al. The effects of ketogenic diet on seizures, cognitive functions, and other neurological disorders in classical phenotype of glucose transporter 1 deficiency syndrome. Neuropediatrics. 2015;46(5):313–20.Google Scholar
Urbizu, A, Cuenca-Leon, E, Raspall-Chaure, M, et al. Paroxysmal exercise-induced dyskinesia, writer’s cramp, migraine with aura and absence epilepsy in twin brothers with a novel SLC2A1 missense mutation. J Neurol Sci. 2010;295(1–2):110–3.Google Scholar
Pellegrin, S, Cantalupo, G, Opri, R, Dalla Bernardina, B, Darra, F. EEG findings during “paroxysmal hemiplegia” in a patient with GLUT1-deficiency. Eur J Paediatr Neurol. 2017;21(3):580–2.Google Scholar
Mochel, F, Hainque, E, Gras, D, et al. Triheptanoin dramatically reduces paroxysmal motor disorder in patients with GLUT1 deficiency. J Neurol Neurosurg Psychiatry. 2016;87(5):550–3.Google Scholar
Almuqbil, M, Rivkin, MJ, Takeoka, M, Yang, E, Rodan, LH. Transient regional cerebral hypoperfusion during a paroxysmal hemiplegic event in GLUT1 deficiency syndrome. Eur J Paediatr Neurol. 2018;22(3):544–7.Google Scholar
Rotstein, M, Doran, J, Yang, H, et al. Glut1 deficiency and alternating hemiplegia of childhood. Neurology. 2009;73(23):2042–4.Google Scholar
Weller, CM, Leen, WG, Neville, BG, et al. A novel SLC2A1 mutation linking hemiplegic migraine with alternating hemiplegia of childhood. Cephalalgia. 2015;35(1):10–5.Google Scholar
Mohammad, SS, Coman, D, Calvert, S. Glucose transporter 1 deficiency syndrome and hemiplegic migraines as a dominant presenting clinical feature. J Paediatr Child Health. 2014;50(12):1025–6.Google Scholar
Appavu, B, Mangum, T, Obeid, M. Glucose transporter 1 deficiency: A treatable cause of opsoclonus and epileptic myoclonus. Pediatr Neurol. 2015;53(4):364–6.Google Scholar
Ohshiro-Sasaki, A, Shimbo, H, Takano, K, Wada, T, Osaka, H. A three-year-old boy with glucose transporter type 1 deficiency syndrome presenting with episodic ataxia. Pediatr Neurol. 2014;50(1):99100.Google Scholar
Posar, A, Santucci, M. Unusual phenotype of glucose transport protein type 1 deficiency syndrome: A case report and literature review. J Pediatr Neurosci. 2014;9(1):36–8.Google Scholar
Klepper, J, Scheffer, H, Leiendecker, B, et al. Seizure control and acceptance of the ketogenic diet in GLUT1 deficiency syndrome: A 2- to 5-year follow-up of 15 children enrolled prospectively. Neuropediatrics. 2005;36(5):302–8.Google Scholar
Oguni, H, Ito, Y, Otani, Y, Nagata, S. Questionnaire survey on the current status of ketogenic diet therapy in patients with glucose transporter 1 deficiency syndrome (GLUT1DS) in Japan. Eur J Paediatr Neurol. 2018;22(3):482–7.Google Scholar
De Giorgis, V, Masnada, S, Varesio, C, et al. Overall cognitive profiles in patients with GLUT1 deficiency syndrome. Brain Behav. 2019;9(3):e01224.Google Scholar
Bekker, YAC, Lambrechts, DA, Verhoeven, JS, et al. Failure of ketogenic diet therapy in GLUT1 deficiency syndrome. Eur J Paediatr Neurol. 2019;doi:10.1016/j.ejpn.2019.02.012.Google Scholar
Tchapyjnikov, D, Mikati, MA. Acetazolamide-responsive episodic ataxia without baseline deficits or seizures secondary to GLUT1 deficiency: A case report and review of the literature. Neurologist. 2018;23(1):17–8.Google Scholar
Pascual, JM, Liu, P, Mao, D, et al. Triheptanoin for glucose transporter type 1 deficiency (G1D): Modulation of human ictogenesis, cerebral metabolic rate, and cognitive indices by a food supplement. JAMA Neurol. 2014;71(10):1255–65.Google Scholar
Hainque, E, Gras, D, Meneret, A, et al. Long-term follow-up in an open-label trial of triheptanoin in GLUT1 deficiency syndrome: A sustained dramatic effect. J Neurol Neurosurg Psychiatry. 2019;doi:10.1136/jnnp-2018-320283.Google Scholar
Nakamura, S, Muramatsu, SI, Takino, N, et al. Gene therapy for Glut1-deficient mouse using an adeno-associated virus vector with the human intrinsic GLUT1 promoter. J Gene Med. 2018;20(4):e3013.Google Scholar

References

Patterson, MC, Clayton, P, Gissen, P, et al. Recommendations for the detection and diagnosis of Niemann–Pick disease type C: An update. Neurol Clin Pract. 2017;7(6):499511.Google Scholar
Hers, HG. Inborn lysosomal diseases. Gastroenterology. 1965;48:625–33.Google Scholar
Carstea, ED, Morris, JA, Coleman, KG, et al. Niemann–Pick C1 disease gene: Homology to mediators of cholesterol homeostasis. Science. 1997;277(5323):228–31.Google Scholar
Naureckiene, S, Sleat, DE, Lackland, H, et al. Identification of HE1 as the second gene of Niemann–Pick C disease. Science. 2000;290(5500):2298–301.Google Scholar
Lloyd-Evans, E, Platt, FM. Lipids on trial: The search for the offending metabolite in Niemann–Pick type C disease. Traffic. 2010;11(4):419–28.Google Scholar
Vanier, MT. Complex lipid trafficking in Niemann–Pick disease type C. J Inherit Metab Dis. 2015;38(1):187–99.Google Scholar
Higashi, Y, Murayama, S, Pentchev, PG, Suzuki, K. Cerebellar degeneration in the Niemann–Pick type C mouse. Acta Neuropathol. 1993;85(2):175–84.Google Scholar
Vanier, MT. Prenatal diagnosis of Niemann–Pick diseases types A, B and C. Prenat Diagn. 2002;22(7):630–2.CrossRefGoogle ScholarPubMed
Sarna, JR, Larouche, M, Marzban, H, et al. Patterned Purkinje cell degeneration in mouse models of Niemann–Pick type C disease. J Comp Neurol. 2003;456(3):279–91.Google Scholar
Luan, Z, Saito, Y, Miyata, H, et al. Brainstem neuropathology in a mouse model of Niemann–Pick disease type C. J Neurol Sci. 2008;268(1–2):108–16.Google Scholar
Paul, CA, Boegle, AK, Maue, RA. Before the loss: Neuronal dysfunction in Niemann–Pick type C disease. Biochim Biophys Acta. 2004;1685(1–3):6376.Google Scholar
Zafeiriou, DI, Triantafyllou, P, Gombakis, NP, et al. Niemann–Pick type C disease associated with peripheral neuropathy. Pediatr Neurol. 2003;29(3):242–4.CrossRefGoogle ScholarPubMed
Chien, YH, Lee, NC, Tsai, LK, et al. Treatment of Niemann–Pick disease type C in two children with miglustat: Initial responses and maintenance of effects over 1 year. J Inherit Metab Dis. 2007;30(5):826.Google Scholar
Bagel, JH, Sikora, TU, Prociuk, M, et al. Electrodiagnostic testing and histopathologic changes confirm peripheral nervous system myelin abnormalities in the feline model of Niemann–Pick disease type C. J Neuropathol Exp Neurol. 2013;72(3):256–62.CrossRefGoogle ScholarPubMed
Vanier, MT. Niemann–Pick disease type C. Orphanet J Rare Dis. 2010;5:16.Google Scholar
Ebrahimi-Fakhari, D, Hildebrandt, C, Davis, PE, et al. The spectrum of movement disorders in childhood-onset lysosomal storage diseases. Mov Disord Clin Pract. 2018;5(2):149–55.Google Scholar
Salsano, E, Umeh, C, Rufa, A, Pareyson, D, Zee, DS. Vertical supranuclear gaze palsy in Niemann–Pick type C disease. Neurol Sci. 2012;33(6):1225–32.Google Scholar
Solomon, D, Winkelman, AC, Zee, DS, Gray, L, Buttner-Ennever, J. Niemann–Pick type C disease in two affected sisters: Ocular motor recordings and brain-stem neuropathology. Ann N Y Acad Sci. 2005;1039:436–45.Google Scholar
Crespi, J, Brathen, G, Quist-Paulsen, P, Pagonabarraga, J, Roig-Arnall, C. Facial dystonia with facial grimacing and vertical gaze palsy with “round the houses” sign in a 29-year-old woman. Neuroophthalmology. 2016;40(1):31–4.Google Scholar
Patterson, MC, Vecchio, D, Prady, H, Abel, L, Wraith, JE. Miglustat for treatment of Niemann–Pick C disease: A randomised controlled study. Lancet Neurol. 2007;6(9):765–72.Google Scholar
Abel, LA, Walterfang, M, Fietz, M, Bowman, EA, Velakoulis, D. Saccades in adult Niemann–Pick disease type C reflect frontal, brainstem, and biochemical deficits. Neurology. 2009;72(12):1083–6.Google Scholar
Abel, LA, Bowman, EA, Velakoulis, D, et al. Saccadic eye movement characteristics in adult Niemann–Pick Type C disease: Relationships with disease severity and brain structural measures. PLoS One. 2012;7(11):e50947.Google Scholar
Stein, VM, Crooks, A, Ding, W, et al. Miglustat improves Purkinje cell survival and alters microglial phenotype in feline Niemann–Pick disease type C. J Neuropathol Exp Neurol. 2012;71(5):434–48.Google Scholar
Zesiewicz, TA, Wilmot, G, Kuo, SH, et al. Comprehensive systematic review summary: Treatment of cerebellar motor dysfunction and ataxia. Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology. 2018;90(10):464–71.Google Scholar
Geberhiwot, T, Moro, A, Dardis, A, et al. Consensus clinical management guidelines for Niemann–Pick disease type C. Orphanet J Rare Dis. 2018;13:50.Google Scholar
Ferber-Viart, C, Dubreuil, C, Vidal, PP. Effects of acetyl-DL-leucine in vestibular patients: A clinical study following neurotomy and labyrinthectomy. Audiol Neurootol. 2009;14(1):1725.Google Scholar
Highstein, SM, Holstein, GR. The anatomy of the vestibular nuclei. Prog Brain Res. 2006;151:157203.Google Scholar
Strupp, M, Teufel, J, Habs, M, Feuerecker, R, Muth, C, van de Warrenburg, BP, et al. Effects of acetyl-DL-leucine in patients with cerebellar ataxia: A case series. J Neurol. 2013;260(10):2556–61.Google Scholar
Pelz, JO, Fricke, C, Saur, D, Classen, J. Failure to confirm benefit of acetyl-DL-leucine in degenerative cerebellar ataxia: A case series. J Neurol. 2015;262(5):1373–5.Google Scholar
Bremova, T, Malinova, V, Amraoui, Y, et al. Acetyl-DL-leucine in Niemann–Pick type C: A case series. Neurology. 2015;85(16):1368–75.Google Scholar
Abe, K, Sakai, N. Patient with Niemann–Pick disease type C: Over 20 years’ follow-up. BMJ Case Rep. 2017;2017.Google Scholar
Anheim, M, Lagha-Boukbiza, O, Fleury-Lesaunier, MC, et al. Heterogeneity and frequency of movement disorders in juvenile and adult-onset Niemann–Pick C disease. J Neurol. 2014;261(1):174–9.Google Scholar
Vankova, J, Stepanova, I, Jech, R, et al. Sleep disturbances and hypocretin deficiency in Niemann–Pick disease type C. Sleep. 2003;26(4):427–30.Google Scholar
Josephs, KA, Van Gerpen, MW, Van Gerpen, JA. Adult onset Niemann–Pick disease type C presenting with psychosis. J Neurol Neurosurg Psychiatry. 2003;74(4):528–9.CrossRefGoogle ScholarPubMed
Koens, LH, Kuiper, A, Coenen, MA, et al. Ataxia, dystonia and myoclonus in adult patients with Niemann–Pick type C. Orphanet J Rare Dis. 2016;11:121.Google Scholar
Floyd, AG, Yu, QP, Piboolnurak, P, et al. Kinematic analysis of motor dysfunction in Niemann–Pick type C. Clin Neurophysiol. 2007;118(5):1010–8.Google Scholar
Hsu, AW, Piboolnurak, PA, Floyd, AG, et al. Spiral analysis in Niemann–Pick disease type C. Mov Disord. 2009;24(13):1984–90.Google Scholar
Pineda, M, Wraith, JE, Mengel, E, et al. Miglustat in patients with Niemann–Pick disease type C (NP–C): A multicenter observational retrospective cohort study. Mol Genet Metab. 2009;98(3):243–9.Google Scholar
Patterson, MC, Vecchio, D, Jacklin, E, et al. Long-term miglustat therapy in children with Niemann–Pick disease type C. J Child Neurol. 2010;25(3):300–5.Google Scholar
Scheel, M, Abegg, M, Lanyon, LJ, Mattman, A, Barton, JJ. Eye movement and diffusion tensor imaging analysis of treatment effects in a Niemann–Pick type C patient. Mol Genet Metab. 2010;99(3):291–5.Google Scholar
Wraith, JE, Vecchio, D, Jacklin, E, et al. Miglustat in adult and juvenile patients with Niemann–Pick disease type C: Long-term data from a clinical trial. Mol Genet Metab. 2010;99(4):351–7.CrossRefGoogle ScholarPubMed
Heron, B, Valayannopoulos, V, Baruteau, J, et al. Miglustat therapy in the French cohort of paediatric patients with Niemann–Pick disease type C. Orphanet J Rare Dis. 2012;7:36.Google Scholar
Abel, LA, Walterfang, M, Stainer, MJ, Bowman, EA, Velakoulis, D. Longitudinal assessment of reflexive and volitional saccades in Niemann–Pick type C disease during treatment with miglustat. Orphanet J Rare Dis. 2015;10:160.CrossRefGoogle ScholarPubMed
Patterson, MC, Mengel, E, Vanier, MT, et al. Stable or improved neurological manifestations during miglustat therapy in patients from the international disease registry for Niemann–Pick disease type C: An observational cohort study. Orphanet J Rare Dis. 2015;10:65.Google Scholar
Sedel, F, Chabrol, B, Audoin, B, et al. Normalisation of brain spectroscopy findings in Niemann–Pick disease type C patients treated with miglustat. J Neurol. 2016;263(5):927–36.Google Scholar
Liu, B, Turley, SD, Burns, DK, et al. Reversal of defective lysosomal transport in NPC disease ameliorates liver dysfunction and neurodegeneration in the NPC1-/- mouse. Proc Natl Acad Sci USA. 2009;106(7):2377–82.Google Scholar
Davidson, CD, Ali, NF, Micsenyi, MC, et al. Chronic cyclodextrin treatment of murine Niemann–Pick C disease ameliorates neuronal cholesterol and glycosphingolipid storage and disease progression. PLoS One. 2009;4(9):e6951.Google Scholar
Vite, CH, Bagel, JH, Swain, GP, et al. Intracisternal cyclodextrin prevents cerebellar dysfunction and Purkinje cell death in feline Niemann–Pick type C1 disease. Sci Transl Med. 2015;7(276):276ra26.Google Scholar
Berry-Kravis, E, Chin, J, Hoffmann, A, et al. Long-term treatment of Niemann–Pick type C1 disease with intrathecal 2-hydroxypropyl-beta-cyclodextrin. Pediatr Neurol. 2018;80:2434.Google Scholar

