Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-05T00:13:47.469Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  06 July 2018

John Harlim
Affiliation:
Pennsylvania State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Data-Driven Computational Methods
Parameter and Operator Estimations
, pp. 149 - 156
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J. (2001), ‘An ensemble adjustment Kalman filter for data assimilation’, Monthly Weather Rev. 129, 28842903.2.0.CO;2>CrossRefGoogle Scholar
Anderson, J. (2007), ‘An adaptive covariance inflation error correction algorithm for ensemble filters’, Tellus A 59, 210224.CrossRefGoogle Scholar
Andrews, G. & Askey, R. (1985), ‘Classical orthogonal polynomials’, in Polynômes orthogonaux et applications, Springer, pp. 3662.CrossRefGoogle Scholar
Aronszajn, N. (1950), ‘Theory of reproducing kernels’, Trans. Am. Math. Soc. 68(3), 337404.CrossRefGoogle Scholar
Bain, A. & Crisan, D. (2009), Fundamentals of Stochastic Filtering, Springer.CrossRefGoogle Scholar
Bao, W., Jin, S. & Markowich, P. (2003), ‘Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semiclassical regimes’, SIAM J. Scient. Computing 25(1), 2764.CrossRefGoogle Scholar
Barthelmann, V., Novak, E. & Ritter, K. (2000), ‘High dimensional polynomial interpolation on sparse grids’, Adv. Comput. Math. 12(4), 273288.CrossRefGoogle Scholar
Belanger, P. (1974), ‘Estimation of noise covariance matrices for a linear time-varying stochastic process’, Automatica 10(3), 267275.CrossRefGoogle Scholar
Belkin, M. & Niyogi, P. (2003), ‘Laplacian eigenmaps for dimensionality reduction and data representation’, Neural Comput. 15(6), 13731396.CrossRefGoogle Scholar
Bella, T., Olshevsky, V., Zhlobich, P., Eidelman, Y., Gohberg, I. & Tyrtyshnikov, E. (2010), ‘A Traub-like algorithm for Hessenberg quasiseparable-Vandermonde matrices of arbitrary order,’ in Numerical Methods for Structured Matrices and Applications: The Georg Heinig Memorial Volume, Birkhäuser Basel, pp. 127154.CrossRefGoogle Scholar
Bengtsson, T., Bickel, P. & Li, B. (2008), ‘Curse of dimensionality revisited: Collapse of the particle filter in very large scale systems,’ in Nolan, D. & Speed, T., eds, IMS Lecture Notes – Monograph Series in Probability and Statistics: Essays in Honor of David A. Freedman, Vol. 2, Institute of Mathematical Sciences, pp. 316334.CrossRefGoogle Scholar
Berry, T. & Harlim, J. (2014), ‘Linear theory for filtering nonlinear multiscale systems with model error’, Proc. Roy. Soc. A 20140168.Google Scholar
Berry, T. & Harlim, J. (2015), ‘Nonparametric uncertainty quantification for stochastic gradient flows’, SIAM/ASA J. Uncertainty Quantification 3(1), 484508.CrossRefGoogle Scholar
Berry, T. & Harlim, J. (2016 a), ‘Forecasting turbulent modes with nonparametric models: Learning from noisy data’, Physica D 320, 5776.CrossRefGoogle Scholar
Berry, T. & Harlim, J. (2016 b), ‘Iterated diffusion maps for feature identification’. Appl. Comput. Harmon. Anal. (in press). doi:10.1016/j.acha.2016.08.005.CrossRefGoogle Scholar
Berry, T. & Harlim, J. (2016 c), ‘Semiparametric modeling: Correcting low-dimensional model error in parametric models’, J. Comput. Phys. 308, 305321.CrossRefGoogle Scholar
Berry, T. & Harlim, J. (2016 d), ‘Variable bandwidth diffusion kernels’, Appl. Comput. Harmon. Anal. 40, 6896.CrossRefGoogle Scholar
Berry, T. & Harlim, J. (2017), ‘Correcting biased observation model error in data assimilation’, Monthly Weather Rev. 145(7), 28332853.CrossRefGoogle Scholar