References

Mole, SE, Williams, RE. Neuronal ceroid-lipofuscinoses. GeneReviews®. 2001;Oct 10 (updated Aug 1, 2013).Google Scholar
Nita, DA, Mole, SE, Minassian, BA. Neuronal ceroid lipofuscinoses. Epileptic Disord. 2016;18(S2):7388.Google Scholar
Mink, JW, Augustine, EF, Adams, HR, Marshall, FJ, Kwon, JM. Classification and natural history of the neuronal ceroid lipofuscinoses. J Child Neurol. 2013;28(9):1101–5.Google Scholar
Mole, SE, Cotman, SL. Genetics of the neuronal ceroid lipofuscinoses (Batten disease). Biochim Biophys Acta. 2015;1852(10 Pt B):2237–41.Google Scholar
Santavuori, P, Haltia, M, Rapola, J. Infantile type of so-called neuronal ceroid-lipofuscinosis. Dev Med Child Neurol. 1974;16(5):644–53.Google Scholar
Becker, K, Goebel, HH, Svennerholm, L, Wendel, U, Bremer, HJ. Clinical, morphological, and biochemical investigations on a patient with an unusual form of neuronal ceroid-lipofuscinosis. Eur J Pediatr. 1979;132(3):197206.Google Scholar
Das, AK, Becerra, CH, Yi, W, et al. Molecular genetics of palmitoyl-protein thioesterase deficiency in the U.S. J Clin Invest. 1998;102(2):361–70.Google Scholar
Ramadan, H, Al-Din, AS, Ismail, A, et al. Adult neuronal ceroid lipofuscinosis caused by deficiency in palmitoyl protein thioesterase 1. Neurology. 2007;68(5):387–8.Google Scholar
van Diggelen, OP, Thobois, S, Tilikete, C, et al. Adult neuronal ceroid lipofuscinosis with palmitoyl-protein thioesterase deficiency: First adult-onset patients of a childhood disease. Ann Neurol. 2001;50(2):269–72.Google Scholar
Wisniewski, KE, Connell, F, Kaczmarski, W, et al. Palmitoyl-protein thioesterase deficiency in a novel granular variant of LINCL. Pediatr Neurol. 1998;18(2):119–23.CrossRefGoogle Scholar
Steinfeld, R, Heim, P, von Gregory, H, et al. Late infantile neuronal ceroid lipofuscinosis: Quantitative description of the clinical course in patients with CLN2 mutations. Am J Med Genet. 2002;112(4):347–54.Google Scholar
Ku, CA, Hull, S, Arno, G, et al. Detailed clinical phenotype and molecular genetic findings in CLN3-associated isolated retinal degeneration. JAMA Ophthalmol. 2017;135(7):749–60.Google Scholar
Khan, KN, El-Asrag, ME, Ku, CA, et al. Specific alleles of CLN7/MFSD8, a protein that localizes to photoreceptor synaptic terminals, cause a spectrum of nonsyndromic retinal dystrophy. Invest Ophthalmol Vis Sci. 2017;58(7):2906–14.Google Scholar
Mole, SE, Anderson, G, Band, HA, et al. Clinical challenges and future therapeutic approaches for neuronal ceroid lipofuscinosis. Lancet Neurol. 2019;18(1):107–16.CrossRefGoogle ScholarPubMed
Berkovic, SF, Staropoli, JF, Carpenter, S, et al. Diagnosis and misdiagnosis of adult neuronal ceroid lipofuscinosis (Kufs disease). Neurology. 2016;87(6):579–84.Google Scholar
Mahajnah, M, Zelnik, N. Phenotypic heterogeneity in consanguineous patients with a common CLN8 mutation. Pediatr Neurol. 2012;47(4):303–5.Google Scholar
Cassim, F, Houdayer, E. Neurophysiology of myoclonus. Neurophysiol Clin. 2006; 36 (5-6): 281–91.Google Scholar
Bergman, H, Wichmann, T, DeLong, MR. Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science. 1990;249(4975):1436–8.Google Scholar
DeLong, MR. Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 1990;13(7):281–5.Google Scholar
Schulz, A, Kohlschutter, A, Mink, J, Simonati, A, Williams, R. NCL diseases: Clinical perspectives. Biochim Biophys Acta. 2013;1832(11):1801–6.Google Scholar
Vesa, J, Hellsten, E, Verkruyse, LA, et al. Mutations in the palmitoyl protein thioesterase gene causing infantile neuronal ceroid lipofuscinosis. Nature. 1995;376(6541):584–7.Google Scholar
Lerner, TJ, Boustany, R-MN, Anderson, JW, et al. Isolation of a novel gene underlying Batten disease, CLN3. Cell. 1995;82(6):949–57.Google Scholar
Smith, KR, Dahl, HH, Canafoglia, L, et al. Cathepsin F mutations cause type B Kufs disease, an adult-onset neuronal ceroid lipofuscinosis. Hum Mol Genet. 2013;22(7):1417–23.Google Scholar
Vanhanen, SL, Puranen, J, Autti, T, et al. Neuroradiological findings (MRS, MRI, SPECT) in infantile neuronal ceroid-lipofuscinosis (infantile CLN1) at different stages of the disease. Neuropediatrics. 2004;35(1):2735.Google Scholar
Riikonen, R, Vanhanen, SL, Tyynela, J, Santavuori, P, Turpeinen, U. CSF insulin-like growth factor-1 in infantile neuronal ceroid lipofuscinosis. Neurology. 2000;54(9):1828–32.Google Scholar
Levin, SW, Baker, EH, Zein, WM, et al. Oral cysteamine bitartrate and N-acetylcysteine for patients with infantile neuronal ceroid lipofuscinosis: A pilot study. Lancet Neurol. 2014;13(8):777–87.CrossRefGoogle ScholarPubMed
Confort-Gouny, S, Chabrol, B, Vion-Dury, J, Mancini, J, Cozzone, PJ.MRI and localized proton MRS in early infantile form of neuronal ceroid-lipofuscinosis. Pediatr Neurol. 1993;9(1):5760.Google Scholar
Metelitsina, TI, Waggoner, DJ, Grassi, MA. Batten disease caused by a novel mutation in the PPT1 gene. Retin Cases Brief Rep. 2016;10(3):211–3.Google Scholar
Nickel, M, Schulz, A, Kohlschütter, A, et al. PP03.8 – 2898: Late language acquisition and unexplained epilepsy are indicators of easily detectable CLN2 disease. Eur J Paediatr Neuro. 2015;19:S38.Google Scholar
Nickel, M, Simonati, A, Jacoby, D, et al. Disease characteristics and progression in patients with late-infantile neuronal ceroid lipofuscinosis type 2 (CLN2) disease: an observational cohort study. Lancet Child Adolesc Health. 2018;2(8):582–90.Google Scholar
Williams, RE, Adams, HR, Blohm, M, et al. Management strategies for CLN2 disease. Pediatr Neurol. 2017;69:102–12.Google Scholar
Saini, AG, Sankhyan, N, Singhi, P. Chorea in late-infantile neuronal ceroid lipofuscinosis: An atypical presentation. Pediatr Neurol. 2016;60:75–8.Google Scholar
Di Giacopo, R, Cianetti, L, Caputo, V, et al. Protracted late infantile ceroid lipofuscinosis due to TPP1 mutations: Clinical, molecular and biochemical characterization in three sibs. J Neurol Sci . 2015;356(1):6571.Google Scholar
Johannsen, J, Nickel, M, Schulz, A, Denecke, J. Considering valproate as a risk factor for rapid exacerbation of complex movement disorder in progressed stages of late-infantile CLN2 disease. Neuropediatrics. 2016;47(3):194–6.Google Scholar
Sun, Y, Almomani, R, Breedveld, GJ, et al. Autosomal recessive spinocerebellar ataxia 7 (SCAR7) is caused by variants in TPP1, the gene involved in classic late-infantile neuronal ceroid lipofuscinosis 2 disease (CLN2 disease). Hum Mutat. 2013;34(5):706–13.Google Scholar
Dy, ME, Sims, KB, Friedman, J. TPP1 deficiency: Rare cause of isolated childhood-onset progressive ataxia. Neurology. 2015;85(14):1259–61.Google Scholar
Marshall, FJ, de Blieck, EA, Mink, JW, et al. A clinical rating scale for Batten disease: Reliable and relevant for clinical trials. Neurology. 2005;65(2):275–9.Google Scholar
Cialone, J, Adams, H, Augustine, EF, et al. Females experience a more severe disease course in Batten disease. J Inherit Metab Dis. 2012;35(3):549–55.Google Scholar
Ostergaard, JR. Juvenile neuronal ceroid lipofuscinosis (Batten disease): Current insights. Degener Neurol Neuromuscul Dis. 2016;6:7383.Google Scholar
Ostergaard, JR, Rasmussen, TB, Molgaard, H. Cardiac involvement in juvenile neuronal ceroid lipofuscinosis (Batten disease). Neurology. 2011;76(14):1245–51.Google Scholar
Elkay, M, Silver, K, Penn, RD, Dalvi, A. Dystonic storm due to Batten’s disease treated with pallidotomy and deep brain stimulation. Mov Disord. 2009;24(7):1048–53.Google Scholar
Hofman, IL. Observations in institutionalized neuronal ceroid-lipofuscinosis patients with special reference to involuntary movements. J Inherit Metab Dis. 1993;16(2):249–51.Google Scholar
Aberg, L, Liewendahl, K, Nikkinen, P, et al. Decreased striatal dopamine transporter density in JNCL patients with parkinsonian symptoms. Neurology. 2000;54(5):1069–74.Google Scholar
Rinne, JO, Ruottinen, HM, Nagren, K, Aberg, LE, Santavuori, P. Positron emission tomography shows reduced striatal dopamine D1 but not D2 receptors in juvenile neuronal ceroid lipofuscinosis. Neuropediatrics. 2002;33(3):138–41.Google Scholar
Boehme, DH, Cottrell, JC, Leonberg, SC, Zeman, W. A dominant form of neuronal ceroid-lipofuscinosis. Brain. 1971;94(4):745–60.Google Scholar
Ferrer, I, Arbizu, T, Pena, J, Serra, JP. A golgi and ultrastructural study of a dominant form of Kufs’ disease. J Neurol. 1980;222(3):183–90.Google Scholar
Josephson, SA, Schmidt, RE, Millsap, P, McManus, DQ, Morris, JC. Autosomal dominant Kufs’ disease: A cause of early onset dementia. J Neurol Sci. 2001; 188 (1-2): 5160.Google Scholar
Burneo, JG, Arnold, T, Palmer, CA, et al. Adult-onset neuronal ceroid lipofuscinosis (Kufs disease) with autosomal dominant inheritance in Alabama. Epilepsia. 2003;44(6):841–6.Google Scholar
Simonati, A, Williams, RE, Nardocci, N, et al. Phenotype and natural history of variant late infantile ceroid-lipofuscinosis 5. Dev Med Child Neurol. 2017;59(8):815–21.Google Scholar
Mancini, C, Nassani, S, Guo, Y, et al. Adult-onset autosomal recessive ataxia associated with neuronal ceroid lipofuscinosis type 5 gene (CLN5) mutations. J Neurol. 2015;262(1):173–8.Google Scholar
Sharp, JD, Wheeler, RB, Lake, BD, et al. Loci for classical and a variant late infantile neuronal ceroid lipofuscinosis map to chromosomes 11p15 and 15q21-23. Hum Mol Genet. 1997;6(4):591–5.Google Scholar
Berkovic, SF, Oliver, KL, Canafoglia, L, et al. Kufs disease due to mutation of CLN6: Clinical, pathological and molecular genetic features. Brain. 2019;142(1):5969.Google Scholar
Arsov, T, Smith, KR, Damiano, J, et al. Kufs disease, the major adult form of neuronal ceroid lipofuscinosis, caused by mutations in CLN6. Am J Hum Genet. 2011;88(5):566–73.Google Scholar
Canafoglia, L, Gilioli, I, Invernizzi, F, et al. Electroclinical spectrum of the neuronal ceroid lipofuscinoses associated with CLN6 mutations. Neurology. 2015;85(4):316–24.Google Scholar
Siintola, E, Topcu, M, Kohlschutter, A, et al. Two novel CLN6 mutations in variant late-infantile neuronal ceroid lipofuscinosis patients of Turkish origin. Clin Genet. 2005;68(2):167–73.Google Scholar
Guerreiro, R, Bras, JT, Vieira, M, et al. CLN6 disease caused by the same mutation originating in Pakistan has varying pathology. Eur J Paediatr Neurol. 2013;17(6):657–60.Google Scholar
Andrade, DM, Paton, T, Turnbull, J, et al. Mutation of the CLN6 gene in teenage-onset progressive myoclonus epilepsy. Pediatr Neurol. 2012;47(3):205–8.Google Scholar
Ozkara, C, Gunduz, A, Coskun, T, et al. Long-term follow-up of two siblings with adult-onset neuronal ceroid lipofuscinosis, Kufs type A. Epileptic Disord. 2017;19(2):147–51.Google Scholar
Topcu, M, Tan, H, Yalnizoglu, D, et al. Evaluation of 36 patients from Turkey with neuronal ceroid lipofuscinosis: Clinical, neurophysiological, neuroradiological and histopathologic studies. Turkish J Pediatr. 2004;46(1):110.Google Scholar
Siintola, E, Topcu, M, Aula, N, et al. The novel neuronal ceroid lipofuscinosis gene MFSD8 encodes a putative lysosomal transporter. Am J Hum Genet. 2007;81(1):136-46.Google Scholar
Mandel, H, Cohen Katsanelson, K, Khayat, M, et al. Clinico-pathological manifestations of variant late infantile neuronal ceroid lipofuscinosis (vLINCL) caused by a novel mutation in MFSD8 gene. Eur J Med Genet. 2014;57(11-12):607–12.Google Scholar
Craiu, D, Dragostin, O, Dica, A, et al. Rett-like onset in late-infantile neuronal ceroid lipofuscinosis (CLN7) caused by compound heterozygous mutation in the MFSD8 gene and review of the literature data on clinical onset signs. Eur J Paediatr Neuro. 2015;19(1):7886.Google Scholar
Striano, P, Specchio, N, Biancheri, R, et al. Clinical and electrophysiological features of epilepsy in Italian patients with CLN8 mutations. Epilepsy Behav. 2007;10(1):187–91.Google Scholar
Katata, Y, Uematsu, M, Sato, H, et al. Novel missense mutation in CLN8 in late infantile neuronal ceroid lipofuscinosis: The first report of a CLN8 mutation in Japan. Brain Dev-JPN. 2016;38(3):341–5.Google Scholar
Reinhardt, K, Grapp, M, Schlachter, K, et al. Novel CLN8 mutations confirm the clinical and ethnic diversity of late infantile neuronal ceroid lipofuscinosis. Clin Genet. 2010;77(1):7985.Google Scholar
Beesley, C, Guerreiro, RJ, Bras, JT, et al. CLN8 disease caused by large genomic deletions. Mol Genet Genomic Med. 2017;5(1):8591.Google Scholar
Gao, Z, Xie, H, Jiang, Q, et al. Identification of two novel null variants in CLN8 by targeted next-generation sequencing: First report of a Chinese patient with neuronal ceroid lipofuscinosis due to CLN8 variants. BMC Med Genet. 2018;19(1):21.Google Scholar
Allen, NM, O’hIci, B, Anderson, G, et al. Variant late-infantile neuronal ceroid lipofuscinosis due to a novel heterozygous CLN8 mutation and de novo 8p23.3 deletion. Clinical Genetics. 2012;81(6):602–4.Google Scholar
Steinfeld, R, Reinhardt, K, Schreiber, K, et al. Cathepsin D deficiency is associated with a human neurodegenerative disorder. Am J Hum Genet. 2006;78(6):988–98.Google Scholar
Doccini, S, Sartori, S, Maeser, S, et al. Early infantile neuronal ceroid lipofuscinosis (CLN10 disease) associated with a novel mutation in CTSD. J Neurol. 2016;263(5):1029–32.Google Scholar
Norman, RM, Wood, N. A congenital form of amaurotic family idiocy. J Neurol Psychiatry. 1941; 4 (3-4): 175–90.Google Scholar
Barohn, RJ, Dowd, DC, Kagan-Hallet, KS. Congenital ceroid-lipofuscinosis. Pediatr Neurol. 1992;8(1):54–9.Google Scholar
Brown, NJ, Corner, BD, Dodgson, MC. A second case in the same family of congenital familial cerebral lipoidosis resembling amaurotic family idiocy. Arch Dis Child. 1954;29(143):4854.Google Scholar
Garborg, I, Torvik, A, Hals, J, Tangsrud, SE, Lindemann, R. Congenital neuronal ceroid lipofuscinosis. A case report. Acta Pathol Microbiol Immunol Scand A. 1987;95(3):119–25.Google Scholar
Humphreys, S, Lake, BD, Scholtz, CL. Congenital amaurotic idiocy: Pathological, histochemical, biochemical and ultrastructural study. Neuropathol Appl Neurobiol. 1985;11(6):475–84.Google Scholar
Sandbank, U. Congenital amaurotic idiocy. Pathol Eur. 1968;3(2):226–9.Google Scholar
Fritchie, K, Siintola, E, Armao, D, et al. Novel mutation and the first prenatal screening of cathepsin D deficiency (CLN10). Acta Neuropathol. 2009;117(2):201–8.Google Scholar
Varvagiannis, K, Hanquinet, S, Billieux, MH, et al. Congenital neuronal ceroid lipofuscinosis with a novel CTSD gene mutation: A rare cause of neonatal-onset neurodegenerative disorder. Neuropediatrics. 2018;49(2):150–3.Google Scholar
Siintola, E, Partanen, S, Stromme, P, et al. Cathepsin D deficiency underlies congenital human neuronal ceroid-lipofuscinosis. Brain. 2006;129(Pt 6):1438–45.Google Scholar
Hersheson, J, Burke, D, Clayton, R, et al. Cathepsin D deficiency causes juvenile-onset ataxia and distinctive muscle pathology. Neurology. 2014;83(20):1873–5.Google Scholar
Canafoglia, L, Morbin, M, Scaioli, V, et al. Recurrent generalized seizures, visual loss, and palinopsia as phenotypic features of neuronal ceroid lipofuscinosis due to progranulin gene mutation. Epilepsia. 2014;55(6):e56–9.Google Scholar
Almeida, MR, Macario, MC, Ramos, L, et al. Portuguese family with the co-occurrence of frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis phenotypes due to progranulin gene mutation. Neurobiol Aging. 2016;41:200.e15.Google Scholar
Smith Katherine, R, Damiano, J, Franceschetti, S, et al. Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. Am J Hum Genet . 2012;90(6):1102-7.Google Scholar
Ramirez, A, Heimbach, A, Grundemann, J, et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet. 2006;38(10):1184–91.Google Scholar
Estrada-Cuzcano, A, Martin, S, Chamova, T, et al. Loss-of-function mutations in the ATP13A2/PARK9 gene cause complicated hereditary spastic paraplegia (SPG78). Brain. 2017;140(2):287305.Google Scholar
Bras, J, Verloes, A, Schneider, SA, Mole, SE, Guerreiro, RJ. Mutation of the parkinsonism gene ATP13A2 causes neuronal ceroid-lipofuscinosis. Hum Mol Genet. 2012;21(12):2646–50.Google Scholar
Di Fabio, R, Moro, F, Pestillo, L, et al. Pseudo-dominant inheritance of a novel CTSF mutation associated with type B Kufs disease. Neurology. 2014;83(19):1769–70.Google Scholar
Di Fabio, R, Colonnese, C, Santorelli, FM, Pestillo, L, Pierelli, F. Brain imaging in Kufs disease type B: Case reports. BMC Neurol. 2015;15:102.Google Scholar
Van Bogaert, P, Azizieh, R, Desir, J, et al. Mutation of a potassium channel-related gene in progressive myoclonic epilepsy. Ann Neurol. 2007;61(6):579–86.Google Scholar
Farhan, SM, Murphy, LM, Robinson, JF, et al. Linkage analysis and exome sequencing identify a novel mutation in KCTD7 in patients with progressive myoclonus epilepsy with ataxia. Epilepsia. 2014;55(9):e106–11.Google Scholar
Staropoli, JF, Karaa, A, Lim, ET, et al. A homozygous mutation in KCTD7 links neuronal ceroid lipofuscinosis to the ubiquitin-proteasome system. Am J Hum Genet. 2012;91(1):202–8.Google Scholar
Mastrangelo, M, Sartori, S, Simonati, A, et al. Progressive myoclonus epilepsy and ceroidolipofuscinosis 14: The multifaceted phenotypic spectrum of KCTD7-related disorders. Eur J Med Genet. 2019;62(12):103591. doi:10.1016/j.Google Scholar
Metz, KA, Teng, X, Coppens, I, et al. KCTD7 deficiency defines a distinct neurodegenerative disorder with a conserved autophagy-lysosome defect. Ann Neurol. 2018;84(5):766-80.Google Scholar
Koy, A, Lin, JP, Sanger, TD, et al. Advances in management of movement disorders in children. Lancet Neurol. 2016;15(7):719–35.Google Scholar
Singer, HS, Mink, JW, Glibert, DL, Jankovic, J. Movement Disorders in Childhood, 2nd edn. Philadelphia, PA: Academic Press; 2015.Google Scholar
Åberg, L, Liewendahl, K, Nikkinen, P, et al. Decreased striatal dopamine transporter density in JNCL patients with parkinsonian symptoms. Neurology. 2000;54(5):1069-74.Google Scholar
Åberg, LE, Rinne, JO, Rajantie, I, Santavuori, P. A favorable response to anitparkinsonian treatment in juvenile neuronal ceroid lipofucinosis. Neurology. 2001;56(9):1236-9.Google Scholar
Zweije-Hofman, IL, van der Zee, HJ, van Nieuwenhuizen, O. Anti-parkinson drugs in the Batten–Spielmeyer–Vogt syndrome: A pilot trial. Clin Neurol Neurosurg. 1982;84(2):101–5.Google Scholar
Gospe, SM, Jr., Jankovic, J. Drug-induced dystonia in neuronal ceroid-lipofuscinosis. Pediatr Neurol. 1986;2(4):236–7.Google Scholar
Vercammen, L, Buyse, GM, Proost, JE, Van Hove, JL. Neuroleptic malignant syndrome in juvenile neuronal ceroid lipofuscinosis associated with low-dose risperidone therapy. J Inherit Metab Dis. 2003;26(6):611–2.Google Scholar
Barisic, N, Logan, P, Pikija, S, Skarpa, D, Blau, N. R208X mutation in CLN2 gene associated with reduced cerebrospinal fluid pterins in a girl with classic late infantile neuronal ceroid lipofuscinosis. Croat Med J. 2003;44(4):489–93.Google Scholar
Le, NM, Parikh, S. Late infantile neuronal ceroid lipofuscinosis and dopamine deficiency. J Child Neurol. 2012;27(2):234–7.Google Scholar
Cialone, J, Blackburn, J, Mink, J. Trihexyphenidyl has cognitive side effects in children with DYT1 dystonia (IN10-2.003). Neurology. 2012;78(1Supplement):P02.177.Google Scholar
Hasegawa, H, Alkufri, F, Munro, N, et al. GPi deep brain stimulation for palliation of hemidystonia and hemibody jerking in a patient with suspected adult onset neuronal ceroid lipofuscinosis. J Neurol Sci. 2016;362:228–9.Google Scholar
Schulz, A, Ajayi, T, Specchio, N, et al. Study of intraventricular cerliponase alfa for CLN2 disease. N Engl J Med. 2018;378(20):1898–907.Google Scholar
Kim, J, Hu, C, Moufawad El Achkar, C, et al. Patient-customized oligonucleotide therapy for a rare genetic disease. N Engl J Med 2019;381:1644–52.Google Scholar

References

Schneider, SA, Bhatia, KP. Syndromes of neurodegeneration with brain iron accumulation. Semin Pediatr Neurol. 2012;19(2):5766.Google Scholar
Hayflick, SJ, Westaway, SK, Levinson, B, et al. Genetic, clinical, and radiographic delineation of Hallervorden–Spatz syndrome. N Engl J Med. 2003;348(1):3340.Google Scholar
Hayflick, SJ. Neurodegeneration with brain iron accumulation: From genes to pathogenesis. Semin Pediatr Neurol. 2006;13(3):182–5.Google Scholar
Egan, RA, Weleber, RG, Hogarth, P, et al. Neuro-ophthalmologic and electroretinographic findings in pantothenate kinase-associated neurodegeneration (formerly Hallervorden–Spatz syndrome). Am J Ophthalmol. 2005;140(2):267–74.Google Scholar
Yoon, WT, Lee, WY, Shin, HY, Lee, ST, Ki, CS. Novel PANK2 gene mutations in Korean patient with pantothenate kinase-associated neurodegeneration presenting unilateral dystonic tremor. Mov Disord. 2010;25(2):245–7.Google Scholar
Aggarwal, A, Schneider, SA, Houlden, H, et al. Indian-subcontinent NBIA: Unusual phenotypes, novel PANK2 mutations, and undetermined genetic forms. Mov Disord. 2010;25(10):1424–31.Google Scholar
Chung, SJ, Lee, JH, Lee, MC, Yoo, HW, Kim, GH. Focal hand dystonia in a patient with PANK2 mutation. Mov Disord. 2008;23(3):466–8.Google Scholar
Vasconcelos, OM, Harter, DH, Duffy, C, et al. Adult Hallervorden–Spatz syndrome simulating amyotrophic lateral sclerosis. Muscle Nerve. 2003;28(1):118–22.Google Scholar
Antonini, A, Goldwurm, S, Benti, R, et al. Genetic, clinical, and imaging characterization of one patient with late-onset, slowly progressive, pantothenate kinase-associated neurodegeneration. Mov Disord. 2006;21(3):417–8.Google Scholar
Seo, JH, Song, SK, Lee, PH. A novel PANK2 mutation in a patient with atypical pantothenate-kinase-associated neurodegeneration presenting with adult-onset parkinsonism. J Clin Neurol. 2009;5(4):192–4.Google Scholar
Diaz, N. Late onset atypical pantothenate-kinase-associated neurodegeneration. Case Rep Neurol Med. 2013;2013:860201.Google Scholar
Kurian, MA, Morgan, NV, MacPherson, L, et al. Phenotypic spectrum of neurodegeneration associated with mutations in the PLA2G6 gene (PLAN). Neurology. 2008;70(18):1623–9.Google Scholar
Morgan, NV, Westaway, SK, Morton, JE, et al. PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron. Nat Genet. 2006;38(7):752–4.Google Scholar
Paisan-Ruiz, C, Li, A, Schneider, SA, et al. Widespread Lewy body and tau accumulation in childhood and adult onset dystonia–parkinsonism cases with PLA2G6 mutations. Neurobiol Aging. 2012;33(4):814–23.Google Scholar
Gregory, A, Westaway, SK, Holm, IE, et al. Neurodegeneration associated with genetic defects in phospholipase A(2). Neurology. 2008;71(18):1402–9.Google Scholar
Riku, Y, Ikeuchi, T, Yoshino, H, Mimuro, M, Mano, K, Goto, Y, et al. Extensive aggregation of alpha-synuclein and tau in juvenile-onset neuroaxonal dystrophy: An autopsied individual with a novel mutation in the PLA2G6 gene-splicing site. Acta Neuropathol Commun. 2013;1:12.Google Scholar
Hayflick, SJ, Kruer, MC, Gregory, A, et al. Beta-propeller protein-associated neurodegeneration: A new X-linked dominant disorder with brain iron accumulation. Brain. 2013;136(Pt 6):1708–17.Google Scholar
Saitsu, H, Nishimura, T, Muramatsu, K, et al. De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nat Genet. 2013;45(4):445–9, 9e1.Google Scholar
Verhoeven, WM, Egger, JI, Koolen, DA, et al. Beta-propeller protein-associated neurodegeneration (BPAN), a rare form of NBIA: Novel mutations and neuropsychiatric phenotype in three adult patients. Parkinsonism Relat Disord. 2013;20(3):332–6.Google Scholar
Skowronska, M, Kmiec, T, Jurkiewicz, E, et al. Evolution and novel radiological changes of neurodegeneration associated with mutations in C19orf12. Parkinsonism Relat Disord. 2017;39:71–6.Google Scholar
Dezfouli, MA, Alavi, A, Rohani, M, Rezvani, M, Nekuie, T, Klotzle, B, et al. PANK2 and C19orf12 mutations are common causes of neurodegeneration with brain iron accumulation. Mov Disord. 2013;28(2):228–32.Google Scholar
Goldman, JG, Eichenseer, SR, Berry-Kravis, E, et al. Clinical features of neurodegeneration with brain iron accumulation due to a C19orf12 gene mutation. Mov Disord. 2013;28(10):1462–3.Google Scholar
Hogarth, P, Gregory, A, Kruer, MC, et al. New NBIA subtype: Genetic, clinical, pathologic, and radiographic features of MPAN. Neurology. 2013;80(3):268–75.Google Scholar
Schulte, EC, Claussen, MC, Jochim, A, et al. Mitochondrial membrane protein associated neurodegenration: A novel variant of neurodegeneration with brain iron accumulation. Mov Disord. 2013;28(2):224–7.Google Scholar
Panteghini, C, Zorzi, G, Venco, P, et al. C19orf12 and FA2H mutations are rare in Italian patients with neurodegeneration with brain iron accumulation. Semin Pediatr Neurol. 2012;19(2):7581.Google Scholar
Schottmann, G, Stenzel, W, Lutzkendorf, S, Schuelke, M, Knierim, E. A novel frameshift mutation of C19ORF12 causes NBIA4 with cerebellar atrophy and manifests with severe peripheral motor axonal neuropathy. Clin Genet. 2013;85(3):290–2.Google Scholar
Kruer, MC, Salih, MA, Mooney, C, et al. C19orf12 mutation leads to a pallido-pyramidal syndrome. Gene. 2014;537(2):352–6.Google Scholar
Kruer, MC, Paisan-Ruiz, C, Boddaert, N, et al. Defective FA2H leads to a novel form of neurodegeneration with brain iron accumulation (NBIA). Ann Neurol. 2010;68(5):611–8.Google Scholar
Schneider, SA, Paisan-Ruiz, C, Quinn, NP, et al. ATP13A2 mutations (PARK9) cause neurodegeneration with brain iron accumulation. Mov Disord. 2010;25(8):979–84.Google Scholar
Bruggemann, N, Hagenah, J, Reetz, K, et al. Recessively inherited parkinsonism: Effect of ATP13A2 mutations on the clinical and neuroimaging phenotype. Arch Neurol. 2010;67(11):1357–63.Google Scholar
Behrens, MI, Bruggemann, N, Chana, P, et al. Clinical spectrum of Kufor–Rakeb syndrome in the Chilean kindred with ATP13A2 mutations. Mov Disord. 2010;25(12):1929–37.Google Scholar
Dusi, S, Valletta, L, Haack, TBet al. Exome sequence reveals mutations in CoA synthase as a cause of neurodegeneration with brain iron accumulation. Am J Hum Genet. 2014;94(1):1122.Google Scholar
Vroegindeweij, LH, van der Beek, EH, Boon, AJ, et al. Aceruloplasminemia presents as type 1 diabetes in non-obese adults: A detailed case series. Diabet Med. 2015;32(8):9931000.Google Scholar
Bohlega, SA, Alkuraya, FS. Woodhouse–Sakati Syndrome. 1993.Google Scholar
Horvath, R, Lewis-Smith, D, Douroudis, K, et al. SCP2 mutations and neurodegeneration with brain iron accumulation. Neurology. 2015;85(21):1909–11.Google Scholar
Ferdinandusse, S, Kostopoulos, P, Denis, S, et al. Mutations in the gene encoding peroxisomal sterol carrier protein x (SCPx) cause leukencephalopathy with dystonia and motor neuropathy. Am J Hum Genet. 2006;78(6):1046–52.Google Scholar
Jaberi, E, Rohani, M, Shahidi, GA, et al. Identification of mutation in GTPBP2 in patients of a family with neurodegeneration accompanied by iron deposition in the brain. Neurobiol Aging. 2016;38:216 e11-8.Google Scholar
Darling, A, Tello, C, Marti, MJ, et al. Clinical rating scale for pantothenate kinase-associated neurodegeneration: A pilot study. Mov Disord. 2017;32(11):1620–30.Google Scholar
Greblikas, F, Escolar, M, Klopstock, T, et al. The FOsmetpantotenate Replacement Therapy (FORT) Pivotal Trial: Utilization of a novel primary efficacy outcome in patients with pantothenate kinase-associated neurodegeneration (abstract 25). Mov Disord. 2018;33(Suppl 2):S11-2.Google Scholar
Amaral, LL, Gaddikeri, S, Chapman, PR, et al. Neurodegeneration with brain iron accumulation: Clinicoradiological approach to diagnosis. J Neuroimaging. 2015;25(4):539–51.Google Scholar
Delgado, RF, Sanchez, PR, Speckter, H, et al. Missense PANK2 mutation without “eye of the tiger” sign: MR findings in a large group of patients with pantothenate kinase-associated neurodegeneration (PKAN). J Magn Reson Imaging. 2012;35(4):788–94.Google Scholar
Schenck, JF, Zimmerman, EA. High-field magnetic resonance imaging of brain iron: Birth of a biomarker? NMR Biomed. 2004;17(7):433–45.Google Scholar
Stankiewicz, J, Panter, SS, Neema, M, et al. Iron in chronic brain disorders: Imaging and neurotherapeutic implications. Neurotherapeutics. 2007;4(3):371–86.Google Scholar
Fermin-Delgado, R, Roa-Sanchez, P, Speckter, H, et al. Involvement of globus pallidus and midbrain nuclei in pantothenate kinase-associated neurodegeneration: Measurement of T2 and T2* time. Clin Neuroradiol. 2013;23(1):11–5.Google Scholar
Chiapparini, L, Savoiardo, M, D’Arrigo, Set al. The “eye-of-the-tiger” sign may be absent in the early stages of classic pantothenate kinase associated neurodegeneration. Neuropediatrics. 2011;42(4):159–62.Google Scholar
Grandas, F, Fernandez-Carballal, C, Guzman-de-Villoria, J, Ampuero, I. Treatment of a dystonic storm with pallidal stimulation in a patient with PANK2 mutation. Mov Disord. 2011;26(5):921–2.Google Scholar
Awasthi, R, Gupta, RK, Trivedi, R, et al. Diffusion tensor MR imaging in children with pantothenate kinase-associated neurodegeneration with brain iron accumulation and their siblings. AJNR Am J Neuroradiol. 2010;31(3):442–7.Google Scholar
Haack, TB, Hogarth, P, Gregory, A, Prokisch, H, Hayflick, SJ. BPAN: The only X-linked dominant NBIA disorder. Int Rev Neurobiol. 2013;110:8590.Google Scholar
Schneider, SA, Neurodegenerations with brain iron accumulation. Parkinsonism Relat Disord. 2016;22:S21–5.Google Scholar
Schneider, SA, Bhatia, KP, Hardy, J. Complicated recessive dystonia parkinsonism syndromes. Mov Disord. 2009;24(4):490–9.Google Scholar
Kell, DB. Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson’s, Huntington’s, Alzheimer’s, prions, bactericides, chemical toxicology and others as examples. Arch Toxicol. 2010;84(11):825–89.Google Scholar
Di Meo, I, Tiranti, V. Classification and molecular pathogenesis of NBIA syndromes. Eur J Paediatr Neurol. 2018;22(2):272–84.Google Scholar
Tello, C, Darling, A, Lupo, V, Perez-Duenas, B, Espinos, C. On the complexity of clinical and molecular bases of neurodegeneration with brain iron accumulation. Clin Genet. 2018;93(4):731–40.Google Scholar
Svingen, L, Goheen, M, Godfrey, R, et al. Late diagnosis and atypical brain imaging of Aicardi–Goutières syndrome: Are we failing to diagnose Aicardi–Goutières syndrome-2? Dev Med Child Neurol. 2017;59(12):1307–11.Google Scholar
Sferra, A, Baillat, G, Rizza, T, et al. TBCE Mutations cause early-onset progressive encephalopathy with distal spinal muscular atrophy. Am J Hum Genet. 2016;99(4):974–83.Google Scholar
Gautschi, M, Merlini, L, Calza, AM, et al. Late diagnosis of fucosidosis in a child with progressive fixed dystonia, bilateral pallidal lesions and red spots on the skin. Eur J Paediatr Neurol. 2014;18(4):516–9.Google Scholar
Zoons, E, de Koning, TJ, Abeling, NG, Tijssen, MA. Neurodegeneration with brain iron accumulation on MRI: An adult case of alpha-mannosidosis. JIMD Rep. 2012;4:99102.Google Scholar
Roubertie, A, Hieu, N, Roux, CJ, et al. AP4 deficiency: A novel form of neurodegeneration with brain iron accumulation? Neurol Genet. 2018;4(1):e217.Google Scholar
Dard, R, Meyniel, C, Touitou, V, et al. Mutations in DDHD1, encoding a phospholipase A1, is a novel cause of retinopathy and neurodegeneration with brain iron accumulation. Eur J Med Genet. 2017;60(12):639–42.Google Scholar
Vill, K, Muller-Felber, W, Alhaddad, B, et al. A homozygous splice variant in AP4S1 mimicking neurodegeneration with brain iron accumulation. Mov Disord. 2017;32(5):797–9.Google Scholar
Herebian, D, Alhaddad, B, Seibt, A, et al. Coexisting variants in OSTM1 and MANEAL cause a complex neurodegenerative disorder with NBIA-like brain abnormalities. Eur J Hum Genet. 2017;25(9):1092–5.Google Scholar
Meyer, E, Carss, KJ, Rankin, J, et al. Mutations in the histone methyltransferase gene KMT2B cause complex early-onset dystonia. Nat Genet. 2017;49(2):223–37.Google Scholar
Drecourt, A, Babdor, J, Dussiot, M, et al. Impaired transferrin receptor palmitoylation and recycling in neurodegeneration with brain iron accumulation. Am J Hum Genet. 2018;102(2):266–77.Google Scholar
Brunetti, D, Dusi, S, Giordano, C, et al. Pantethine treatment is effective in recovering the disease phenotype induced by ketogenic diet in a pantothenate kinase-associated neurodegeneration mouse model. Brain. 2014;137(Pt 1):5768.Google Scholar
Orellana, DI, Santambrogio, P, Rubio, A, et al. Coenzyme A corrects pathological defects in human neurons of PANK2-associated neurodegeneration. EMBO Mol Med. 2016;8(10):1197–211.Google Scholar
Zhao, YG, Sun, L, Miao, G, et al. The autophagy gene Wdr45/Wipi4 regulates learning and memory function and axonal homeostasis. Autophagy. 2015;11(6):881–90.Google Scholar
Schultheis, PJ, Fleming, SM, Clippinger, AK, et al. Atp13a2-deficient mice exhibit neuronal ceroid lipofuscinosis, limited alpha-synuclein accumulation and age-dependent sensorimotor deficits. Hum Mol Genet. 2013;22(10):2067–82.Google Scholar
Zhao, Z, Zhang, X, Zhao, C, et al. Protection of pancreatic beta-cells by group VIA phospholipase A(2)-mediated repair of mitochondrial membrane peroxidation. Endocrinology. 2010;151(7):3038–48.Google Scholar
Hogarth, P, Kurian, MA, Gregory, A, et al. Consensus clinical management guideline for pantothenate kinase-associated neurodegeneration (PKAN). Mol Genet Metab. 2017;120(3):278–87.Google Scholar
Klopstock, T, Tricta, F, Neumayr, L, et al. A randomized trial of deferiprone for pantothenate kinase-associated neurodegeneration (abstr 471). Mov Disord. 2018;33(Suppl 2):S219.Google Scholar
Elbaum, D, Beconi, MG, Monteagudo, E, et al. Fosmetpantotenate (RE-024), a phosphopantothenate replacement therapy for pantothenate kinase-associated neurodegeneration: Mechanism of action and efficacy in nonclinical models. PLoS One. 2018;13(3):e0192028.Google Scholar
Cif, L, Kurian, MA, Gonzalez, V, et al. Atypical PLA2G6-associated neurodegeneration: social communication impairment, dystonia and response to deep brain stimulation. Mov Disord Clin Pract. 2014;1(2):128–31.Google Scholar
Kinghorn, KJ, Castillo-Quan, JI, Bartolome, F, et al. Loss of PLA2G6 leads to elevated mitochondrial lipid peroxidation and mitochondrial dysfunction. Brain. 2015;138(Pt 7):1801–16.Google Scholar
Gregory, A, Kurian, MA, Maher, ER, Hogarth, P, Hayflick, S. PLA2G6-associated neurodegeneration. GeneReviews®. 2008;Jun 19 (updated Mar 23, 2017).Google Scholar
Dusek, P, Schneider, SA, Aaseth, J. Iron chelation in the treatment of neurodegenerative diseases. J Trace Elem Med Biol. 2016;38:8192.Google Scholar
Timmermann, L, Pauls, KA, Wieland, K, et al. Dystonia in neurodegeneration with brain iron accumulation: Outcome of bilateral pallidal stimulation. Brain. 2010;133(Pt 3):701–12.Google Scholar

References

Metzler, DE. Transition metals in catalysis and electron transport. In Metzler, DE, Metzler, CM, editors. Biochemistry: The Chemical Reactions of Living Cells, 2nd edn. San Diego, CA: Harcourt/Academic Press; 2003, vol. 1, ch. 16.Google Scholar
Clayton, PT. Inherited disorders of transition metal metabolism: An update. J Inherit Metab Dis. 2017;40(4):519–9.Google Scholar
King, D, Siau, K, Senthil, L, Kane, KF, Cooper, SC. Copper deficiency myelopathy after upper gastrointestinal surgery. Nutr Clin Pract. 2018;33(4):515–9.Google Scholar
van Hasselt, PM, Clayton, PT, Houwen, RHJ. Disorders of the transport of copper, iron, magnesium, manganese, selenium and zinc. In Saudubray, J-M, Baumgartner, MR, Walter, J, editors. Inborn Metabolic Diseases. Berlin: Springer; 2016, pp. 531–50.Google Scholar
Hlynialuk, CJ, Ling, B, Baker, ZN, et al. The mitochondrial metallochaperone SCO1 is required to sustain expression of the high-affinity copper transporter CTR1 and preserve copper homeostasis. Cell Rep. 2015;10(6):933–43.Google Scholar
Dening, TR, Berrios, GE. Wilson’s disease: Clinical groups in 400 cases. Acta Neurol Scand. 1989;80(6):527–34.Google Scholar
Ranjan, A, Kalita, J, Kumar, S, Bhoi, SK, Misra, UK. A study of MRI changes in Wilson disease and its correlation with clinical features and outcome. Clin Neurol Neurosurg. 2015;138:31–6.Google Scholar
Czlonkowska, A, Litwin, T, Karlinski, M, et al. D-penicillamine versus zinc sulfate as first-line therapy for Wilson’s disease. Eur J Neurol. 2014;21(4):599606.Google Scholar
Litwin, T, Dziezyc, K, Karlinski, M, Chabik, G, Czepiel, W, Czlonkowska, A. Early neurological worsening in patients with Wilson’s disease. J Neurol Sci. 2015; 355 (1-2): 162–7.Google Scholar
Brewer, GJ, Askari, F, Lorincz, MT, et al. Treatment of Wilson disease with ammonium tetrathiomolybdate: IV. Comparison of tetrathiomolybdate and trientine in a double-blind study of treatment of the neurologic presentation of Wilson disease. Arch Neurol. 2006;63(4):521–7.Google Scholar
Ahmad, A, Torrazza-Perez, E, Schilsky, ML. Liver transplantation for Wilson disease. Handb Clin Neurol. 2017;142:193204.Google Scholar
Martinelli, D, Travaglini, L, Drouin, CA, et al. MEDNIK syndrome: A novel defect of copper metabolism treatable by zinc acetate therapy. Brain. 2013;136(Pt 3):872–81.Google Scholar
Martinelli, D, Dionisi-Vici, C. AP1S1 defect causing MEDNIK syndrome: A new adaptinopathy associated with defective copper metabolism. Ann N Y Acad Sci. 2014;1314:5563.Google Scholar
Cao, B, Yang, X, Chen, Y, et al. Identification of novel ATP7A mutations and prenatal diagnosis in Chinese patients with Menkes disease. Metab Brain Dis. 2017;32(4):1123–31.Google Scholar
Manara, R, Rocco, MC, D’Agata, L, et al. Neuroimaging changes in Menkes disease: Part 2. AJNR Am J Neuroradiol. 2017;38(10):1858–65.Google Scholar
Lee, T, Yagi, M, Kusunoki, N, et al. Standard values for the urine HVA/VMA ratio in neonates as a screen for Menkes disease. Brain Dev. 2015;37(1):114–9.Google Scholar
Kaler, SG. ATP7A-related copper transport disorders. GeneReviews®. 2003;May 9 (updated Aug 18, 2016).Google Scholar
Miyajima, H, Hosoi, Y. Aceruloplasminemia. GeneReviews®. 2003;Aug 12 (updated Sep 27, 2018).Google Scholar
Poli, L, Alberici, A, Buzzi, P, et al. Is aceruloplasminemia treatable? Combining iron chelation and fresh-frozen plasma treatment. Neurol Sci. 2017;38(2):357–60.Google Scholar
Huppke, P, Brendel, C, Korenke, GC, et al. Molecular and biochemical characterization of a unique mutation in CCS, the human copper chaperone to superoxide dismutase. Hum Mutat. 2012;33(8):1207–15.Google Scholar
Rosen, DR, Siddique, T, Patterson, D, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;362(6415):5962. Published erratum: Nature. 1993;362(6435):362.Google Scholar
Valnot, I, Osmond, S, Gigarel, N, et al. Mutations of the SCO1 gene in mitochondrial cytochrome c oxidase deficiency with neonatal-onset hepatic failure and encephalopathy. Am J Hum Genet. 2000;67(5):1104–9.Google Scholar
Leary, SC, Antonicka, H, Sasarman, F, et al. Novel mutations in SCO1 as a cause of fatal infantile encephalopathy and lactic acidosis. Hum Mutat. 2013;34(10):1366–70.Google Scholar
Jaksch, M, Ogilvie, I, Yao, J, et al. Mutations in SCO2 are associated with a distinct form of hypertrophic cardiomyopathy and cytochrome c oxidase deficiency. Hum Mol Genet. 2000;9(5):795801.Google Scholar
Papadopoulou, LC, Sue, CM, Davidson, MM, et al. Fatal infantile cardioencephalomyopathy with COX deficiency and mutations in SCO2, a COX assembly gene. Nat Genet. 1999;23(3):333–7.Google Scholar
Rebelo, AP, Saade, D, Pereira, CV, et al. SCO2 mutations cause early-onset axonal Charcot–Marie–Tooth disease associated with cellular copper deficiency. Brain. 2018;141(3):662–72.Google Scholar
Robertson, D, Haile, V, Perry, SE, et al. Dopamine beta-hydroxylase deficiency. A genetic disorder of cardiovascular regulation. Hypertension. 1991;18(1):18.Google Scholar
Biaggioni, I, Robertson, D. Endogenous restoration of noradrenaline by precursor therapy in dopamine-beta-hydroxylase deficiency. Lancet. 1987;2(8569):1170–2.Google Scholar
Guo, DC, Regalado, ES, Gong, L, et al. LOX mutations predispose to thoracic aortic aneurysms and dissections. Circ Res. 2016;118(6):928–34.Google Scholar
Lewis, RA. Oculocutaneous albinism type 1. GeneReviews®. 2000;Jan 19 (updated May 16, 2013).Google Scholar
Huppke, P, Brendel, C, Kalscheuer, V, et al. Mutations in SLC33A1 cause a lethal autosomal-recessive disorder with congenital cataracts, hearing loss, and low serum copper and ceruloplasmin. Am J Hum Genet. 2012;90(1):61–8. Published erratum: Am J Hum Genet. 2012;90(2):378.Google Scholar
Lin, P, Li, J, Liu, Q, et al. A missense mutation in SLC33A1, which encodes the acetyl-CoA transporter, causes autosomal-dominant spastic paraplegia (SPG42). Am J Hum Genet. 2008;83(6):752–9.Google Scholar
Tuschl, K, Mills, PB, Clayton, PT. Manganese and the brain. Int Rev Neurobiol. 2013;110:277312.Google Scholar
Li, L, Yang, X. The essential element manganese, oxidative stress, and metabolic diseases: Links and interactions. Oxid Med Cell Longev. 2018;2018:7580707.Google Scholar
Peres, TV, Schettinger, MR, Chen, P, et al. Manganese-induced neurotoxicity: A review of its behavioral consequences and neuroprotective strategies. BMC Pharmacol Toxicol. 2016;17(1):57.Google Scholar
Chen, P, Chakraborty, S, Mukhopadhyay, S, et al. Manganese homeostasis in the nervous system. J Neurochem. 2015;134(4):601–10.Google Scholar
Tuschl, K, Mills, PB, Parsons, H, et al. Hepatic cirrhosis, dystonia, polycythaemia and hypermanganesaemia: A new metabolic disorder. J Inherit Metab Dis. 2008;31(2):151–63.Google Scholar
Tuschl, K, Clayton, PT, Gospe, SM, Jr., et al. Syndrome of hepatic cirrhosis, dystonia, polycythemia, and hypermanganesemia caused by mutations in SLC30A10, a manganese transporter in man. Am J Hum Genet. 2012;90(3):457–66.Google Scholar
Boycott, KM, Beaulieu, CL, Kernohan, KD, et al. Autosomal-recessive intellectual disability with cerebellar atrophy syndrome caused by mutation of the manganese and zinc transporter gene SLC39A8. Am J Hum Genet. 2015;97(6):886–93.Google Scholar
Park, JH, Hogrebe, M, Gruneberg, M, et al. SLC39A8 deficiency: A disorder of manganese transport and glycosylation. Am J Hum Genet. 2015;97(6):894903.Google Scholar
Riley, LG, Cowley, MJ, Gayevskiy, V, et al. A SLC39A8 variant causes manganese deficiency, and glycosylation and mitochondrial disorders. J Inherit Metab Dis. 2017;40(2):261–9.Google Scholar
Tuschl, K, Meyer, E, Valdivia, LE, et al. Mutations in SLC39A14 disrupt manganese homeostasis and cause childhood-onset parkinsonism–dystonia. Nat Commun. 2016;7:11601.Google Scholar
Fernsebner, K, Zorn, J, Kanawati, B, Walker, A, Michalke, B. Manganese leads to an increase in markers of oxidative stress as well as to a shift in the ratio of Fe(II)/(III) in rat brain tissue. Metallomics. 2014;6(4):921–31.Google Scholar
Shin, HW, Park, HK. Recent updates on acquired hepatocerebral degeneration. Tremor and Other Hyperkinet Movements (NY). 2017;7:463.Google Scholar
Herrero Hernandez, E, Valentini, MC, Discalzi, G. T1-weighted hyperintensity in basal ganglia at brain magnetic resonance imaging: Are different pathologies sharing a common mechanism? Neurotoxicology. 2002;23(6):669–74.Google Scholar
Quadri, M, Federico, A, Zhao, T, et al. Mutations in SLC30A10 cause parkinsonism and dystonia with hypermanganesemia, polycythemia, and chronic liver disease. Am J Hum Genet. 2012;90(3):467–77.Google Scholar
Zaki, MS, Issa, MY, Elbendary, HM, et al. Hypermanganesemia with dystonia, polycythemia and cirrhosis in 10 patients: Six novel SLC30A10 mutations and further phenotype delineation. Clin Genet. 2018;93(4):905–12.Google Scholar
Gulab, S, Kayyali, HR, Al-Said, Y. Atypical neurologic phenotype and novel SLC30A10 mutation in two brothers with hereditary hypermanganesemia. Neuropediatrics. 2018;49(1):72–5.Google Scholar
Stamelou, M, Tuschl, K, Chong, WK, et al. Dystonia with brain manganese accumulation resulting from SLC30A10 mutations: A new treatable disorder. Mov Disord. 2012;27(10):1317–22.Google Scholar
Zeglam, A, Abugrara, A, Kabuka, M. Autosomal-recessive iron deficiency anemia, dystonia and hypermanganesemia caused by new variant mutation of the manganese transporter gene SLC39A14. Acta Neurol Belg. 2019;119(3):379–84.Google Scholar
Rodan, LH, Hauptman, M, D’Gama, AM, et al. Novel founder intronic variant in SLC39A14 in two families causing manganism and potential treatment strategies. Mol Genet Metab. 2018;124(2):161–7.Google Scholar
Park, JH, Hogrebe, M, Fobker, M, et al. SLC39A8 deficiency: Biochemical correction and major clinical improvement by manganese therapy. Genet Med. 2018;20(2):259–68.Google Scholar
Haller, G, McCall, K, Jenkitkasemwong, S, et al. A missense variant in SLC39A8 is associated with severe idiopathic scoliosis. Nat Commun. 2018;9(1):4171.Google Scholar
Tan, J, Zhang, T, Jiang, L, et al. Regulation of intracellular manganese homeostasis by Kufor–Rakeb syndrome-associated ATP13A2 protein. J Biol Chem. 2011;286(34):29654–62.Google Scholar
Park, JS, Blair, NF, Sue, CM. The role of ATP13A2 in Parkinson’s disease: Clinical phenotypes and molecular mechanisms. Mov Disord. 2015;30(6):770–9.Google Scholar
Estrada-Cuzcano, A, Martin, S, Chamova, T, et al. Loss-of-function mutations in the ATP13A2/PARK9 gene cause complicated hereditary spastic paraplegia (SPG78). Brain. 2017;140(2):287305.Google Scholar
Cohen, Y, Megyeri, M, Chen, OC, et al. The yeast p5 type ATPase, spf1, regulates manganese transport into the endoplasmic reticulum. PLoS One. 2013;8(12):e85519.Google Scholar
Anazi, S, Maddirevula, S, Salpietro, V, et al. Expanding the genetic heterogeneity of intellectual disability. Hum Genet. 2017; 136 (11-12): 1419–29.Google Scholar
Li, Y, Huang, TT, Carlson, EJ, et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet. 1995;11(4):376–81.Google Scholar
Konzack, A, Kietzmann, T. Manganese superoxide dismutase in carcinogenesis: Friend or foe? Biochem Soc Trans. 2014;42:1012–6.Google Scholar
De Meirleir, L. Disorders of pyruvate metabolism. Handb Clin Neurol. 2013;113:1667–73.Google Scholar
Hansske, B, Thiel, C, Lubke, T, et al. Deficiency of UDP-galactose: N-acetylglucosaminebeta-1,4-galactosyltransferase I causes the congenital disorder of glycosylation type IId. J Clin Invest. 2002;109(6):725–33.Google Scholar

References

Slager, UT, Wagner, JA. The incidence, composition, and pathological significance of intracerebral vascular deposits in the basal ganglia. J Neuropathol Exp Neurol. 1956;15(4):417–31.Google Scholar
Yamada, M, Asano, T, Okamoto, K, et al. High frequency of calcification in basal ganglia on brain computed tomography images in Japanese older adults. Geriatr Gerontol Int. 2013;13(3):706–10.Google Scholar
Forstl, H, Krumm, B, Eden, S, Kohlmeyer, K. Neurological disorders in 166 patients with basal ganglia calcification: A statistical evaluation. J Neurol. 1992;239(1):36–8.Google Scholar
Ramos, EM, Oliveira, J, Sobrido, MJ, Coppola, G. Primary familial brain calcification. GeneReviews®. 2004:Apr 18 (updated Aug 24, 2017).Google Scholar
Baba, Y, Broderick, DF, Uitti, RJ, Hutton, ML, Wszolek, ZK. Heredofamilial brain calcinosis syndrome. Mayo Clin Proc. 2005;80(5):641–51.Google Scholar
Delacour, A. Ossification des capillaires du cerveau. Ann Med Psychol (Paris). 1850;2:458–61.Google Scholar
Manyam, BV. What is and what is not ‘Fahr’s disease’. Parkinsonism Relat Disord. 2005;11(2):7380.Google Scholar
Casanova, MF, Araque, JM. Mineralization of the basal ganglia: Implications for neuropsychiatry, pathology and neuroimaging. Psychiatry Res. 2003;121(1):5987.Google Scholar
Ferreira, LD, Mendes de Oliveira, JR. The need for consensus on primary familial brain calcification nomenclature. J Neuropsychiatry Clin Neurosci. 2018;30(4):291–3.Google Scholar
Fahr, T. Idiopathische Verkalkung der Hirngefässe. Zbl Allg Pathol Pathol Anat 1930;50:129–30.Google Scholar
Klein, C, Vieregge, P. Fahr‘s disease: Far from a disease. Mov Disord. 1998;13(3):620–1.Google Scholar
Geschwind, DH, Loginov, M, Stern, JM. Identification of a locus on chromosome 14q for idiopathic basal ganglia calcification (Fahr disease). Am J Hum Genet. 1999;65(3):764–72.Google Scholar
Wang, C, Li, Y, Shi, L, et al. Mutations in SLC20A2 link familial idiopathic basal ganglia calcification with phosphate homeostasis. Nat Genet. 2012;44(3):254–6.Google Scholar
Hsu, SC, Sears, RL, Lemos, RR, et al. Mutations in SLC20A2 are a major cause of familial idiopathic basal ganglia calcification. Neurogenetics. 2013;14(1):1122.Google Scholar
Grutz, K, Volpato, CB, Domingo, A, et al. Primary familial brain calcification in the ‘IBGC2’ kindred: All linkage roads lead to SLC20A2. Mov Disord. 2016;31(12):1901–4.Google Scholar
Westenberger, A, Klein, C. The genetics of primary familial brain calcifications. Curr Neurol Neurosci Rep. 2014;14(10):490.Google Scholar
Marras, C, Lang, A, van de Warrenburg, BP, et al. Nomenclature of genetic movement disorders: Recommendations of the International Parkinson and Movement Disorder Society Task Force. Mov Disord. 2017;32(5):724–5.Google Scholar
Nicolas, G, Pottier, C, Maltete, D, et al. Mutation of the PDGFRB gene as a cause of idiopathic basal ganglia calcification. Neurology. 2013;80(2):181–7.Google Scholar
Keller, A, Westenberger, A, Sobrido, MJ, et al. Mutations in the gene encoding PDGF-B cause brain calcifications in humans and mice. Nat Genet. 2013;45(9):1077–82.Google Scholar
Legati, A, Giovannini, D, Nicolas, G, et al. Mutations in XPR1 cause primary familial brain calcification associated with altered phosphate export. Nat Genet. 2015;47(6):579-81.Google Scholar
Yao, XP, Cheng, X, Wang, C, et al. Biallelic mutations in MYORG cause autosomal recessive primary familial brain calcification. Neuron. 2018;98(6):1116–23 e5.Google Scholar
The Movement Disorder Society Genetic mutation database (MDSGene). Lubeck: University of Lubeck (updated 2019 March 20; accessed March 26, 2019). Available from: www.mdsgene.org.Google Scholar
Lek, M, Karczewski, KJ, Minikel, EV et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285–91.Google Scholar
Database of Single Nucleotide Polymorphisms (dbSNP). Bethesda, MD: National Center for Biotechnology Information, National Library of Medicine. Available from: www.ncbi.nlm.nih.gov/SNP.Google Scholar
Kircher, M, Witten, DM, Jain, P, et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46(3):310–5.Google Scholar
David, S, Ferreira, J, Quenez, O, et al. Identification of partial SLC20A2 deletions in primary brain calcification using whole-exome sequencing. Eur J Hum Genet. 2016;24(11):1630–4.Google Scholar
Baker, M, Strongosky, AJ, Sanchez-Contreras, MY, et al. SLC20A2 and THAP1 deletion in familial basal ganglia calcification with dystonia. Neurogenetics. 2014;15(1):2330.Google Scholar
Nicolas, G, Rovelet-Lecrux, A, Pottier, C, et al. PDGFB partial deletion: A new, rare mechanism causing brain calcification with leukoencephalopathy. J Mol Neurosci. 2014;53(2):171–5.Google Scholar
Anheim, M, Lopez-Sanchez, U, Giovannini, D, et al. XPR1 mutations are a rare cause of primary familial brain calcification. J Neurol. 2016;263(8):1559-64.Google Scholar
Bottger, P, Pedersen, L. Mapping of the minimal inorganic phosphate transporting unit of human PiT2 suggests a structure universal to PiT-related proteins from all kingdoms of life. BMC Biochem. 2011;12:21.Google Scholar
Jensen, N, Schroder, HD, Hejbol, EK, et al. Loss of function of Slc20a2 associated with familial idiopathic basal ganglia calcification in humans causes brain calcifications in mice. J Mol Neurosci. 2013;51(3):994–9.Google Scholar
Jensen, N, Schroder, HD, Hejbol, EK, et al. Mice knocked out for the primary brain calcification-associated gene Slc20a2 show unimpaired prenatal survival but retarded growth and nodules in the brain that grow and calcify over time. Am J Pathol. 2018;188(8):1865–81.Google Scholar
Wallingford, MC, Chia, JJ, Leaf, EM, et al. SLC20A2 deficiency in mice leads to elevated phosphate levels in cerbrospinal fluid and glymphatic pathway-associated arteriolar calcification, and recapitulates human idiopathic basal ganglia calcification. Brain Pathol. 2017;27(1):6476.Google Scholar
Jensen, N, Autzen, JK, Pedersen, L. Slc20a2 is critical for maintaining a physiologic inorganic phosphate level in cerebrospinal fluid. Neurogenetics. 2016;17(2):125–30.Google Scholar
Kimura, T, Miura, T, Aoki, K, et al. Familial idiopathic basal ganglia calcification: Histopathologic features of an autopsied patient with an SLC20A2 mutation. Neuropathology. 2016;36(4):365–71.Google Scholar
Larsen, FT, Jensen, N, Autzen, JK, Kongsfelt, IB, Pedersen, L. Primary brain calcification causal PiT2 transport-knockout variants can exert dominant negative effects on wild-type PiT2 transport function in mammalian cells. J Mol Neurosci. 2017;61(2):215–20.Google Scholar
Yao, XP, Zhao, M, Wang, C, et al. Analysis of gene expression and functional characterization of XPR1: A pathogenic gene for primary familial brain calcification. Cell Tissue Res. 2017;370(2):267–73.Google Scholar
Gaengel, K, Genove, G, Armulik, A, Betsholtz, C. Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol. 2009;29(5):630–8.Google Scholar
Betsholtz, C, Keller, A. PDGF, pericytes and the pathogenesis of idiopathic basal ganglia calcification (IBGC). Brain Pathol. 2014;24(4):387–95.Google Scholar
Andrae, J, Gallini, R, Betsholtz, C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 2008;22(10):1276–312.Google Scholar
Arts, FA, Velghe, AI, Stevens, M, et al. Idiopathic basal ganglia calcification-associated PDGFRB mutations impair the receptor signalling. J Cell Mol Med. 2015;19(1):239–48.Google Scholar
Sanchez-Contreras, M, Baker, MC, Finch, NA, et al. Genetic screening and functional characterization of PDGFRB mutations associated with basal ganglia calcification of unknown etiology. Hum Mutat. 2014;35(8):964–71.Google Scholar
Minatogawa, M, Takenouchi, T, Tsuyusaki, Y, et al. Expansion of the phenotype of Kosaki overgrowth syndrome. Am J Med Genet A. 2017;173(9):2422–7.Google Scholar
Vanlandewijck, M, Lebouvier, T, Andaloussi Mae, M, et al. Functional characterization of germline mutations in PDGFB and PDGFRB in primary familial brain calcification. PLoS One. 2015;10(11):e0143407.Google Scholar
Tadic, V, Westenberger, A, Domingo, A, et al. Primary familial brain calcification with known gene mutations: A systematic review and challenges of phenotypic characterization. JAMA Neurol. 2015;72(4):460–7.Google Scholar
Zhang, Y, Guo, X, Wu, A. Association between a novel mutation in SLC20A2 and familial idiopathic basal ganglia calcification. PLoS One. 2013;8(2):e57060.Google Scholar
Manyam, BV, Walters, AS, Narla, KR. Bilateral striopallidodentate calcinosis: Clinical characteristics of patients seen in a registry. Mov Disord. 2001;16(2):258–64.Google Scholar
Kasten, M, Hartmann, C, Hampf, J, et al. Genotype–phenotype relations for the Parkinson’s disease genes Parkin, PINK1, DJ1: MDSGene systematic review. Mov Disord. 2018;33(5):730–41.Google Scholar

References

Apweiler, R, Hermjakob, H, Sharon, N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS–PROT database. Biochim Biophys Acta. 1999;1473(1):48.Google Scholar
Freeze, HH. Genetic defects in the human glycome. Nat Rev Genet. 2006;(7):537–51.Google Scholar
Freeze, HH. Understanding human glycosylation disorders: Biochemistry leads the charge. J Biol Chem. 2013;288(10):6936–45.Google Scholar
Péanne, R, de Lonlay, P, Foulquier, F, et al. Congenital disorders of glycosylation (CDG): Quo vadis? Eur J Med Genet. 2018;61(11):643–63.Google Scholar
Kinoshita, T, Fujita, M. Biosynthesis of GPI-anchored proteins: Special emphasis on GPI lipid remodeling. J Lipid Res. 2016;57(1):624.Google Scholar
Jaeken, J, Vanderschueren-Lodeweyckx, M, Casaer, P, et al. Familial psychomotor retardation with markedly fluctuating serum prolactin, FSH and GH levels, partial TBG-deficiency, increased serum arylsulphatase A and increased CSF protein: A new syndrome[quest]: 90. Pediatr Res. 1980;14(2):179–179.Google Scholar
Jaeken, J, van Eijk, HG, van der Heul, C, et al. Sialic acid-deficient serum and cerebrospinal fluid transferrin in a newly recognized genetic syndrome. Clin Chim Acta. 1984;144(2–3):245–7.Google Scholar
Jaeken, J, Eggermont, E, Stibler, H. An apparent homozygous X-linked disorder with carbohydrate-deficient serum glycoproteins. Lancet. 1987;2(8572):1398.Google Scholar
Kristiansson, B, Andersson, M, Tonnby, B, Hagberg, B. Disialotransferrin developmental deficiency syndrome. Arch Dis Child. 1989;64(1):71–6.Google Scholar
Ramaekers, VT, Stibler, H, Kint, J, Jaeken, J. A new variant of the carbohydrate deficient glycoproteins syndrome. J Inherit Metab Dis. 1991;14(3):385–8.Google Scholar
Jaeken, J, De Cock, P, Stibler, H, et al. Carbohydrate-deficient glycoprotein syndrome type II. J Inherit Metab Dis. 1993;16(6):1041.Google Scholar
Stibler, H, Westerberg, B, Hanefeld, F, Hagberg, B. Carbohydrate-deficient glycoprotein (CDG) syndrome: A new variant, type III. Neuropediatrics. 1993;24(1):51–2.Google Scholar
Stibler, H, Stephani, U, Kutsch, U. Carbohydrate-deficient glycoprotein syndrome: A fourth subtype. Neuropediatrics. 1995;26(5):235–7.Google Scholar
Jaeken, J, Schachter, H, Carchon, H, et al. Carbohydrate deficient glycoprotein syndrome type II: A deficiency in Golgi localised N-acetyl-glucosaminyltransferase II. Arch Dis Child. 1994;71(2):123–7.Google Scholar
Tan, J, Dunn, J, Jaeken, J, Schachter, H. Mutations in the MGAT2 gene controlling complex N-glycan synthesis cause carbohydrate-deficient glycoprotein syndrome type II, an autosomal recessive disease with defective brain development. Am J Hum Genet. 1996;59(4):810–7.Google Scholar
Van Schaftingen, E, Jaeken, J. Phosphomannomutase deficiency is a cause of carbohydrate-deficient glycoprotein syndrome type I. FEBS Lett. 1995;377(3):318–20.Google Scholar
Matthijs, G, Schollen, E, Pardon, E, et al. Mutations in PMM2, a phosphomannomutase gene on chromosome 16p13, in carbohydrate-deficient glycoprotein type I syndrome (Jaeken syndrome). Nat Genet. 1997;16(1):8892.Google Scholar
Körner, C, Knauer, R, Stephani, U, Marquardt, T, Lehle, L, von Figura, K. Carbohydrate deficient glycoprotein syndrome type IV: Deficiency of dolichyl-P-Man: Man(5)GlcNAc(2)-PP-dolichylmannosyltransferase. EMBO J. 1999;18(23):6816–22.Google Scholar
Aebi, M, Helenius, A, Schenk, B, et al. Carbohydrate-deficient glycoprotein syndromes become congenital disorders of glycosylation: An updated nomenclature for CDG. First International Workshop on CDGS. Glycoconj J. 1999;16(11):669–71.Google Scholar
Matthijs, G. Congenital disorders of glycosylation. Trends Biochem Sci. 2000;25(9):428.Google Scholar
Jaeken, J, Hennet, T, Freeze, HH, Matthijs, G. On the nomenclature of congenital disorders of glycosylation (CDG). J Inherit Metab Dis. 2008;31(6):669–72.Google Scholar
Jaeken, J, Hennet, T, Matthijs, G, Freeze, HH. CDG nomenclature: Time for a change! Biochim Biophys Acta. 2009;1792(9):825–6.Google Scholar
van Scherpenzeel, M, Steenbergen, G, Morava, E, Wevers, RA, Lefeber, DJ. High-resolution mass spectrometry glycoprofiling of intact transferrin for diagnosis and subtype identification in the congenital disorders of glycosylation. Transl Res. 2015;166(6):639–649.e1.Google Scholar
Clayton, P, Winchester, B, Di Tomaso, E, et al. Carbohydrate-deficient glycoprotein syndrome: Normal glycosylation in the fetus. Lancet. 1993;341(8850):956.Google Scholar
Stibler, H, Skovby, F. Failure to diagnose carbohydrate-deficient glycoprotein syndrome prenatally. Pediatr Neurol. 1994;11(1):71.Google Scholar
Vermeer, S, Kremer, HPH, Leijten, QH, et al. Cerebellar ataxia and congenital disorder of glycosylation Ia (CDG-Ia) with normal routine CDG screening. J Neurol. 2007;254(10):1356–8.Google Scholar
Abu Bakar, N, Voermans, NC, Marquardt, T, et al. Intact transferrin and total plasma glycoprofiling for diagnosis and therapy monitoring in phosphoglucomutase-I deficiency. Transl Res. 2018;199:6276.Google Scholar
Ng, BG, Freeze, HH. Human genetic disorders involving glycosylphosphatidylinositol (GPI) anchors and glycosphingolipids (GSL). J Inherit Metab Dis. 2015;38(1):171–8.Google Scholar
Ferreira, CR, Altassan, R, Marques-Da-Silva, D, et al. Recognizable phenotypes in CDG. J Inherit Metab Dis. 2018;41(3):541–53.Google Scholar
Witters, P, Honzik, T, Bauchart, E, et al. Long-term follow-up in PMM2-CDG: Are we ready to start treatment trials? Genet Med. 2019;21(5):1181–8.Google Scholar
Rossi, M, Medina Escobar, A, Ameghino, L, Merello, M. Expanding the phenotype of phosphomannomutase-2 gene congenital disorder of glycosylation: Cervical dystonia. J Neurol Sci. 2017;378:52–4.Google Scholar
Knaus, A, Pantel, JT, Pendziwiat, M, et al. Characterization of glycosylphosphatidylinositol biosynthesis defects by clinical features, flow cytometry, and automated image analysis. Genome Med. 2018;10(1):3.Google Scholar
Nguyen, TTM, Murakami, Y, Sheridan, E, et al. Mutations in GPAA1, encoding a GPI transamidase complex protein, cause developmental delay, epilepsy, cerebellar atrophy, and osteopenia. Am J Hum Genet. 2017;101(5):856–65.Google Scholar
Lee, JS, Yoo, Y, Lim, BCet al. GM3 synthase deficiency due to ST3GAL5 variants in two Korean female siblings: Masquerading as Rett syndrome-like phenotype. Am J Med Genet A. 2016;170(8):2200–5.Google Scholar
Trinchera, M, Parini, R, Indellicato, R, Domenighini, R, dall’Olio, F. Diseases of ganglioside biosynthesis: An expanding group of congenital disorders of glycosylation. Mol Genet Metab. 2018;124(4):230–7.Google Scholar
Gordon-Lipkin, E, Cohen, JS, Srivastava, S, Soares, BP, Levey, E, Fatemi, A. ST3GAL5-related disorders: A deficiency in ganglioside metabolism and a genetic cause of intellectual disability and choreoathetosis. J Child Neurol. 2018;33(13):825–31.Google Scholar
Dad, R, Walker, S, Scherer, SW, et al. Febrile ataxia and myokymia broaden the SPG26 hereditary spastic paraplegia phenotype. Neurol Genet, 2017;3(3):e156.Google Scholar
Lam, C, Wolfe, L, Need, A, Shashi, V, Enns, G. NGLY1-related congenital disorder of deglycosylation. GeneReviews®. 2018; Feb 8.Google Scholar
Lam, C, Ferreira, C, Krasnewich, D, et al. Prospective phenotyping of NGLY1-CDDG, the first congenital disorder of deglycosylation. Genet Med. 2017;19(2):160–8.Google Scholar
Prietsch, V, Peters, V, Hackler, R, et al. A new case of CDG-x with stereotyped dystonic hand movements and optic atrophy. J Inherit Metab Dis. 2002;25(2):126–30.Google Scholar
Morava, E, Wevers, RA, Cantagrel, V, et al. A novel cerebello-ocular syndrome with abnormal glycosylation due to abnormalities in dolichol metabolism. Brain. 2010;133(11):3210–20.Google Scholar
Wheeler, PG, Ng, BG, Sanford, L, et al. SRD5A3-CDG: Expanding the phenotype of a congenital disorder of glycosylation with emphasis on adult onset features. Am J Med Genet A. 2016;170(12):3165–71.Google Scholar
Cantagrel, V, Lefeber, DJ, Ng, BG, et al. SRD5A3 is required for converting polyprenol to dolichol and is mutated in a congenital glycosylation disorder. Cell. 2010;142(2):203–17.Google Scholar
García-Silva, MT, Matthijs, G, Schollen, E, et al. Congenital disorder of glycosylation (CDG) type Ie. A new patient. J Inherit Metab Dis. 2004;27(5):591600.Google Scholar
Dancourt, J, Vuillaumier-Barrot, S, de Baulny, HO, et al. A new intronic mutation in the DPM1 gene is associated with a milder form of CDG Ie in two French siblings. Pediatr Res. 2006 Jun;59(6):835–9.Google Scholar
Yang, AC, Ng, BG, Moore, SA, et al. Congenital disorder of glycosylation due to DPM1 mutations presenting with dystroglycanopathy-type congenital muscular dystrophy. Mol Genet Metab. 2013 Nov;110(3):345–51.Google Scholar
Kranz, C, Denecke, J, Lehrman, MA, et al. A mutation in the human MPDU1 gene causes congenital disorder of glycosylation type If (CDG-If). J Clin Invest. 2001 Dec;108(11):1613–9.Google Scholar
Thiel, C, Wortmann, S, Riedhammer, K, et al. Severe ichthyosis in MPDU1-CDG. J Inherit Metab Dis. 2018;41(6):1293–4.Google Scholar
Ondruskova, N, Vesela, K, Hansikova, H, et al. RFT1-CDG in adult siblings with novel mutations. Mol Genet Metab. 2012;107(4):760–2.Google Scholar
Riley, LG, Cowley, MJ, Gayevskiy, V, et al. A SLC39A8 variant causes manganese deficiency, and glycosylation and mitochondrial disorders. J Inherit Metab Dis. 2017;40(2):261–9.Google Scholar
Park, JH, Hogrebe, M, Grüneberg, M, et al. SLC39A8 deficiency: A disorder of manganese transport and glycosylation. Am J Hum Genet. 2015;97(6):894903.Google Scholar
Corbett, MA, Schwake, M, Bahlo, M, et al. A mutation in the Golgi Qb-SNARE gene GOSR2 causes progressive myoclonus epilepsy with early ataxia. Am J Hum Genet. 2011;88(5):657–63.Google Scholar
van Egmond, ME, Verschuuren-Bemelmans, CC, Nibbeling, EA, et al. Ramsay Hunt syndrome: Clinical characterization of progressive myoclonus ataxia caused by GOSR2 mutation. Mov Disord. 2014 Jan;29(1):139–43.Google Scholar
Larson, AA, Baker, PR, Milev, MP, et al. TRAPPC11 and GOSR2 mutations associate with hypoglycosylation of α-dystroglycan and muscular dystrophy. Skelet Muscle. 2018;8(1):17.Google Scholar
Morava, E, Tiemes, V, Thiel, C, et al. ALG6-CDG: A recognizable phenotype with epilepsy, proximal muscle weakness, ataxia and behavioral and limb anomalies. J Inherit Metab Dis. 2016;39(5):713–23.Google Scholar
Morava, E, Vodopiutz, J, Lefeber, DJ, et al. Defining the phenotype in congenital disorder of glycosylation due to ALG1 mutations. Pediatrics. 2012;130(4):e10341039.Google Scholar
Witters, P, Cassiman, D, Morava, E. Nutritional therapies in congenital disorders of glycosylation (CDG). Nutrients. 2017;9(11):E1222.Google Scholar
Brasil, S, Pascoal, C, Francisco, R, et al. CDG therapies: From bench to bedside. Int J Mol Sci. 2018;19(5):E1304.Google Scholar

References

Ebrahimi-Fakhari, D, Saffari, A, Wahlster, L, et al. Congenital disorders of autophagy: An emerging novel class of inborn errors of neuro-metabolism. Brain. 2016;139(Pt 2):317–37.Google Scholar
Ebrahimi-Fakhari, D. Congenital disorders of autophagy: What a pediatric neurologist should know. Neuropediatrics. 2018;49(1):1825.Google Scholar
Teinert, J, Behne, R, Wimmer, M, Ebrahimi-Fakhari, D. Novel insights into the clinical and molecular spectrum of congenital disorders of autophagy. J Inherit Metab Dis. 2019;doi:10.1002/jimd.12084.Google Scholar
Mizushima, N, Komatsu, M. Autophagy: Renovation of cells and tissues. Cell. 2011;147(4):728–41.Google Scholar
Choi, AM, Ryter, SW, Levine, B. Autophagy in human health and disease. N Engl J Med. 2013;368(19):1845–6.Google Scholar
Klionsky, DJ, Abdalla, FC, Abeliovich, H, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2012;8(4):445544.Google Scholar
Hogarth, P. Neurodegeneration with brain iron accumulation: Diagnosis and management. J Mov Disord. 2015;8(1):113.Google Scholar
Saitsu, H, Nishimura, T, Muramatsu, K, et al. De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nat Genet. 2013;45(4):445–9, 9e1.Google Scholar
Hayflick, SJ, Kruer, MC, Gregory, A, et al. Beta-propeller protein-associated neurodegeneration: A new X-linked dominant disorder with brain iron accumulation. Brain. 2013;136(Pt 6):1708–17.Google Scholar
Gregory, A, Kurian, MA, Haack, T, Hayflick, SJ, Hogarth, P. Beta-propeller protein-associated neurodegeneration. GeneReviews®. 2017;Feb 16.Google Scholar
Haack, TB, Hogarth, P, Kruer, MC, et al. Exome sequencing reveals de novo WDR45 mutations causing a phenotypically distinct, X-linked dominant form of NBIA. Am J Hum Genet. 2012;91(6):1144–9.Google Scholar
Behrends, C, Sowa, ME, Gygi, SP, Harper, JW. Network organization of the human autophagy system. Nature. 2010;466(7302):6876.Google Scholar
Akizu, N, Cantagrel, V, Zaki, MS, et al. Biallelic mutations in SNX14 cause a syndromic form of cerebellar atrophy and lysosome–autophagosome dysfunction. Nat Genet. 2015;47(5):528–34.Google Scholar
Thomas, AC, Williams, H, Seto-Salvia, N, et al. Mutations in SNX14 cause a distinctive autosomal-recessive cerebellar ataxia and intellectual disability syndrome. Am J Hum Genet. 2014;95(5):611–21.Google Scholar
Kim, M, Sandford, E, Gatica, D, et al. Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay. Elife. 2016;5.Google Scholar
Haack, TB, Ignatius, E, Calvo-Garrido, J, et al. Absence of the autophagy adaptor SQSTM1/p62 causes childhood-onset neurodegeneration with ataxia, dystonia, and gaze palsy. Am J Hum Genet. 2016;99(3):735–43.Google Scholar
Salinas, S, Proukakis, C, Crosby, A, Warner, TT. Hereditary spastic paraplegia: Clinical features and pathogenetic mechanisms. Lancet Neurol. 2008;7(12):1127–38.Google Scholar
Ashrafi, G, Schwarz, TL. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 2013;20(1):3142.Google Scholar
Pensato, V, Castellotti, B, Gellera, C, et al. Overlapping phenotypes in complex spastic paraplegias SPG11, SPG15, SPG35 and SPG48. Brain. 2014;137(Pt 7):1907–20.Google Scholar
Mallaret, M, Lagha-Boukbiza, O, Biskup, S, et al. SPG15: A cause of juvenile atypical levodopa responsive parkinsonism. J Neurol. 2014;261(2):435–7.Google Scholar
Pascual, B, de Bot, ST, Daniels, MR, et al. “Ears of the lynx” MRI sign is associated with SPG11 and SPG15 hereditary spastic paraplegia. AJNR Am J Neuroradiol. 2019;40(1):199203.Google Scholar
Chang, J, Lee, S, Blackstone, C. Spastic paraplegia proteins spastizin and spatacsin mediate autophagic lysosome reformation. J Clin Invest. 2014;124(12):5249–62.Google Scholar
Ebrahimi-Fakhari, D, Cheng, C, Dies, K, et al. Clinical and genetic characterization of AP4B1-associated SPG47. Am J Med Genet A. 2018;176(2):311–8.Google Scholar
Oz-Levi, D, Ben-Zeev, B, Ruzzo, EK, et al. Mutation in TECPR2 reveals a role for autophagy in hereditary spastic paraparesis. Am J Hum Genet. 2012;91(6):1065–72.Google Scholar
Anheim, M, Tranchant, C, Koenig, M. The autosomal recessive cerebellar ataxias. N Engl J Med. 2012;366(7):636–46.Google Scholar
Pickrell, AM, Youle, RJ. The roles of PINK1, Parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron. 2015;85(2):257–73.Google Scholar

References

Ng, J, Papandreou, A, Heales, SJ, Kurian, MA. Monoamine neurotransmitter disorders: Clinical advances and future perspectives. Nat Rev Neurol. 2015;11(10):567–84.Google Scholar
Opladen, T, Hoffmann, GF, Blau, N. An international survey of patients with tetrahydrobiopterin deficiencies presenting with hyperphenylalaninaemia. J Inherit Metab Dis. 2012;35(6):963–73.Google Scholar
Nygaard, TG. Dopa-responsive dystonia. Delineation of the clinical syndrome and clues to pathogenesis. Adv Neurol. 1993;60:577–85.Google Scholar
Segawa, M, Nomura, Y, Nishiyama, N. Autosomal dominant guanosine triphosphate cyclohydrolase I deficiency (Segawa disease). Ann Neurol. 2003;54 Suppl 6:S3245.Google Scholar
Bandmann, O, Wood, NW. Dopa-responsive dystonia: The story so far. Neuropediatrics. 2002;33(1):15.Google Scholar
Lopez-Laso, E, Sanchez-Raya, A, Moriana, JA, et al. Neuropsychiatric symptoms and intelligence quotient in autosomal dominant Segawa disease. J Neurol. 2011;258(12):2155–62.Google Scholar
Nygaard, TG, Marsden, CD, Fahn, S. Dopa-responsive dystonia: Long-term treatment response and prognosis. Neurology. 1991;41(2 (Pt 1)):174–81.Google Scholar
Thöny, B, Blau, N. Mutations in the BH4-metabolizing genes GTP cyclohydrolase I, 6-pyruvoyl-tetrahydropterin synthase, sepiapterin reductase, carbinolamine-4a-dehydratase, and dihydropteridine reductase. Hum Mutat. 2006;27(9):870–8.Google Scholar
Friedman, J, Hyland, K, Blau, N, MacCollin, M. Dopa-responsive hypersomnia and mixed movement disorder due to sepiapterin reductase deficiency. Neurology. 2006;67(11):2032–5.Google Scholar
Leuzzi, V, Carducci, C, Tolve, M, et al. Very early pattern of movement disorders in sepiapterin reductase deficiency. Neurology. 2013;81(24):2141–2.Google Scholar
Zielonka, M, Makhseed, N, Blau, N, Dopamine-responsive growth-hormone deficiency and central hypothyroidism in sepiapterin reductase deficiency. JIMD Rep. 2015;24:109–13.Google Scholar
Friedman, J, Roze, E, Abdenur, JE, et al. Sepiapterin reductase deficiency: A treatable mimic of cerebral palsy. Ann Neurol. 2012;71(4):520–30.Google Scholar
Horvath, GA, Stockler-Ipsiroglu, SG, Salvarinova-Zivkovic, R, et al. Autosomal recessive GTP cyclohydrolase I deficiency without hyperphenylalaninemia: Evidence of a phenotypic continuum between dominant and recessive forms. Mol Genet Metab. 2008;94(1):127–31.Google Scholar
Opladen, T, Hoffmann, G, Horster, F, et al. Clinical and biochemical characterization of patients with early infantile onset of autosomal recessive GTP cyclohydrolase I deficiency without hyperphenylalaninemia. Mov Disord. 2011;26(1):157–61.Google Scholar
Blau, NTB, Cotton, RGH. Disorders of tetrahydrobiopterin and related biogenic amines. In Scriver, CR, Sly, WS, Valle, D, editors. The Metabolic and Molecular Bases of Inherited Disease: McGraw-Hill; 2001, pp. 1725–76.Google Scholar
Werner, ER, Blau, N, Thony, B. Tetrahydrobiopterin: Biochemistry and pathophysiology. Biochem J. 2011;438(3):397414.Google Scholar
Coughlin, CR, 2nd, Hyland, K, Randall, R, Ficicioglu, C. Dihydropteridine reductase deficiency and treatment with tetrahydrobiopterin: A case report. JIMD Rep. 2013;10:53–6.Google Scholar
Irons, M, Levy, HL, O’Flynn, ME, et al. Folinic acid therapy in treatment of dihydropteridine reductase deficiency. J Pediatr. 1987;110(1):61–7.Google Scholar
Thöny, B, Neuheiser, F, Kierat, L, et al. Mutations in the pterin-4alpha-carbinolamine dehydratase (PCBD) gene cause a benign form of hyperphenylalaninemia. Hum Genet. 1998;103(2):162–7.Google Scholar
Rhee, KH, Stier, G, Becker, PB, Suck, D, Sandaltzopoulos, R. The bifunctional protein DCoH modulates interactions of the homeodomain transcription factor HNF1 with nucleic acids. J Mol Biol. 1997;265(1):20–9.Google Scholar
Mendel, DB, Khavari, PA, Conley, PB, et al. Characterization of a cofactor that regulates dimerization of a mammalian homeodomain protein. Science. 1991;254(5039):1762–7.Google Scholar
Simaite, D, Kofent, J, Gong, M, et al. Recessive mutations in PCBD1 cause a new type of early-onset diabetes. Diabetes. 2014;63(10):3557–64.Google Scholar
Willemsen, MA, Verbeek, MM, Kamsteeg, EJ, et al. Tyrosine hydroxylase deficiency: A treatable disorder of brain catecholamine biosynthesis. Brain. 2010;133(Pt 6):1810–22.Google Scholar
Marin-Valencia, I, Serrano, M, Ormazabal, A, et al. Biochemical diagnosis of dopaminergic disturbances in paediatric patients: Analysis of cerebrospinal fluid homovanillic acid and other biogenic amines. Clin Biochem. 2008;41(16–17):1306–15.Google Scholar
Hoffmann, GF, Assmann, B, Brautigam, C, et al. Tyrosine hydroxylase deficiency causes progressive encephalopathy and dopa-nonresponsive dystonia. Ann Neurol. 2003;54 Suppl 6:S5665.Google Scholar
Lee, HF, Tsai, CR, Chi, CS, Chang, TM, Lee, HJ. Aromatic L-amino acid decarboxylase deficiency in Taiwan. Eur J Paediatr Neurol. 2009;13(2):135–40.Google Scholar
Brun, L, Ngu, LH, Keng, WT, et al. Clinical and biochemical features of aromatic L-amino acid decarboxylase deficiency. Neurology. 2010;75(1):6471.Google Scholar
Haavik, J, Blau, N, Thony, B. Mutations in human monoamine-related neurotransmitter pathway genes. Hum Mutat. 2008;29(7):891902.Google Scholar
Wassenberg, T, Willemsen, MA, Geurtz, PB, et al. Urinary dopamine in aromatic L-amino acid decarboxylase deficiency: The unsolved paradox. Mol Genet Metab. 2010;101(4):349–56.Google Scholar
Wassenberg, T, Molero-Luis, M, Jeltsch, K, et al. Consensus guideline for the diagnosis and treatment of aromatic L-amino acid decarboxylase (AADC) deficiency. Orphanet J Rare Dis. 2017;12:12.Google Scholar
Hwu, WL, Muramatsu, S, Tseng, SH, et al. Gene therapy for aromatic L-amino acid decarboxylase deficiency. Sci Transl Med. 2012;4(134):134ra61.Google Scholar
Brunner, HG, Nelen, MR, van Zandvoort, P, et al. X-linked borderline mental retardation with prominent behavioral disturbance: Phenotype, genetic localization, and evidence for disturbed monoamine metabolism. Am J Hum Genet. 1993;52(6):1032–9.Google Scholar
Cheung, NW, Earl, J. Monoamine oxidase deficiency: A cause of flushing and attention-deficit/ hyperactivity disorder? Arch Intern Med. 2001;161(20):2503–4.Google Scholar
Whibley, A, Urquhart, J, Dore, J, et al. Deletion of MAOA and MAOB in a male patient causes severe developmental delay, intermittent hypotonia and stereotypical hand movements. Eur J Hum Genet. 2010;18(10):1095–9.Google Scholar
Godar, SC, Bortolato, M, Castelli, MP, et al. The aggression and behavioral abnormalities associated with monoamine oxidase A deficiency are rescued by acute inhibition of serotonin reuptake. J Psychiatr Res. 2014;56:19.Google Scholar
Robertson, D, Garland, EM. Dopamine beta-hydroxylase deficiency. GeneReviews®. 2003;Sep 4 (updated Apr 25, 2019).Google Scholar
Arnold, AC, Garland, EM, Celedonio, JE, et al. Hyperinsulinemia and insulin resistance in dopamine beta-hydroxylase deficiency. J Clin Endocrinol Metab. 2017;102(1):10–4.Google Scholar
Timmers, HJ, Deinum, J, Wevers, RA, Lenders, JW. Congenital dopamine-beta-hydroxylase deficiency in humans. Ann N Y Acad Sci. 2004;1018:520–3.Google Scholar
van den Berg, MP, Almomani, R, Biaggioni, I, et al. Mutations in CYB561 causing a novel orthostatic hypotension syndrome. Circ Res. 2018;122(6):846–54.Google Scholar
Kurian, MA, Li, Y, Zhen, J, et al. Clinical and molecular characterisation of hereditary dopamine transporter deficiency syndrome: An observational cohort and experimental study. Lancet Neurol. 2011;10(1):5462.Google Scholar
Ng, J, Zhen, J, Meyer, E, et al. Dopamine transporter deficiency syndrome: Phenotypic spectrum from infancy to adulthood. Brain. 2014;137(Pt 4):1107–19.Google Scholar
Yildiz, Y, Pektas, E, Tokatli, A, Haliloglu, G. Hereditary dopamine transporter deficiency syndrome: Challenges in diagnosis and treatment. Neuropediatrics. 2017;48(1):4952.Google Scholar
Rilstone, JJ, Alkhater, RA, Minassian, BA. Brain dopamine–serotonin vesicular transport disease and its treatment. N Engl J Med. 2013;368(6):543–50.Google Scholar
Ng, J, Heales, SJ, Kurian, MA. Clinical features and pharmacotherapy of childhood monoamine neurotransmitter disorders. Paediatr Drugs. 2014;16(4):275–91.Google Scholar
Carducci, C, Santagata, S, Friedman, J, et al. Urine sepiapterin excretion as a new diagnostic marker for sepiapterin reductase deficiency. Mol Genet Metab. 2015;115(4):157–60.Google Scholar
Birnbacher, R, Scheibenreiter, S, Blau, N, et al. Hyperprolactinemia, a tool in treatment control of tetrahydrobiopterin deficiency: Endocrine studies in an affected girl. Pediatr Res. 1998; 43 (4 Pt 1): 472–7.Google Scholar
Rath, M, Korenke, GC, Najm, J, et al. Exome sequencing results in identification and treatment of brain dopamine–serotonin vesicular transport disease. J Neurol Sci. 2017;379:296–7.Google Scholar
Hoffmann, GF, Blau, N. Congenital Neurotransmitter Disorders: A Clinical Approach. Huppauge, NY: Nova Science Publishers; 2014.Google Scholar

References

Anikster, Y, Haack, TB, Vilboux, T, et al. Biallelic mutations in DNAJC12 cause hyperphenylalaninemia, dystonia, and intellectual disability. Am J Hum Genet. 2017;100(2):257–66.Google Scholar
Blau, N, Van Spronsen, FJ, Levy, HL. Phenylketonuria. Lancet. 2010;376:1417–27.Google Scholar
Werner, ER, Blau, N, Thöny, B. Tetrahydrobiopterin: Biochemistry and pathophysiology. Biochem J. 2011;438:397414.Google Scholar
Bouchereau, J, Huttlin, EL, Guarani, V, et al. DNAJC12: A molecular chaperone involved in proteostasis, PKU, biogenic amines metabolism and beyond? Mol Genet Metab. 2018;123(3):285–6.Google Scholar
Blau, N, Martinez, A, Hoffmann, GF, Thony, B. DNAJC12 deficiency: A new strategy in the diagnosis of hyperphenylalaninemias. Mol Genet Metab. 2018;123:15.Google Scholar
van Spronsen, FJ, Himmelreich, N, Rufenacht, V, et al. Heterogeneous clinical spectrum of DNAJC12-deficient hyperphenylalaninemia: From attention deficit to severe dystonia and intellectual disability. J Med Genet. 2017;doi:10.1136/jmedgenet-2017-104875.Google Scholar
Straniero, L, Guella, I, Cilia, R, et al. DNAJC12 and dopa-responsive non-progressive parkinsonism. Ann Neurol. 2017;82(4):640–6.Google Scholar
Leal, F, Navarrete, R, Castro, M, et al. Spanish hyperphenylalaninemia cases bearing a high frequent mutation in the DNAJC12 gene. J Inborn Error Metab Screen. 2017;5:131.Google Scholar
Feng, Y, Liu, S, Tang, C, et al. Identification of an inherited pathogenic DNAJC12 variant in a patient with hyperphenylalalinemia. Clin Chim Acta. 2018;doi:10.1016/j.cca.2018.09.002.Google Scholar
Veenma, D, Cordeiro, D, Sondheimer, N, Mercimek-Andrews, S. DNAJC12-associated developmental delay, movement disorder, and mild hyperphenylalaninemia identified by whole-exome sequencing re-analysis. Eur J Hum Genet. 2018;26(12):1867–70.Google Scholar
de Sain-van der Velden, MGM, Kuper, WFE, Kuijper, MA, et al. Beneficial effect of BH4 treatment in a 15-year-old boy with biallelic mutations in DNAJC12. JIMD Rep. 2018;42:99103.Google Scholar
Kampinga, HH, Craig, EA. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol. 2010;11(8):579–92.Google Scholar
Dekker, SL, Kampinga, HH, Bergink, S. DNAJs: More than substrate delivery to HSPA. Front Mol Biosci. 2015;2:35.Google Scholar
Cadieux-Dion, M, Andermann, E, Lachance-Touchette, P, et al. Recurrent mutations in DNAJC5 cause autosomal dominant Kufs disease. Clin Genet. 2013;83(6):571–5.Google Scholar
Fontaine, SN, Zheng, D, Sabbagh, JJ, et al. DNAJ/HSC70 chaperone complexes control the extracellular release of neurodegenerative-associated proteins. EMBO J. 2016;35(14):1537–49.Google Scholar
Edvardson, S, Cinnamon, Y, Ta-Shma, A, et al. A deleterious mutation in DNAJC6 encoding the neuronal-specific clathrin-uncoating co-chaperone auxilin, is associated with juvenile parkinsonism. PLoS One. 2012;7(5):e36458.Google Scholar
Rajput, A, Ross, JP, Bernales, CQ, et al. VPS35 and DNAJC13 disease-causing variants in essential tremor. Eur J Hum Genet. 2015;23(6):887–8.Google Scholar
Gustavsson, EK, Trinh, J, Guella, I, et al. DNAJC13 genetic variants in parkinsonism. Mov Disord. 2015;30(2):273–8.Google Scholar
Ito, N, Kamiguchi, K, Nakanishi, K, et al. A novel nuclear DNAJ protein, DNAJC8, can suppress the formation of spinocerebellar ataxia 3 polyglutamine aggregation in a J-domain independent manner. Biochem Biophys Res Commun. 2016;474(4):626–33.Google Scholar
Ojala, T, Polinati, P, Manninen, T, et al. New mutation of mitochondrial DNAJC19 causing dilated and noncompaction cardiomyopathy, anemia, ataxia, and male genital anomalies. Pediatr Res. 2012;72(4):432–7.Google Scholar
Himmelreich, N, Hoffmann, GF, Blau, N. Expression pattern of phenylalanine hydroxylase variants is regulated by co-chaperone DNAJC12. Mol Genet Metab. 2018;123:210.Google Scholar
Jung-Kc, K, Himmelreich, N, Prestegard, K. S, et al. Phenylalanine hydroxylase variants interact with the co-chaperone DNAJC12. Hum Mutat. 2019;40:483–494.Google Scholar

References

Gibson, KM, Sweetman, L, Nyhan, WL, et al. Succinic semialdehyde dehydrogenase deficiency: An inborn error of gamma-aminobutyric acid metabolism. Clin Chim Acta. 1983;133(1):3342.Google Scholar
Attri, SV, Singhi, P, Wiwattanadittakul, N, et al. Incidence and geographic distribution of succinic semialdehyde dehydrogenase (SSADH) deficiency. JIMD Rep. 2017;34:111–5.Google Scholar
Pearl, PL, Parviz, M, Vogel, K, et al. Inherited disorders of gamma-aminobutyric acid metabolism and advances in ALDH5A1 mutation identification. Dev Med Child Neurol. 2015;57(7):611–7.Google Scholar
Gibson, KM, Gupta, M, Pearl, PL, et al. Significant behavioral disturbances in succinic semialdehyde dehydrogenase (SSADH) deficiency (gamma-hydroxybutyric aciduria). Biol Psychiatry. 2003;54(7):763–8.Google Scholar
Akaboshi, S, Hogema, BM, Novelletto, A, et al. Mutational spectrum of the succinate semialdehyde dehydrogenase (ALDH5A1) gene and functional analysis of 27 novel disease-causing mutations in patients with SSADH deficiency. Hum Mutat. 2003;22(6):442–50.Google Scholar
Jansen, EE, Vogel, KR, Salomons, GS, et al. Correlation of blood biomarkers with age informs pathomechanisms in succinic semialdehyde dehydrogenase deficiency (SSADHD), a disorder of GABA metabolism. J Inherit Metab Dis. 2016;39(6):795800.Google Scholar
Johansen, SS, Wang, X, Sejer Pedersen, D, et al. Gamma-hydroxybutyrate (GHB) content in hair samples correlates negatively with age in succinic semialdehyde dehydrogenase deficiency. JIMD Rep. 2017;36:93–8.Google Scholar
Pearl, PL, Novotny, EJ, Acosta, MT, Jakobs, C, Gibson, KM. Succinic semialdehyde dehydrogenase deficiency in children and adults. Ann Neurol. 2003;54 Suppl 6:S7380.Google Scholar
Pearl, PL, Gibson, KM, Acosta, MT, et al. Clinical spectrum of succinic semialdehyde dehydrogenase deficiency. Neurology. 2003;60(9):1413–7.Google Scholar
Pearl, PL, Capp, PK, Novotny, EJ, Gibson, KM. Inherited disorders of neurotransmitters in children and adults. Clin Biochem. 2005;38(12):1051–8.Google Scholar
Pearl, PL, Shamim, S, Theodore, WH, et al. Polysomnographic abnormalities in succinic semialdehyde dehydrogenase (SSADH) deficiency. Sleep. 2009;32(12):1645–8.Google Scholar
Scherschlicht, R. Role for GABA in the control of the sleep–wakefulness cycle. In Wauquier, A, Gaillard, J, Monti, JM, Radulovacki, M, editors. Sleep: Neurotransmitters and Neuromodulators. New York, NY: Raven Press; 1985, pp. 237–49.Google Scholar
Lapalme-Remis, S, Lewis, EC, De Meulemeester, C, et al. Natural history of succinic semialdehyde dehydrogenase deficiency through adulthood. Neurology. 2015;85(10):861–5.Google Scholar
Pearl, PL, Gibson, KM, Cortez, MA, et al. Succinic semialdehyde dehydrogenase deficiency: Lessons from mice and men. J Inherit Metab Dis. 2009;32(3):343–52.Google Scholar
Jakobs, C, Bojasch, M, Monch, E, et al. Urinary excretion of gamma-hydroxybutyric acid in a patient with neurological abnormalities. The probability of a new inborn error of metabolism. Clin Chim Acta. 1981;111(2–3):169–78.Google Scholar
Pearl, PL, Acosta, MT, Theodore, WH, et al. Human SSADH deficiency: Phenotype and treatment strategies. In Hoffmann, GF, editor. Diseases of Neurotransmission: From Bench to Bed. Heilbronn: SPS Publications; 2004, pp. 187–98.Google Scholar
Pearl, PL, Acosta, MT, Wallis, DD, et al. Dyskinetic features of succinate semialdehyde dehydrogenase deficiency, a GABA degradative defect. In Fernandez-Alvarez, E, Arzimanoglou, A, Tolosa, E, editors. Paediatric Movement Disorders: Progress in Understanding. Esher: John Libbey Eurotext; 2005, pp. 203–12.Google Scholar
Rahbeeni, Z, Ozand, PT, Rashed, M, et al. 4-Hydroxybutyric aciduria. Brain Dev. 1994;16 Suppl:6471.Google Scholar
Zeiger, WA, Sun, LR, Bosemani, T, Pearl, PL, Stafstrom, CE. Acute infantile encephalopathy as presentation of succinic semialdehyde dehydrogenase deficiency. Pediatr Neurol. 2016;58:113–5.Google Scholar
Leuzzi, V, Di Sabato, ML, Deodato, F, et al. Vigabatrin improves paroxysmal dystonia in succinic semialdehyde dehydrogenase deficiency. Neurology. 2007;68(16):1320–1.Google Scholar
Pearl, PL, Vezina, LG, Saneto, RP, et al. Cerebral MRI abnormalities associated with vigabatrin therapy. Epilepsia. 2009;50(2):184–94.Google Scholar
Dill, P, Datta, AN, Weber, P, Schneider, J. Are vigabatrin induced T2 hyperintensities in cranial MRI associated with acute encephalopathy and extrapyramidal symptoms? Eur J Paediatr Neurol. 2013;17(3):311–5.Google Scholar
Novotny, EJ, Jr., Fulbright, RK, Pearl, PL, Gibson, KM, Rothman, DL. Magnetic resonance spectroscopy of neurotransmitters in human brain. Ann Neurol. 2003;54 Suppl 6:S2531.Google Scholar
Al-Essa, MA, Bakheet, SM, Patay, ZJ, Powe, JE, Ozand, PT. Clinical, fluorine-18 labeled 2-fluoro-2-deoxyglucose positron emission tomography (FDG PET), MRI of the brain and biochemical observations in a patient with 4-hydroxybutyric aciduria: A progressive neurometabolic disease. Brain Dev. 2000;22(2):127–31.Google Scholar
Pearl, PL, Gibson, KM, Quezado, Z, et al. Decreased GABA-A binding on FMZ-PET in succinic semialdehyde dehydrogenase deficiency. Neurology. 2009;73(6):423–9.Google Scholar
Shinka, T, Ohfu, M, Hirose, S, Kuhara, T. Effect of valproic acid on the urinary metabolic profile of a patient with succinic semialdehyde dehydrogenase deficiency. J Chromatogr B Analyt Technol Biomed Life Sci. 2003;792(1):99106.Google Scholar
Escalera, GI, Ferrer, I, Marina, LC, et al. Succinic semialdehyde dehydrogenase deficiency: Decrease in 4-OH-butyric acid levels with low doses of vigabatrin. An Pediatr (Barc). 2010;72(2):128–32.Google Scholar
Pearl, PL, Gropman, A. Monitoring gamma-hydroxybutyric acid levels in succinate-semialdehyde dehydrogenase deficiency. Ann Neurol. 2004;55(4):599;author replyGoogle Scholar
Ergezinger, K, Jeschke, R, Frauendienst-Egger, G, et al. Monitoring of 4-hydroxybutyric acid levels in body fluids during vigabatrin treatment in succinic semialdehyde dehydrogenase deficiency. Ann Neurol. 2003;54(5):686–9.Google Scholar
Krauss, GL, Johnson, MA, Miller, NR. Vigabatrin-associated retinal cone system dysfunction: Electroretinogram and ophthalmologic findings. Neurology. 1998;50(3):614–8.Google Scholar
Spence, SJ, Sankar, R. Visual field defects and other ophthalmological disturbances associated with vigabatrin. Drug Saf. 2001;24(5):385404.Google Scholar
Vanhatalo, S, Nousiainen, I, Eriksson, K, et al. Visual field constriction in 91 Finnish children treated with vigabatrin. Epilepsia. 2002;43(7):748–56.Google Scholar
Pearl, PL, Poduri, A, Prabhu, SP, et al. White matter spongiosis with vigabatrin therapy for infantile spasms. Epilepsia. 2018;59(4):e40-e4.Google Scholar
Gupta, M, Greven, R, Jansen, EE, et al. Therapeutic intervention in mice deficient for succinate semialdehyde dehydrogenase (gamma-hydroxybutyric aciduria). J Pharmacol Exp Ther. 2002;302(1):180–7.Google Scholar
Saronwala, A, Tournay, A, Gargus, JJ. Taurine treatment of succinate semialdehyde dehydrogenase (SSADH) deficiency reverses MRI-documented globus lesions and clinical syndrome (abstract). Proceedings of the 15th Annual Clinical Genetics Meeting. Phoenix, AZ: American College of Medical Genetics; 2008, p. 103.Google Scholar
Pearl, PL, Schreiber, J, Theodore, WH, et al. Taurine trial in succinic semialdehyde dehydrogenase deficiency and elevated CNS GABA. Neurology. 2014;82(11):940–4.Google Scholar
Schreiber, JM, Pearl, PL, Dustin, I, et al. Biomarkers in a taurine trial for succinic semialdehyde dehydrogenase deficiency. JIMD Rep. 2016;30:81–7.Google Scholar
Phase 2 clinical trial of sgs-742 therapy in succinic semialdehyde dehydrogenase deficiency: National Library of Medicine; 2013–2019. Available from: https://clinicaltrials.gov/ct2/show/NCT02019667 (accessed December 2019).Google Scholar
Vogel, KR, Ainslie, GR, Roullet, JB, McConnell, A, Gibson, KM. In vitro toxicological evaluation of NCS-382, a high-affinity antagonist of gamma-hydroxybutyrate (GHB) binding. Toxicol In Vitro. 2017;40:196202.Google Scholar
Vogel, KR, Ainslie, GR, Walters, DC, et al. Succinic semialdehyde dehydrogenase deficiency, a disorder of GABA metabolism: An update on pharmacological and enzyme-replacement therapeutic strategies. J Inherit Metab Dis. 2018;41(4):699708.Google Scholar
Vogel, KR, Ainslie, GR, McConnell, A, Roullet, JB, Gibson, KM. Toxicologic/transport properties of NCS-382, a gamma-hydroxybutyrate (GHB) receptor ligand, in neuronal and epithelial cells: Therapeutic implications for SSADH deficiency, a GABA metabolic disorder. Toxicol In Vitro. 2018;46:203–12.Google Scholar
Jaeken, J, Casaer, P, de Cock, P, et al. Gamma-aminobutyric acid-transaminase deficiency: A newly recognized inborn error of neurotransmitter metabolism. Neuropediatrics. 1984;15(3):165–9.Google Scholar
Koenig, MK, Hodgeman, R, Riviello, JJ, et al. Phenotype of GABA-transaminase deficiency. Neurology. 2017;88(20):1919–24.Google Scholar
Nagappa, M, Bindu, PS, Chiplunkar, S, et al. Hypersomnolence–hyperkinetic movement disorder in a child with compound heterozygous mutation in 4-aminobutyrate aminotransferase (ABAT) gene. Brain Dev. 2017;39(2):161–5.Google Scholar
Koenig, MK, Bonnen, PE. Metabolomics profile in ABAT deficiency pre- and post-treatment. JIMD Rep. 2019;43:13–7.Google Scholar
Tsuji, M, Aida, N, Obata, T, et al. A new case of GABA transaminase deficiency facilitated by proton MR spectroscopy. J Inherit Metab Dis. 2010;33(1):8590.Google Scholar
Besse, A, Wu, P, Bruni, F, et al. The GABA transaminase, ABAT, is essential for mitochondrial nucleoside metabolism. Cell Metab. 2015;21(3):417–27.Google Scholar
Ichikawa, K, Tsuji, M, Tsuyusaki, Y, et al. Serial magnetic resonance imaging and (1)H-magnetic resonance spectroscopy in GABA transaminase deficiency: A case report. JIMD Rep. 2019;43:712.Google Scholar
Gibson, KM, Schor, DS, Gupta, M, et al. Focal neurometabolic alterations in mice deficient for succinate semialdehyde dehydrogenase. J Neurochem. 2002;81(1):71–9.Google Scholar
Chowdhury, GM, Gupta, M, Gibson, KM, Patel, AB, Behar, KL. Altered cerebral glucose and acetate metabolism in succinic semialdehyde dehydrogenase-deficient mice: Evidence for glial dysfunction and reduced glutamate/glutamine cycling. J Neurochem. 2007;103(5):2077–91.Google Scholar
Knerr, I, Pearl, PL, Bottiglieri, T, et al. Therapeutic concepts in succinate semialdehyde dehydrogenase (SSADH; ALDH5A1) deficiency (gamma-hydroxybutyric aciduria). Hypotheses evolved from 25 years of patient evaluation, studies in Aldh5a1-/- mice and characterization of gamma-hydroxybutyric acid pharmacology. J Inherit Metab Dis. 2007;30(3):279–94.Google Scholar
Acosta, MT, Munasinghe, J, Pearl, PL, et al. Cerebellar atrophy in human and murine succinic semialdehyde dehydrogenase deficiency. J Child Neurol. 2010;25(12):1457–61.Google Scholar
DiBacco, ML, Roullet, JB, Kapur, K, et al. Age-related phenotype and biomarker changes in SSADH deficiency. Ann Clin Transl Neurol. 2018;6(1):114–20.Google Scholar

References

Burck, U, Goebel, HH, Kuhlendahl, HD, Meier, C, Goebel, KM. Neuromyopathy and vitamin E deficiency in man. Neuropediatrics. 1981;12(3):267–78.Google Scholar
Ben Hamida, M, Belal, S, Sirugo, G, et al. Friedreich’s ataxia phenotype not linked to chromosome 9 and associated with selective autosomal recessive vitamin E deficiency in two inbred Tunisian families. Neurology. 1993;43(11):2179–83.Google Scholar
Ben Hamida, C, Doerflinger, N, Belal, S, et al. Localization of Friedreich ataxia phenotype with selective vitamin E deficiency to chromosome 8q by homozygosity mapping. Nat Genet. 1993;5(2):195200.Google Scholar
Ouahchi, K, Arita, M, Kayden, H, et al. Ataxia with isolated vitamin E deficiency is caused by mutations in the alpha-tocopherol transfer protein. Nat Genet. 1995;9(2):141–5.Google Scholar
Mocchegiani, E, Costarelli, L, Giacconi, R, et al. Vitamin E–gene interactions in aging and inflammatory age-related diseases: Implications for treatment. A systematic review. Ageing Res Rev. 2014;14:81101.Google Scholar
Ulatowski, L, Parker, R, Warrier, G, et al. Vitamin E is essential for Purkinje neuron integrity. Neuroscience. 2014;260:120–9.Google Scholar
Arita, M, Sato, Y, Miyata, A, et al. Human alpha-tocopherol transfer protein: cDNA cloning, expression and chromosomal localization. Biochem J. 1995;306 ( Pt 2):437–43.Google Scholar
Harding, AE, Matthews, S, Jones, S, et al. Spinocerebellar degeneration associated with a selective defect of vitamin E absorption. N Engl J Med. 1985;313(1):32–5.Google Scholar
Yokota, T, Wada, Y, Furukawa, T, et al. Adult-onset spinocerebellar syndrome with idiopathic vitamin E deficiency. Ann Neurol. 1987;22(1):84–7.Google Scholar
El Euch-Fayache, G, Bouhlal, Y, Amouri, R, Feki, M, Hentati, F. Molecular, clinical and peripheral neuropathy study of Tunisian patients with ataxia with vitamin E deficiency. Brain. 2014;137(Pt 2):402–10.Google Scholar
Marzouki, N, Benomar, A, Yahyaoui, M, et al. Vitamin E deficiency ataxia with (744 del A) mutation on alpha-TTP gene: Genetic and clinical peculiarities in Moroccan patients. Eur J Med Genet. 2005;48(1):21–8.Google Scholar
Doerflinger, N, Linder, C, Ouahchi, K, et al. Ataxia with vitamin E deficiency: Refinement of genetic localization and analysis of linkage disequilibrium by using new markers in 14 families. Am J Hum Genet. 1995;56(5):1116–24.Google Scholar
Benomar, A, Yahyaoui, M, Meggouh, F, et al. Clinical comparison between AVED patients with 744 del A mutation and Friedreich ataxia with GAA expansion in 15 Moroccan families. J Neurol Sci. 2002; 198 (1–2): 25–9.Google Scholar
Bouhlal, Y, Zouari, M, Kefi, M, et al. Autosomal recessive ataxia caused by three distinct gene defects in a single consanguineous family. J Neurogenet. 2008;22(2):139-48.Google Scholar
Cavalier, L, Ouahchi, K, Kayden, HJ, et al. Ataxia with isolated vitamin E deficiency: Heterogeneity of mutations and phenotypic variability in a large number of families. Am J Hum Genet. 1998;62(2):301–10.Google Scholar
Mariotti, C, Gellera, C, Rimoldi, M, et al. Ataxia with isolated vitamin E deficiency: Neurological phenotype, clinical follow-up and novel mutations in TTPA gene in Italian families. Neurol Sci. 2004;25(3):130–7.Google Scholar
Hentati, A, Deng, HX, Hung, WY, et al. Human alpha-tocopherol transfer protein: Gene structure and mutations in familial vitamin E deficiency. Ann Neurol. 1996;39(3):295300.Google Scholar
Gotoda, T, Arita, M, Arai, H, et al. Adult-onset spinocerebellar dysfunction caused by a mutation in the gene for the alpha-tocopherol-transfer protein. N Engl J Med. 1995;333(20):1313–8.Google Scholar
Di Donato, I, Bianchi, S, Federico, A. Ataxia with vitamin E deficiency: Update of molecular diagnosis. Neurol Sci. 2010;31(4):511–5.Google Scholar
Hamza, W, Ali Pacha, L, Hamadouche, T, et al. Molecular and clinical study of a cohort of 110 Algerian patients with autosomal recessive ataxia. BMC Med Genet. 2015;16:36.Google Scholar
Zortea, M, Armani, M, Pastorello, E, et al. Prevalence of inherited ataxias in the province of Padua, Italy. Neuroepidemiology. 2004;23(6):275–80.Google Scholar
Anheim, M, Fleury, M, Monga, B, et al. Epidemiological, clinical, paraclinical and molecular study of a cohort of 102 patients affected with autosomal recessive progressive cerebellar ataxia from Alsace, Eastern France: Implications for clinical management. Neurogenetics. 2010;11(1):112.Google Scholar
Elkamil, A, Johansen, KK, Aasly, J. Ataxia with vitamin E deficiency in Norway. J Mov Disord. 2015;8(1):33–6.Google Scholar
Bonello, M, Ray, P. A case of ataxia with isolated vitamin E deficiency initially diagnosed as Friedreich’s ataxia. Case Rep Neurol Med. 2016;2016:8342653.Google Scholar
Schuelke, M, Finckh, B, Sistermans, EA, et al. Ataxia with vitamin E deficiency: Biochemical effects of malcompliance with vitamin E therapy. Neurology. 2000;55(10):1584–6.Google Scholar
Angelini, L, Erba, A, Mariotti, C, et al. Myoclonic dystonia as unique presentation of isolated vitamin E deficiency in a young patient. Mov Disord. 2002;17(3):612–4.Google Scholar
Amiel, J, Maziere, JC, Beucler, I, et al. Familial isolated vitamin E deficiency. Extensive study of a large family with a 5-year therapeutic follow-up. J Inherit Metab Dis. 1995;18(3):333–40.Google Scholar
Krendel, DA, Gilchrist, JM, Johnson, AO, Bossen, EH. Isolated deficiency of vitamin E with progressive neurologic deterioration. Neurology. 1987;37(3):538–40.Google Scholar
Stumpf, DA, Sokol, R, Bettis, D, et al. Friedreich’s disease: V. Variant form with vitamin E deficiency and normal fat absorption. Neurology. 1987;37(1):6874.Google Scholar
Becker, AE, Vargas, W, Pearson, TS. Ataxia with vitamin E deficiency may present with cervical dystonia. Tremor Other Hyperkinet Mov (NY). 2016;6:374.Google Scholar
Roubertie, A, Biolsi, B, Rivier, F, et al. Ataxia with vitamin E deficiency and severe dystonia: Report of a case. Brain Dev. 2003;25(6):442–5.Google Scholar
Hoshino, M, Masuda, N, Ito, Y, et al. Ataxia with isolated vitamin E deficiency: A Japanese family carrying a novel mutation in the alpha-tocopherol transfer protein gene. Ann Neurol. 1999;45(6):809–12.Google Scholar
Pang, J, Kiyosawa, M, Seko, Y, et al. Clinicopathological report of retinitis pigmentosa with vitamin E deficiency caused by mutation of the alpha-tocopherol transfer protein gene. Jpn J Ophthalmol. 2001;45(6):672–6.Google Scholar
Shimohata, T, Date, H, Ishiguro, H, et al. Ataxia with isolated vitamin E deficiency and retinitis pigmentosa. Ann Neurol. 1998;43(2):273.Google Scholar
Usuki, F, Maruyama, K. Ataxia caused by mutations in the alpha-tocopherol transfer protein gene. J Neurol Neurosurg Psychiatry. 2000;69(2):254–6.Google Scholar
Yokota, T, Shiojiri, T, Gotoda, T, et al. Friedreich-like ataxia with retinitis pigmentosa caused by the His101Gln mutation of the alpha-tocopherol transfer protein gene. Ann Neurol. 1997;41(6):826–32.Google Scholar
Iwasa, K, Shima, K, Komai, K, et al. Retinitis pigmentosa and macular degeneration in a patient with ataxia with isolated vitamin E deficiency with a novel c.717 del C mutation in the TTPA gene. J Neurol Sci. 2014; 345 (1-2): 228–30.Google Scholar
Kara, B, Uzumcu, A, Uyguner, O, et al. Ataxia with vitamin E deficiency associated with deafness. Turk J Pediatr. 2008;50(5):471–5.Google Scholar
Rossato, M, Mariotti, C. Normal spermatogenesis and sperm function in a subject affected by cerebellar ataxia due to congenital vitamin E deficiency. Andrologia. 2014;46(3):322–4.Google Scholar
Mansoor, S, Ahmad, A. Progressive ataxia due to alpha-tocopherol deficiency in Pakistan. Iran J Neurol. 2016;15(2):103–5.Google Scholar
Muller, KI, Bekkelund, SI. Epilepsy in a patient with ataxia caused by vitamin E deficiency. BMJ Case Rep. 2011;doi:10.1136/bcr.01.2011.3728.Google Scholar
Larnaout, A, Belal, S, Zouari, M, et al. Friedreich’s ataxia with isolated vitamin E deficiency: A neuropathological study of a Tunisian patient. Acta Neuropathol. 1997;93(6):633–7.Google Scholar
Yokota, T, Uchihara, T, Kumagai, J, et al. Postmortem study of ataxia with retinitis pigmentosa by mutation of the alpha-tocopherol transfer protein gene. J Neurol Neurosurg Psychiatry. 2000;68(4):521–5.Google Scholar
Durr, A, Cossee, M, Agid, Y, et al. Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med. 1996;335(16):1169–75.Google Scholar
Ponten, SC, Kwee, ML, Wolters, E, Zijlmans, JC. First case of ataxia with isolated vitamin E deficiency in the Netherlands. Parkinsonism Relat Disord. 2007;13(5):315–6.Google Scholar
Doria-Lamba, L, De Grandis, E, Cristiani, E, et al. Efficacious vitamin E treatment in a child with ataxia with isolated vitamin E deficiency. Eur J Pediatr. 2006;165(7):494–5.Google Scholar
Gabsi, S, Gouider-Khouja, N, Belal, S, et al. Effect of vitamin E supplementation in patients with ataxia with vitamin E deficiency. Eur J Neurol. 2001;8(5):477–81.Google Scholar
Schuelke, M, Mayatepek, E, Inter, M, et al. Treatment of ataxia in isolated vitamin E deficiency caused by alpha-tocopherol transfer protein deficiency. J Pediatr. 1999;134(2):240–4.Google Scholar
Zelante, G, Patti, F, Vinciguerra, L, Gellera, C, Zappia, M. Ataxia with vitamin E deficiency caused by a new compound heterozygous mutation. Neurol Sci. 2016;37(9):1571–2.Google Scholar
Koht, J, Bjornara, KA, Jorum, E, Tallaksen, CM. Ataxia with vitamin E deficiency in southeast Norway, case report. Acta Neurol Scand Suppl. 2009(189):42–5.Google Scholar
Cellini, E, Piacentini, S, Nacmias, B, et al. A family with spinocerebellar ataxia type 8 expansion and vitamin E deficiency ataxia. Arch Neurol. 2002;59(12):1952–3.Google Scholar
Martinello, F, Fardin, P, Ottina, M, et al. Supplemental therapy in isolated vitamin E deficiency improves the peripheral neuropathy and prevents the progression of ataxia. J Neurol Sci. 1998;156(2):177–9.Google Scholar
Tamaru, Y, Hirano, M, Kusaka, H, et al. Alpha-tocopherol transfer protein gene: Exon skipping of all transcripts causes ataxia. Neurology. 1997;49(2):584–8.Google Scholar

References

Ozand, PT, Gascon, GG, Al Essa, M, et al. Biotin-responsive basal ganglia disease: A novel entity. Brain. 1998;121 (Pt 7):1267–79.Google Scholar
Perez-Duenas, B, Serrano, M, Rebollo, M, et al. Reversible lactic acidosis in a newborn with thiamine transporter-2 deficiency. Pediatrics. 2013;131(5):e1670–5.Google Scholar
Eudy, JD, Spiegelstein, O, Barber, RC, et al. Identification and characterization of the human and mouse SLC19A3 gene: A novel member of the reduced folate family of micronutrient transporter genes. Mol Genet Metab. 2000;71(4):581–90.Google Scholar
Alfadhel, M, Almuntashri, M, Jadah, RH, et al. Biotin-responsive basal ganglia disease should be renamed biotin–thiamine-responsive basal ganglia disease: A retrospective review of the clinical, radiological and molecular findings of 18 new cases. Orphanet J Rare Dis. 2013;8:83.Google Scholar
Gerards, M, Kamps, R, van Oevelen, J, et al. Exome sequencing reveals a novel Moroccan founder mutation in SLC19A3 as a new cause of early-childhood fatal Leigh syndrome. Brain. 2013;136(Pt 3):882–90.Google Scholar
Sremba, LJ, Chang, RC, Elbalalesy, NM, Cambray-Forker, EJ, Abdenur, JE. Whole exome sequencing reveals compound heterozygous mutations in SLC19A3 causing biotin–thiamine responsive basal ganglia disease. Mol Genet Metab Rep. 2014;1:368–72.Google Scholar
Yamada, K, Miura, K, Hara, K, et al. A wide spectrum of clinical and brain MRI findings in patients with SLC19A3 mutations. BMC Med Genet. 2010;11:171.Google Scholar
Kono, S, Miyajima, H, Yoshida, K, et al. Mutations in a thiamine-transporter gene and Wernicke’s-like encephalopathy. N Engl J Med. 2009;360(17):1792–4.Google Scholar
Flones, I, Sztromwasser, P, Haugarvoll, K, et al. Novel SLC19A3 promoter deletion and allelic silencing in biotin–thiamine-responsive basal ganglia encephalopathy. PLoS One. 2016;11(2):e0149055.Google Scholar
Kruer, MC, Boddaert, N, Schneider, SA, et al. Neuroimaging features of neurodegeneration with brain iron accumulation. AJNR Am J Neuroradiol. 2012;33(3):407–14.Google Scholar
Morava, E, van den Heuvel, L, Hol, F, et al. Mitochondrial disease criteria: Diagnostic applications in children. Neurology. 2006;67(10):1823–6.Google Scholar
Valayannopoulos, V, Haudry, C, Serre, V, et al. New SUCLG1 patients expanding the phenotypic spectrum of this rare cause of mild methylmalonic aciduria. Mitochondrion. 2010;10(4):335–41.Google Scholar
Zeng, WQ, Al-Yamani, E, Acierno, JS, Jr., et al. Biotin-responsive basal ganglia disease maps to 2q36.3 and is due to mutations in SLC19A3. Am J Hum Genet. 2005;77(1):1626.Google Scholar
Spector, R, Johanson, CE. Vitamin transport and homeostasis in mammalian brain: Focus on Vitamins B and E. J Neurochem. 2007;103(2):425–38.Google Scholar
Dutta, B, Huang, W, Molero, M, et al. Cloning of the human thiamine transporter, a member of the folate transporter family. J Biol Chem. 1999;274(45):31925–9.Google Scholar
Fleming, JC, Tartaglini, E, Steinkamp, MP, et al. The gene mutated in thiamine-responsive anaemia with diabetes and deafness (TRMA) encodes a functional thiamine transporter. Nat Genet. 1999;22(3):305–8.Google Scholar
Diaz, GA, Banikazemi, M, Oishi, K, Desnick, RJ, Gelb, BD. Mutations in a new gene encoding a thiamine transporter cause thiamine-responsive megaloblastic anaemia syndrome. Nat Genet. 1999;22(3):309–12.Google Scholar
Tabarki, B, Al-Shafi, S, Al-Shahwan, S, et al. Biotin-responsive basal ganglia disease revisited: Clinical, radiologic, and genetic findings. Neurology. 2013;80(3):261–7.Google Scholar
Brown, G. Defects of thiamine transport and metabolism. J Inherit Metab Dis. 2014;37(4):577–85.Google Scholar
Rodriguez-Melendez, R, Zempleni, J. Regulation of gene expression by biotin (review). J Nutr Biochem. 2003;14(12):680–90.Google Scholar
Vlasova, TI, Stratton, SL, Wells, AM, Mock, NI, Mock, DM. Biotin deficiency reduces expression of SLC19A3, a potential biotin transporter, in leukocytes from human blood. J Nutr. 2005;135(1):42–7.Google Scholar
Kevelam, SH, Bugiani, M, Salomons, GS, et al. Exome sequencing reveals mutated SLC19A3 in patients with an early-infantile, lethal encephalopathy. Brain. 2013;136(Pt 5):1534–43.Google Scholar
Haack, TB, Klee, D, Strom, TM, et al. Infantile Leigh-like syndrome caused by SLC19A3 mutations is a treatable disease. Brain. 2014;137(Pt 9):e295.Google Scholar
Adhisivam, B, Mahto, D, Mahadevan, S. Biotin responsive limb weakness. Indian Pediatr. 2007;44(3):228–30.Google Scholar
El-Hajj, TI, Karam, PE, Mikati, MA. Biotin-responsive basal ganglia disease: Case report and review of the literature. Neuropediatrics. 2008;39(5):268–71.Google Scholar
Bindu, PS, Noone, ML, Nalini, A, Muthane, UB, Kovoor, JM. Biotin-responsive basal ganglia disease: A treatable and reversible neurological disorder of childhood. J Child Neurol. 2009;24(6):750–2.Google Scholar
Debs, R, Depienne, C, Rastetter, A, et al. Biotin-responsive basal ganglia disease in ethnic Europeans with novel SLC19A3 mutations. Arch Neurol. 2010;67(1):126–30.Google Scholar
Serrano, M, Rebollo, M, Depienne, C, et al. Reversible generalized dystonia and encephalopathy from thiamine transporter 2 deficiency. Mov Disord. 2012;27(10):1295–8.Google Scholar
Fassone, E, Wedatilake, Y, DeVile, CJ, et al. Treatable Leigh-like encephalopathy presenting in adolescence. BMJ Case Rep. 2013;2013:200838.Google Scholar
Schanzer, A, Doring, B, Ondrouschek, M, et al. Stress-induced upregulation of SLC19A3 is impaired in biotin-thiamine-responsive basal ganglia disease. Brain Pathol. 2014;24(3):270–9.Google Scholar
Distelmaier, F, Huppke, P, Pieperhoff, P, et al. Biotin-responsive basal ganglia disease: A treatable differential diagnosis of Leigh syndrome. JIMD Rep. 2014;13:53–7.Google Scholar
Ygberg, S, Naess, K, Eriksson, M, et al. Biotin and thiamine responsive basal ganglia disease: A vital differential diagnosis in infants with severe encephalopathy. Eur J Paediatr Neurol. 2016;20(3):457–61.Google Scholar
Pronicka, E, Piekutowska-Abramczuk, D, Ciara, E, et al. New perspective in diagnostics of mitochondrial disorders: Two years’ experience with whole-exome sequencing at a national paediatric centre. J Transl Med. 2016;14(1):174.Google Scholar

References

Salen, G, Shefer, S, Berginer, V. Biochemical abnormalities in cerebrotendinous xanthomatosis. Dev Neurosci. 1991;13(4–5):363–70.Google Scholar
Berginer, VM, Salen, G, Shefer, S. Long-term treatment of cerebrotendinous xanthomatosis with chenodeoxycholic acid. N Engl J Med. 1984;311(26):1649–52.Google Scholar
Inoue, K, Kubota, S, Seyama, Y. Cholestanol induces apoptosis of cerebellar neuronal cells. Biochem Biophys Res Commun. 1999;256(1):198203.Google Scholar
Mignarri, A, Magni, A, Del Puppo, M, et al. Evaluation of cholesterol metabolism in cerebrotendinous xanthomatosis. J Inherit Metab Dis. 2016;39(1):7583.Google Scholar
Nie, S, Chen, G, Cao, X, Zhang, Y. Cerebrotendinous xanthomatosis: A comprehensive review of pathogenesis, clinical manifestations, diagnosis, and management. Orphanet J Rare Dis. 2014;9:179.Google Scholar
Wong, JC, Walsh, K, Hayden, D, Eichler, FS. Natural history of neurological abnormalities in cerebrotendinous xanthomatosis. J Inherit Metab Dis. 2018;41(4):647–56.Google Scholar
Degos, B, Nadjar, Y, Amador Mdel, M, et al. Natural history of cerebrotendinous xanthomatosis: A paediatric disease diagnosed in adulthood. Orphanet J Rare Dis. 2016;11:41.Google Scholar
Stelten, BML, Bonnot, O, Huidekoper, HH, et al. Autism spectrum disorder: An early and frequent feature in cerebrotendinous xanthomatosis. J Inherit Metab Dis. 2018;41(4):641–6.Google Scholar
Yahalom, G, Tsabari, R, Molshatzki, N, et al. Neurological outcome in cerebrotendinous xanthomatosis treated with chenodeoxycholic acid: Early versus late diagnosis. Clin Neuropharmacol. 2013;36(3):7883.Google Scholar
Mignarri, A, Gallus, GN, Dotti, MT, Federico, A. A suspicion index for early diagnosis and treatment of cerebrotendinous xanthomatosis. J Inherit Metab Dis. 2014;37(3):421–9.Google Scholar
Vaz, FM, Bootsma, AH, Kulik, W, et al. A newborn screening method for cerebrotendinous xanthomatosis using bile alcohol glucuronides and metabolite ratios. J Lipid Res. 2017;58(5):1002–7.Google Scholar
DeBarber, AE, Kalfon, L, Fedida, A, et al. Newborn screening for cerebrotendinous xanthomatosis is the solution for early identification and treatment. J Lipid Res. 2018;59(11):2214–22.Google Scholar
Salen, G, Steiner, RD. Epidemiology, diagnosis, and treatment of cerebrotendinous xanthomatosis (CTX). J Inherit Metab Dis. 2017;40(6):771–81.Google Scholar
van Heijst, AF, Verrips, A, Wevers, RA, et al. Treatment and follow-up of children with cerebrotendinous xanthomatosis. Eur J Pediatr. 1998;157(4):313–6.Google Scholar
Mignarri, A, Rossi, S, Ballerini, M, et al. Clinical relevance and neurophysiological correlates of spasticity in cerebrotendinous xanthomatosis. J Neurol. 2011;258(5):783–90.Google Scholar
Mondelli, M, Sicurelli, F, Scarpini, C, Dotti, MT, Federico, A. Cerebrotendinous xanthomatosis: 11-year treatment with chenodeoxycholic acid in five patients. An electrophysiological study. J Neurol Sci. 2001;190(1–2):2933.Google Scholar
Pilo, B, de Blas, G, Sobrido, MJ, et al. Neurophysiological study in cerebrotendinous xanthomatosis. Muscle Nerve. 2011;43(4):531–6.Google Scholar
Stelten, BML, Huidekoper, HH, van de Warrenburg, BPC, et al. Long-term treatment effect in cerebrotendinous xanthomatosis depends on age at treatment start. Neurology. 2019;92(2):e83e95.Google Scholar
Duell, PB, Salen, G, Eichler, FS, et al. Diagnosis, treatment, and clinical outcomes in 43 cases with cerebrotendinous xanthomatosis. J Clin Lipidol. 2018;12(5):1169–78.Google Scholar
Ginanneschi, F, Mignarri, A, Mondelli, M, et al. Polyneuropathy in cerebrotendinous xanthomatosis and response to treatment with chenodeoxycholic acid. J Neurol. 2013;260(1):268–74.Google Scholar
Catarino, CB, Vollmar, C, Kupper, C, et al. Brain diffusion tensor imaging changes in cerebrotendinous xanthomatosis reversed with treatment. J Neurol. 2018;265(2):388–93.Google Scholar
Guerrera, S, Stromillo, ML, Mignarri, A, et al. Clinical relevance of brain volume changes in patients with cerebrotendinous xanthomatosis. J Neurol Neurosurg Psychiatry. 2010;81(11):1189–93.Google Scholar
Amador, MDM, Masingue, M, Debs, R, et al. Treatment with chenodeoxycholic acid in cerebrotendinous xanthomatosis: Clinical, neurophysiological, and quantitative brain structural outcomes. J Inherit Metab Dis. 2018;41(5):799807.Google Scholar
Borry, P, Evers-Kiebooms, G, Cornel, MC, et al. Genetic testing in asymptomatic minors: Background considerations towards ESHG recommendations. Eur J Hum Genet. 2009;17(6):711–9.Google Scholar
Verrips, A, Hoefsloot, LH, Steenbergen, GC, et al. Clinical and molecular genetic characteristics of patients with cerebrotendinous xanthomatosis. Brain. 2000;123 (Pt 5):908–19.Google Scholar
Mignarri, A, Dotti, MT, Federico, A, et al. The spectrum of magnetic resonance findings in cerebrotendinous xanthomatosis: Redefinition and evidence of new markers of disease progression. J Neurol. 2017;264(5):862–74.Google Scholar
Verrips, A, Nijeholt, GJ, Barkhof, F, et al. Spinal xanthomatosis: A variant of cerebrotendinous xanthomatosis. Brain. 1999;122 (Pt 8):1589–95.Google Scholar
Abe, R, Sekijima, Y, Kinoshita, T, et al. Spinal form cerebrotendinous xanthomatosis patient with long spinal cord lesion. J Spinal Cord Med. 2016;39(6):726–9.Google Scholar
Fonteyn, EM, Keus, SH, Verstappen, CC, et al. The effectiveness of allied health care in patients with ataxia: A systematic review. J Neurol. 2014;261(2):251–8.Google Scholar
Nair, KP, Marsden, J. The management of spasticity in adults. BMJ. 2014;349:g4737.Google Scholar
Rubio-Agusti, I, Kojovic, M, Edwards, MJ, et al. Atypical parkinsonism and cerebrotendinous xanthomatosis: Report of a family with corticobasal syndrome and a literature review. Mov Disord. 2012;27(14):1769–74.Google Scholar
Stelten, BML, van de Warrenburg, BPC, Wevers, RA, Verrips, A. Movement disorders in cerebrotendinous xanthomatosis. Parkinsonism Relat Disord. 2019;58:12–6.Google Scholar
Grandas, F, Martin-Moro, M, Garcia-Munozguren, S, Anaya, F. Early-onset parkinsonism in cerebrotendinous xanthomatosis. Mov Disord. 2002;17(6):1396–7.Google Scholar
Lagarde, J, Roze, E, Apartis, E, et al. Myoclonus and dystonia in cerebrotendinous xanthomatosis. Mov Disord. 2012;27(14):1805–10.Google Scholar
Roze, E, Lang, AE, Vidailhet, M. Myoclonus–dystonia: Classification, phenomenology, pathogenesis, and treatment. Curr Opin Neurol. 2018;31(4):484–90.Google Scholar
Hainque, E, Vidailhet, M, Cozic, N, et al. A randomized, controlled, double-blind, crossover trial of zonisamide in myoclonus–dystonia. Neurology. 2016;86(18):1729–35.Google Scholar
Gallea, C, Popa, T, Garcia-Lorenzo, D, et al. Intrinsic signature of essential tremor in the cerebello-frontal network. Brain. 2015;138(Pt 10):2920–33.Google Scholar
Rossi, M, Cesarini, M, Gatto, EM, Cammarota, A, Merello, M. A treatable rare cause of progressive ataxia and palatal tremor. Tremor Other Hyperkinet Mov (NY). 2018;8:538.Google Scholar
Mongin, M, Delorme, C, Lenglet, T, et al. Progressive ataxia and palatal tremor: Think about POLG mutations. Tremor Other Hyperkinet Mov (NY). 2016;6:382.Google Scholar

References

Stryer, L. Biochemistry. New York: W. H. Freeman and Company; 1988.Google Scholar
Gacasan, SB, Baker, DL, Parrill, AL. G protein-coupled receptors: The evolution of structural insight. AIMS Biophys. 2017;4(3):491527.Google Scholar
Harris, JJ, Attwell, D. The energetics of CNS white matter. J Neurosci. 2012;32(1):356–71.Google Scholar
Attwell, D, Laughlin, SB. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab. 2001;21(10):1133–45.Google Scholar
Abbracchio, MP, Burnstock, G, Verkhratsky, A, Zimmermann, H. Purinergic signalling in the nervous system: An overview. Trends Neurosci. 2009;32(1):1929.Google Scholar
Camici, M, Micheli, V, Ipata, PL, Tozzi, MG. Pediatric neurological syndromes and inborn errors of purine metabolism. Neurochem Int. 2010;56(3):367–78.Google Scholar
Kamatani, N, Jinnah, HA, Hennekam, FA, Van Kuilenburg, ABP. Purine and pyrimidine metabolism. In Rimoin, DL, Pyeritz, RE, Korf, BR, editors. Principles and Practice of Medical Genetics. San Diego, CA: Academic Press; 2013, pp. 138.Google Scholar
Jinnah, HA, Sabina, RL, Van Den Berghe, G. Metabolic disorders of purine metabolism affecting the nervous system. Handb Clin Neurol. 2013;113:1827–36.Google Scholar
de Brouwer, AP, van Bokhoven, H, Nabuurs, SB, et al. PRPS1 mutations: Four distinct syndromes and potential treatment. Am J Hum Genet. 2010;86(4):506–18.Google Scholar
Baresova, V, Skopova, V, Sikora, J, et al. Mutations of ATIC and ADSL affect purinosome assembly in cultured skin fibroblasts from patients with AICA-ribosiduria and ADSL deficiency. Hum Mol Genet. 2012;21(7):1534–43.Google Scholar
Morisaki, T, Gross, M, Morisaki, H, et al. Molecular basis of AMP deaminase deficiency in skeletal muscle. Proc Natl Acad Sci USA. 1992;89(14):6457–61.Google Scholar
Sabine, RL, Holmes, EW. Myoadenylate deaminase deficiency. In Scriver, CR, Beaudet, AL, Sly, WS, Valle, D, editors. The Metabolic and Molecular Basis of Inherited Disease. II. New York, NY: McGraw-Hill; 2001, pp. 2627–38.Google Scholar
Torres, RJ, Puig, JG, Jinnah, HA. Update on the phenotypic spectrum of Lesch–Nyhan disease and its attenuated variants. Curr Rheumatol Rep. 2012;14(2):189–94.Google Scholar
Jinnah, HA, Ceballos-Picot, I, Torres, RJ, et al. Attenuated variants of Lesch–Nyhan disease. Brain. 2010;133(Pt 3):671–89.Google Scholar
Jinnah, HA, Visser, JE, Harris, JC, et al. Delineation of the motor disorder of Lesch–Nyhan disease. Brain. 2006;129(Pt 5):1201–17.Google Scholar
Watts, RW, Spellacy, E, Gibbs, DA, et al. Clinical, post-mortem, biochemical and therapeutic observations on the Lesch–Nyhan syndrome with particular reference to the neurological manifestations. Q J Med. 1982;51(201):4378.Google Scholar
Matthews, WS, Solan, A, Barabas, G. Cognitive functioning in Lesch–Nyhan syndrome. Dev Med Child Neurol. 1995;37(8):715–22.Google Scholar
Schretlen, DJ, Harris, JC, Park, KS, Jinnah, HA, del Pozo, NO. Neurocognitive functioning in Lesch–Nyhan disease and partial hypoxanthine–guanine phosphoribosyltransferase deficiency. J Int Neuropsychol Soc. 2001;7(7):805–12.Google Scholar
Anderson, LT, Ernst, M. Self-injury in Lesch–Nyhan disease. J Autism Dev Disord. 1994;24(1):6781.Google Scholar
Nyhan, WL. Behavior in the Lesch–Nyhan syndrome. J Autism Child Schizophr. 1976;6(3):235–52.Google Scholar
Jolly, DJ, Okayama, H, Berg, P, et al. Isolation and characterization of a full-length expressible cDNA for human hypoxanthine phosphoribosyl transferase. Proc Natl Acad Sci USA. 1983;80(2):477–81.Google Scholar
Fu, R, Ceballos-Picot, I, Torres, RJ, et al. Genotype–phenotype correlations in neurogenetics: Lesch–Nyhan disease as a model disorder. Brain. 2014;137(Pt 5):1282–303.Google Scholar
Jinnah, HA, De Gregorio, L, Harris, JC, Nyhan, WL, O’Neill, JP. The spectrum of inherited mutations causing HPRT deficiency: 75 new cases and a review of 196 previously reported cases. Mutat Res. 2000;463(3):309–26.Google Scholar
Harris, JC, Lee, RR, Jinnah, HA, et al. Craniocerebral magnetic resonance imaging measurement and findings in Lesch–Nyhan syndrome. Arch Neurol. 1998;55(4):547–53.Google Scholar
Schretlen, DJ, Varvaris, M, Ho, TE, et al. Regional brain volume abnormalities in Lesch–Nyhan disease and its variants: A cross-sectional study. Lancet Neurol. 2013;12(12):1151–8.Google Scholar
Schretlen, DJ, Varvaris, M, Vannorsdall, TD, et al. Brain white matter volume abnormalities in Lesch–Nyhan disease and its variants. Neurology. 2015;84(2):190–6.Google Scholar
Gottle, M, Prudente, CN, Fu, R, et al. Loss of dopamine phenotype among midbrain neurons in Lesch–Nyhan disease. Ann Neurol. 2014;76(1):95107.Google Scholar
Lloyd, KG, Hornykiewicz, O, Davidson, L, et al. Biochemical evidence of dysfunction of brain neurotransmitters in the Lesch–Nyhan syndrome. N Engl J Med. 1981;305(19):1106–11.Google Scholar
Saito, Y, Ito, M, Hanaoka, S, et al. Dopamine receptor upregulation in Lesch–Nyhan syndrome: A postmortem study. Neuropediatrics. 1999;30(2):6671.Google Scholar
Ernst, M, Zametkin, AJ, Matochik, JA, et al. Presynaptic dopaminergic deficits in Lesch–Nyhan disease. N Engl J Med. 1996;334(24):1568–72.Google Scholar
Wong, DF, Harris, JC, Naidu, S, et al. Dopamine transporters are markedly reduced in Lesch–Nyhan disease in vivo. Proc Natl Acad Sci USA. 1996;93(11):5539–43.Google Scholar
Jinnah, HA, Wojcik, BE, Hunt, M, et al. Dopamine deficiency in a genetic mouse model of Lesch–Nyhan disease. J Neurosci. 1994; 14 (3 Pt 1): 1164–75.Google Scholar
Ceballos-Picot, I, Mockel, L, Potier, MC, et al. Hypoxanthine–guanine phosphoribosyl transferase regulates early developmental programming of dopamine neurons: Implications for Lesch–Nyhan disease pathogenesis. Hum Mol Genet. 2009;18(13):2317–27.Google Scholar
Guibinga, GH, Hsu, S, Friedmann, T. Deficiency of the housekeeping gene hypoxanthine–guanine phosphoribosyltransferase (HPRT) dysregulates neurogenesis. Mol Ther. 2010;18(1):5462.Google Scholar
Kang, TH, Guibinga, GH, Jinnah, HA, Friedmann, T. HPRT deficiency coordinately dysregulates canonical Wnt and presenilin-1 signaling: A neuro-developmental regulatory role for a housekeeping gene? PLoS One. 2011;6(1):e16572.Google Scholar
Hyland, K, Kasim, S, Egami, K, Arnold, LA, Jinnah, HA. Tetrahydrobiopterin deficiency and dopamine loss in a genetic mouse model of Lesch–Nyhan disease. J Inherit Metab Dis. 2004;27(2):165–78.Google Scholar
Visser, JE, Bar, PR, Jinnah, HA. Lesch–Nyhan disease and the basal ganglia. Brain Res Brain Res Rev. 2000; 32 (2–3): 449–75.Google Scholar
Visser, JE, Smith, DW, Moy, SS, et al. Oxidative stress and dopamine deficiency in a genetic mouse model of Lesch–Nyhan disease. Brain Res Dev Brain Res. 2002;133(2):127–39.Google Scholar
Alexander, GE, Crutcher, MD, DeLong, MR. Basal ganglia–thalamocortical circuits: Parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res. 1990;85:119–46.Google Scholar
Muller, U. The monogenic primary dystonias. Brain. 2009;132(Pt 8):2005–25.Google Scholar
Ng, J, Papandreou, A, Heales, SJ, Kurian, MA. Monoamine neurotransmitter disorders: Clinical advances and future perspectives. Nat Rev Neurol. 2015;11(10):567–84.Google Scholar
Wijemanne, S, Jankovic, J. Dopa-responsive dystonia: Clinical and genetic heterogeneity. Nat Rev Neurol. 2015;11(7):414–24.Google Scholar
Moy, SS, Criswell, HE, Breese, GR. Differential effects of bilateral dopamine depletion in neonatal and adult rats. Neurosci Biobehav Rev. 1997;21(4):425–35.Google Scholar
Crawhall, JC, Henderson, JF, Kelley, WN. Diagnosis and treatment of the Lesch–Nyhan syndrome. Pediatr Res. 1972;6(5):504–13.Google Scholar
Torres, RJ, Puig, JG. Hypoxanthine–guanine phosophoribosyltransferase (HPRT) deficiency: Lesch–Nyhan syndrome. Orphanet J Rare Dis. 2007;2:48.Google Scholar
Cotton, AC, Bell, RB, Jinnah, HA. Expert opinion vs patient perspective in treatment of rare disorders: Tooth removal in Lesch–Nyhan disease as an example. JIMD Rep. 2018;41:25–7.Google Scholar
Goodman, EM, Torres, RJ, Puig, JG, Jinnah, HA. Consequences of delayed dental extraction in Lesch–Nyhan disease. Mov Disord Clin Pract. 2014;1(3):225–9.Google Scholar

References

Mercimek-Mahmutoglu, S, Salomons, GS. Creatine deficiency syndromes. GeneReviews®. 2009;Jan 15 (updated Dec 10, 2015).Google Scholar
Desroches, CL, Patel, J, Wang, P, et al. Carrier frequency of guanidinoacetate methyltransferase deficiency in the general population by functional characterization of missense variants in the GAMT gene. Mol Genet Genomics. 2015;290(6):2163–71.Google Scholar
DesRoches, CL, Bruun, T, Wang, P, Marshall, CR, Mercimek-Mahmutoglu, S. Arginine–glycine amidinotransferase deficiency and functional characterization of missense variants in GATM. Hum Mutat. 2016;37(9):926–32.Google Scholar
DesRoches, CL, Patel, J, Wang, P, et al. Estimated carrier frequency of creatine transporter deficiency in females in the general population using functional characterization of novel missense variants in the SLC6A8 gene. Gene. 2015;565(2):187–91.Google Scholar
Stockler, S, Holzbach, U, Hanefeld, F, et al. Creatine deficiency in the brain: A new, treatable inborn error of metabolism. Pediatr Res. 1994;36(3):409–13.Google Scholar
Mercimek-Mahmutoglu, S, Stoeckler-Ipsiroglu, S, Adami, A, et al. GAMT deficiency: Features, treatment, and outcome in an inborn error of creatine synthesis. Neurology. 2006;67(3):480–4.Google Scholar
Stockler-Ipsiroglu, S, van Karnebeek, C, Longo, N, et al. Guanidinoacetate methyltransferase (GAMT) deficiency: Outcomes in 48 individuals and recommendations for diagnosis, treatment and monitoring. Mol Genet Metab. 2014;111(1):1625.Google Scholar
Mercimek-Mahmutoglu, S, Ndika, J, Kanhai, W, et al. Thirteen new patients with guanidinoacetate methyltransferase deficiency and functional characterization of nineteen novel missense variants in the GAMT gene. Hum Mutat. 2014;35(4):462–9.Google Scholar
Khaikin, Y, Sidky, S, Abdenur, J, et al. Treatment outcome of twenty-two patients with guanidinoacetate methyltransferase deficiency: An international retrospective cohort study. Eur J Paediatr Neurol. 2018;22(3):369–79.Google Scholar
O’Rourke, DJ, Ryan, S, Salomons, G, et al. Guanidinoacetate methyltransferase (GAMT) deficiency: Late onset of movement disorder and preserved expressive language. Dev Med Child Neurol. 2009;51(5):404–7.Google Scholar
Dhar, SU, Scaglia, F, Li, FY, et al. Expanded clinical and molecular spectrum of guanidinoacetate methyltransferase (GAMT) deficiency. Mol Genet Metab. 2009;96(1):3843.Google Scholar
Morris, AA, Appleton, RE, Power, B, et al. Guanidinoacetate methyltransferase deficiency masquerading as a mitochondrial encephalopathy. J Inherit Metab Dis. 2007;30(1):100.Google Scholar
Item, CB, Stockler-Ipsiroglu, S, Stromberger, C, et al. Arginine:glycineamidinotransferase deficiency: The third inborn error of creatine metabolism in humans. Am J Hum Genet. 2001;69(5):1127–33.Google Scholar
Stockler-Ipsiroglu, S, Apatean, D, Battini, R, et al. Arginine:glycineamidinotransferase (AGAT) deficiency: Clinical features and long term outcomes in 16 patients diagnosed worldwide. Mol Genet Metab. 2015;116(4):252–9.Google Scholar
Salomons, GS, van Dooren, SJ, Verhoeven, NM, et al. X-linked creatine-transporter gene (SLC6A8) defect: A new creatine-deficiency syndrome. Am J Hum Genet. 2001;68(6):1497–500.Google Scholar
van de Kamp, JM, Betsalel, OT, Mercimek-Mahmutoglu, S, et al. Phenotype and genotype in 101 males with X-linked creatine transporter deficiency. J Med Genet. 2013;50(7):463–72.Google Scholar
van de Kamp, JM, Mancini, GM, Salomons, GS. X-linked creatine transporter deficiency: Clinical aspects and pathophysiology. J Inherit Metab Dis. 2014;37(5):715–33.Google Scholar
Anselm, IA, Alkuraya, FS, Salomons, GS, et al. X-linked creatine transporter defect: A report on two unrelated boys with a severe clinical phenotype. J Inherit Metab Dis. 2006;29(1):214–9.Google Scholar
van Spronsen, FJ, Reijngoud, DJ, Verhoeven, NM, et al. High cerebral guanidinoacetate and variable creatine concentrations in argininosuccinate synthetase and lyase deficiency: Implications for treatment? Mol Genet Metab. 2006;89(3):274–6.Google Scholar
Nanto-Salonen, K, Komu, M, Lundbom, N, et al. Reduced brain creatine in gyrate atrophy of the choroid and retina with hyperornithinemia. Neurology. 1999;53(2):303–7.Google Scholar
Martinelli, D, Haberle, J, Rubio, V, et al. Understanding pyrroline-5-carboxylate synthetase deficiency: Clinical, molecular, functional, and expression studies, structure-based analysis, and novel therapy with arginine. J Inherit Metab Dis. 2012;35(5):761–76.Google Scholar
Schulze, A, Hoffmann, GF, Bachert, P, et al. Presymptomatic treatment of neonatal guanidinoacetate methyltransferase deficiency. Neurology. 2006;67(4):719–21.Google Scholar
El-Gharbawy, AH, Goldstein, JL, Millington, DS, et al. Elevation of guanidinoacetate in newborn dried blood spots and impact of early treatment in GAMT deficiency. Mol Genet Metab. 2013;109(2):215–7.Google Scholar
Viau, KS, Ernst, SL, Pasquali, M, et al. Evidence-based treatment of guanidinoacetate methyltransferase (GAMT) deficiency. Mol Genet Metab. 2013;110(3):255–62.Google Scholar
Ndika, JD, Johnston, K, Barkovich, JA, et al. Developmental progress and creatine restoration upon long-term creatine supplementation of a patient with arginine: glycineamidinotransferase deficiency. Mol Genet Metab. 2012;106(1):4854.Google Scholar
Battini, R, Alessandri, MG, Leuzzi, V, et al. Arginine:glycineamidinotransferase (AGAT) deficiency in a newborn: Early treatment can prevent phenotypic expression of the disease. J Pediatr. 2006;148(6):828–30.Google Scholar
Valayannopoulos, V, Boddaert, N, Chabli, A, et al. Treatment by oral creatine, L-arginine and L-glycine in six severely affected patients with creatine transporter defect. J Inherit Metab Dis. 2012;35(1):151–7.Google Scholar
van de Kamp, JM, Pouwels, PJ, Aarsen, FK, et al. Long-term follow-up and treatment in nine boys with X-linked creatine transporter defect. J Inherit Metab Dis. 2012;35(1):141–9.Google Scholar
Chilosi, A, Leuzzi, V, Battini, R, et al. Treatment with L-arginine improves neuropsychological disorders in a child with creatine transporter defect. Neurocase. 2008;14(2):151–61.Google Scholar
Fons, C, Sempere, A, Arias, A, et al. Arginine supplementation in four patients with X-linked creatine transporter defect. J Inherit Metab Dis. 2008;31(6):724–8.Google Scholar
Bruun, TUJ, Sidky, S, Bandeira, AO, et al. Treatment outcome of creatine transporter deficiency: International retrospective cohort study. Metab Brain Dis. 2018;33(3):875–84.Google Scholar

References

Parodi, L, Fenu, S, Stevanin, G, Durr, A. Hereditary spastic paraplegia: More than an upper motor neuron disease. Rev Neurol (Paris). 2017;173(5):352–60.Google Scholar
Finsterer, J, Loscher, W, Quasthoff, S, et al. Hereditary spastic paraplegias with autosomal dominant, recessive, X-linked, or maternal trait of inheritance. J Neurol Sci. 2012; 318 (1-2): 118.Google Scholar
Renvoise, B, Blackstone, C. Hereditary spastic paraplegias: Genetics and clinical features. In LeDoux, MS, editor. Movement Disorders: Genetics and Models. 2nd edn. Academic Press; 2015, pp. 1063–71.Google Scholar
Schule, R, Schols, L. Genetics of hereditary spastic paraplegias. Semin Neurol. 2011;31(5):484–93.Google Scholar
Blackstone, C. Hereditary spastic paraplegia. Handb Clin Neurol. 2018;148:633–52.Google Scholar
Lo Giudice, T, Lombardi, F, Santorelli, FM, Kawarai, T, Orlacchio, A. Hereditary spastic paraplegia: Clinical–genetic characteristics and evolving molecular mechanisms. Exp Neurol. 2014;261:518–39.Google Scholar
Hedera, P. Hereditary and metabolic myelopathies. Handb Clin Neurol. 2016;136:769–85.Google Scholar
de Souza, PVS, de Rezende Pinto, WBV, de Rezende Batistella, GN, Bortholin, T, Oliveira, ASB. Hereditary spastic paraplegia: Clinical and genetic hallmarks. Cerebellum. 2017;16(2):525–51.Google Scholar
Ezgu, F. Inborn errors of metabolism. Adv Clin Chem. 2016;73:195250.Google Scholar
Saudubray, JM, Garcia-Cazorla, A. Inborn errors of metabolism overview: Pathophysiology, manifestations, evaluation, and management. Pediatr Clin North Am. 2018;65(2):179208.Google Scholar
Sedel, F, Fontaine, B, Saudubray, JM, Lyon-Caen, O. Hereditary spastic paraparesis in adults associated with inborn errors of metabolism: A diagnostic approach. J Inherit Metab Dis. 2007;30(6):855–64.Google Scholar
de Bot, ST, van de Warrenburg, BP, Kremer, HP, Willemsen, MA. Child neurology: Hereditary spastic paraplegia in children. Neurology. 2010;75(19):e75–9.Google Scholar
Mochel, F, Sedel, F. Inborn errors of metabolism in adults: A diagnostic approach to neurological and psychiatric presentations. In Saudubray, JM, Baumgartner, M, Walter, J, editors. Inborn Metabolic Diseases. Berlin: Springer-Verlag; 2016, pp. 7189.Google Scholar
Fowler, B. Homocysteine: Overview of biochemistry, molecular biology, and role in disease processes. Semin Vasc Med. 2005;5(2):7786.Google Scholar
Watkins, D, Rosenblatt, DS. Inborn errors of cobalamin absorption and metabolism. Am J Med Genet C Semin Med Genet. 2011;157C(1):3344.Google Scholar
Froese, DS, Huemer, M, Suormala, T, et al. Mutation update and review of severe methylenetetrahydrofolate reductase deficiency. Hum Mutat. 2016;37(5):427–38.Google Scholar
Carrillo-Carrasco, N, Chandler, RJ, Venditti, CP. Combined methylmalonic acidemia and homocystinuria, cblC type. I. Clinical presentations, diagnosis and management. J Inherit Metab Dis. 2012;35(1):91102.Google Scholar
Huemer, M, Diodato, D, Schwahn, B, et al. Guidelines for diagnosis and management of the cobalamin-related remethylation disorders cblC, cblD, cblE, cblF, cblG, cblJ and MTHFR deficiency. J Inherit Metab Dis. 2017;40(1):2148.Google Scholar
Schiff, M, Benoist, JF, Tilea, B, et al. Isolated remethylation disorders: Do our treatments benefit patients? J Inherit Metab Dis. 2011;34(1):137–45.Google Scholar
Gales, A, Masingue, M, Millecamps, S, et al. Adolescence/adult onset MTHFR deficiency may manifest as isolated and treatable distinct neuro-psychiatric syndromes. Orphanet J Rare Dis. 2018;13:29.Google Scholar
Liu, YR, Ji, YF, Wang, YL, et al. Clinical analysis of late-onset methylmalonic acidaemia and homocystinuria, cblC type with a neuropsychiatric presentation. J Neurol Neurosurg Psychiatry. 2015;86(4):472–5.Google Scholar
Wang, SJ, Yan, CZ, Liu, YM, Zhao, YY. Late-onset cobalamin C deficiency Chinese sibling patients with neuropsychiatric presentations. Metab Brain Dis. 2018;33(3):829–35.Google Scholar
Desai, S, Ganesan, K, Hegde, A. Biotinidase deficiency: A reversible metabolic encephalopathy. Neuroimaging and MR spectroscopic findings in a series of four patients. Pediatr Radiol. 2008;38(8):848–56.Google Scholar
Wolf, B. Clinical issues and frequent questions about biotinidase deficiency. Mol Genet Metab. 2010;100(1):613.Google Scholar
Raha, S, Udani, V. Biotinidase deficiency presenting as recurrent myelopathy in a 7-year-old boy and a review of the literature. Pediatr Neurol. 2011;45(4):261–4.Google Scholar
Sivri, HS, Genc, GA, Tokatli, A, et al. Hearing loss in biotinidase deficiency: Genotype–phenotype correlation. J Pediatr. 2007;150(4):439–42.Google Scholar
Yilmaz, S, Serin, M, Canda, E, et al. A treatable cause of myelopathy and vision loss mimicking neuromyelitis optica spectrum disorder: Late-onset biotinidase deficiency. Metab Brain Dis. 2017;32(3):675–8.Google Scholar
Strovel, ET, Cowan, TM, Scott, AI, Wolf, B. Laboratory diagnosis of biotinidase deficiency, 2017 update: A technical standard and guideline of the American College of Medical Genetics and Genomics (Published erratum: Genet Med 2018 Feb; 20(2):282). Genet Med. 2017;19(10);doi:10.1038/gim.2017.84.Google Scholar
Haberle, J, Boddaert, N, Burlina, A, et al. Suggested guidelines for the diagnosis and management of urea cycle disorders. Orphanet J Rare Dis. 2012;7:32.Google Scholar
Sin, YY, Baron, G, Schulze, A, Funk, CD. Arginase-1 deficiency. J Mol Med (Berl). 2015;93(12):1287–96.Google Scholar
Scaglia, F, Lee, B. Clinical, biochemical, and molecular spectrum of hyperargininemia due to arginase I deficiency. Am J Med Genet C Semin Med Genet. 2006;142C(2):113–20.Google Scholar
Baranello, G, Alfei, E, Martinelli, D, et al. Hyperargininemia: 7-Month follow-up under sodium benzoate therapy in an Italian child presenting progressive spastic paraparesis, cognitive decline, and novel mutation in ARG1 gene. Pediatr Neurol. 2014;51(3):430–3.Google Scholar
Carvalho, DR, Brum, JM, Speck-Martins, CE, et al. Clinical features and neurologic progression of hyperargininemia. Pediatr Neurol. 2012;46(6):369–74.Google Scholar
Deignan, JL, Marescau, B, Livesay, JC, et al. Increased plasma and tissue guanidino compounds in a mouse model of hyperargininemia. Mol Genet Metab. 2008;93(2):172–8.Google Scholar
Deignan, JL, De Deyn, PP, Cederbaum, SD, et al. Guanidino compound levels in blood, cerebrospinal fluid, and post-mortem brain material of patients with argininemia. Mol Genet Metab. 2010;100 Suppl 1:S31–6.Google Scholar
Martinelli, D, Diodato, D, Ponzi, E, et al. The hyperornithinemia–hyperammonemia–homocitrullinuria syndrome. Orphanet J Rare Dis. 2015;10:29.Google Scholar
Kim, SZ, Song, WJ, Nyhan, WL, et al. Long-term follow-up of four patients affected by HHH syndrome. Clin Chim Acta. 2012; 413 (13-14): 1151–5.Google Scholar
Qadri, SK, Ting, TW, Lim, JS, Jamuar, SS. Milder form of urea cycle defect revisited: Report and review of hyperornithinaemia-hyperammonaemia-homocitrullinuria (HHH) syndrome diagnosed in a teenage girl presenting with recurrent encephalopathy. Ann Acad Med Singapore. 2016;45(12):563–6.Google Scholar
Blau, N, van Spronsen, FJ, Levy, HL. Phenylketonuria. Lancet. 2010;376(9750):1417–27.Google Scholar
Blau, N. Genetics of phenylketonuria: Then and now. Hum Mutat. 2016;37(6):508–15.Google Scholar
Trefz, F, Maillot, F, Motzfeldt, K, Schwarz, M. Adult phenylketonuria outcome and management. Mol Genet Metab. 2011;104 Suppl:S2630.Google Scholar
van Wegberg, AMJ, MacDonald, A, Ahring, K, et al. The complete European guidelines on phenylketonuria: Diagnosis and treatment. Orphanet J Rare Dis. 2017;12:162.Google Scholar
Hyland, K. Inherited disorders affecting dopamine and serotonin: Critical neurotransmitters derived from aromatic amino acids. J Nutr. 2007;137(6 Suppl 1):1568S–72S; discussion 73S–75S.Google Scholar
Wijemanne, S, Jankovic, J. Dopa-responsive dystonia: Clinical and genetic heterogeneity. Nat Rev Neurol. 2015;11(7):414–24.Google Scholar
Lee, WW, Jeon, BS. Clinical spectrum of dopa-responsive dystonia and related disorders. Curr Neurol Neurosci Rep. 2014;14(7):461.Google Scholar
Lee, WW, Jeon, B, Kim, R. Expanding the spectrum of dopa-responsive dystonia (DRD) and proposal for new definition: DRD, DRD-plus, and DRD look-alike. J Korean Med Sci. 2018;33(28):e184.Google Scholar
Friedman, JR. What is not in the name? Dopa-responsive dystonia may respond to more than L-dopa. Pediatr Neurol. 2016;59:7680.Google Scholar
Leuzzi, V, Carducci, CA, Carducci, CL, et al. Phenotypic variability, neurological outcome and genetics background of 6-pyruvoyl-tetrahydropterin synthase deficiency. Clin Genet. 2010;77(3):249–57.Google Scholar
Giovanniello, T, Leuzzi, V, Carducci, C, et al. Tyrosine hydroxylase deficiency presenting with a biphasic clinical course. Neuropediatrics. 2007;38(4):213–5.Google Scholar
Kim, R, Jeon, B, Lee, WW. A systematic review of treatment outcome in patients with dopa-responsive dystonia (DRD) and DRD-plus. Mov Disord Clin Pract. 2016;3(5):435–42.Google Scholar
Wortmann, SB, Duran, M, Anikster, Y, et al. Inborn errors of metabolism with 3-methylglutaconic aciduria as discriminative feature: Proper classification and nomenclature. J Inherit Metab Dis. 2013;36(6):923–8.Google Scholar
Yahalom, G, Anikster, Y, Huna-Baron, R, et al. Costeff syndrome: Clinical features and natural history. J Neurol. 2014;261(12):2275–82.Google Scholar
Engelen, M, Kemp, S, Poll-The, BT. X-linked adrenoleukodystrophy: Pathogenesis and treatment. Curr Neurol Neurosci Rep. 2014;14(10):486.Google Scholar
Berger, J, Forss-Petter, S, Eichler, FS. Pathophysiology of X-linked adrenoleukodystrophy. Biochimie. 2014;98:135–42.Google Scholar
Kemp, S, Pujol, A, Waterham, HR, et al. ABCD1 mutations and the X-linked adrenoleukodystrophy mutation database: Role in diagnosis and clinical correlations. Hum Mutat. 2001;18(6):499515.Google Scholar
Rauschka, H, Colsch, B, Baumann, N, et al. Late-onset metachromatic leukodystrophy: Genotype strongly influences phenotype. Neurology. 2006;67(5):859–63.Google Scholar
van Rappard, DF, Boelens, JJ, Wolf, NI. Metachromatic leukodystrophy: Disease spectrum and approaches for treatment. Best Pract Res Clin Endocrinol Metab. 2015;29(2):261–73.Google Scholar
Ferreira, CR, Gahl, WA. Lysosomal storage diseases. Transl Sci Rare Dis. 2017; 2 (1–2): 171.Google Scholar
Gieselmann, V, Krageloh-Mann, I. Metachromatic leukodystrophy: An update. Neuropediatrics. 2010;41(1):16.Google Scholar
Kohlschutter, A. Lysosomal leukodystrophies: Krabbe disease and metachromatic leukodystrophy. Handb Clin Neurol. 2013;113:1611-8.Google Scholar
Rosenberg, JB, Kaminsky, SM, Aubourg, P, Crystal, RG, Sondhi, D. Gene therapy for metachromatic leukodystrophy. J Neurosci Res. 2016;94(11):1169–79.Google Scholar
Wenger, DA, Rafi, MA, Luzi, P. Krabbe disease: One hundred years from the bedside to the bench to the bedside. J Neurosci Res. 2016;94(11):982–9.Google Scholar
Tappino, B, Biancheri, R, Mort, M, et al. Identification and characterization of 15 novel GALC gene mutations causing Krabbe disease. Hum Mutat. 2010;31(12):E1894–914.Google Scholar
Suzuki, K. Globoid cell leukodystrophy (Krabbe’s disease): Update. J Child Neurol. 2003;18(9):595603.Google Scholar
Tokushige, S, Sonoo, T, Maekawa, R, et al. Isolated pyramidal tract impairment in the central nervous system of adult-onset Krabbe disease with novel mutations in the GALC gene. Brain Dev. 2013;35(6):579–81.Google Scholar
Debs, R, Froissart, R, Aubourg, P, et al. Krabbe disease in adults: Phenotypic and genotypic update from a series of 11 cases and a review. J Inherit Metab Dis. 2013;36(5):859–68.Google Scholar
Shao, YH, Choquet, K, La Piana, R, et al. Mutations in GALC cause late-onset Krabbe disease with predominant cerebellar ataxia. Neurogenetics. 2016;17(2):137–41.Google Scholar
Zuccoli, G, Narayanan, S, Panigrahy, A, Poe, MD, Escolar, ML. Midbrain morphology reflects extent of brain damage in Krabbe disease. Neuroradiology. 2015;57(7):739–45.Google Scholar
Escolar, ML, West, T, Dallavecchia, A, Poe, MD, LaPoint, K. Clinical management of Krabbe disease. J Neurosci Res. 2016;94(11):1118–25.Google Scholar
Graziano, AC, Pannuzzo, G, Avola, R, Cardile, V. Chaperones as potential therapeutics for Krabbe disease. J Neurosci Res. 2016;94(11):1220–30.Google Scholar
Fuijkschot, J, Theelen, T, Seyger, MM, et al. Sjögren–Larsson syndrome in clinical practice. J Inherit Metab Dis. 2012;35(6):955–62.Google Scholar
Cho, KH, Shim, SH, Kim, M. Clinical, biochemical, and genetic aspects of Sjögren–Larsson syndrome. Clin Genet. 2018;93(4):721–30.–Google Scholar
Nie, S, Chen, G, Cao, X, Zhang, Y. Cerebrotendinous xanthomatosis: A comprehensive review of pathogenesis, clinical manifestations, diagnosis, and management. Orphanet J Rare Dis. 2014;9:179.Google Scholar
Salen, G, Steiner, RD. Epidemiology, diagnosis, and treatment of cerebrotendinous xanthomatosis (CTX). J Inherit Metab Dis. 2017;40(6):771–81.Google Scholar
Sekijima, Y, Koyama, S, Yoshinaga, T, Koinuma, M, Inaba, Y. Nationwide survey on cerebrotendinous xanthomatosis in Japan. J Hum Genet. 2018;63(3):271–80.Google Scholar
Pilo-de-la-Fuente, B, Jimenez-Escrig, A, Lorenzo, JR, et al. Cerebrotendinous xanthomatosis in Spain: Clinical, prognostic, and genetic survey. Eur J Neurol. 2011;18(10):1203-11.Google Scholar
Hellmann, MA, Kakhlon, O, Landau, EH, et al. Frequent misdiagnosis of adult polyglucosan body disease. J Neurol. 2015;262(10):2346–51.Google Scholar
Harigaya, Y, Matsukawa, T, Fujita, Y, et al. Novel GBE1 mutation in a Japanese family with adult polyglucosan body disease. Neurol Genet. 2017;3(2):e138.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×