Berry, T. & Sauer, T. (2013), ‘Adaptive ensemble Kalman filtering of nonlinear systems’, Tellus A 65, 20331.CrossRefGoogle Scholar
Berry, T. & Sauer, T. (2016), ‘Consistent manifold representation for topological data analysis’. https://arxiv.org/abs/1606.02353Google Scholar
Berry, T., Giannakis, D. & Harlim, J. (2015), ‘Nonparametric forecasting of low-dimensional dynamical systems’, Phys. Rev. E 91, 032915.CrossRefGoogle ScholarPubMed
Bickel, P., Li, B. & Bengtsson, T. (2008), ‘Sharp failure rates for the bootstrap filter in high dimensions’, in IMS Lecture Notes – Monograph Series: Essays in Honor of J. K. Gosh’, Vol. 3, Institute of Mathematical Sciences, pp. 318329.Google Scholar
Bishop, C., Etherton, B. & Majumdar, S. (2001), ‘Adaptive sampling with the ensemble transform Kalman filter part I: The theoretical aspects’, Monthly Weather Rev. 129, 420436.2.0.CO;2>CrossRefGoogle Scholar
Brezis, H. (2010), Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer.Google Scholar
Cameron, R. & Martin, W. (1947), ‘The orthogonal development of non-linear functionals in series of Fourier–Hermite functionals’, Annals of Mathematics 48(2), 385392.CrossRefGoogle Scholar
Chorin, A. & Hald, O. (2013), ‘Estimating the uncertainty in underresolved nonlinear dynamics’, Math. Mech. Solids 19(1), 2838.CrossRefGoogle Scholar
Chorin, A., Hald, O. & Kupferman, R. (2000), ‘Optimal prediction and the Mori– Zwanzig representation of irreversible processes’, Proc. Nat. Acad. Sci. 97(7), 29682973.CrossRefGoogle ScholarPubMed
Chorin, A., Hald, O. & Kupferman, R. (2002), ‘Optimal prediction with memory’, Physica D: Nonlinear Phenomena 166(3), 239257.CrossRefGoogle Scholar
Chorin, A., Lu, F., Miller, R., Morzfeld, M. & Tu, X. (2016), ‘Sampling, feasibility, and priors in data assimilation’, Discrete Continuous Dynam. Syst. 36(8), 42274246.Google Scholar
Christen, J. & Fox, C. (2005), ‘MCMC using an approximation’, J. Comput. Graphical Statist. 14(4), 795810.CrossRefGoogle Scholar
Coifman, R. & Lafon, S. (2006), ‘Diffusion maps’, Appl. Comput. Harmon. Anal. 21, 530.CrossRefGoogle Scholar
Coifman, R., Shkolnisky, Y., Sigworth, F. & Singer, A. (2008), ‘Graph Laplacian tomography from unknown random projections’, IEEE Trans. Image Processing 17(10), 18911899.CrossRefGoogle ScholarPubMed
Dashti, M. & Stuart, A. (2017), ‘The Bayesian approach to inverse problems’, in Handbook of Uncertainty Quantification, Springer.Google Scholar
De La Chevrotière, M. & Harlim, J. (2017 a), ‘A data-driven method for improving the correlation estimation in serial ensemble Kalman filters’, Monthly Weather Rev. 145(3), 9851001.CrossRefGoogle Scholar
De La Chevrotière, M. & Harlim, J. (2017 b), ‘Data-driven localization mappings in filtering the monsoon-Hadley multicloud convective flows’. Mon. Wea. Rev. (in press). doi:10.1175/MWR-D-17-0381.1.CrossRefGoogle Scholar
Dee, D., Cohn, S., Dalcher, A. & Ghil, M. (1985), ‘An efficient algorithm for estimating noise covariances in distributed systems’, IEEE Trans. Automatic Control 30(11), 10571065.CrossRefGoogle Scholar
Dee, D. & da Silva, A. (1998), ‘Data assimilation in the presence of forecast bias’, Q. J. Roy. Meteorol. Soc. 124, 269295.CrossRefGoogle Scholar
Doucet, A., de Freitas, N. & Gordon, N. (2001), ‘Sequential monte carlo methods in practice. series statistics for engineering and information science’.CrossRefGoogle Scholar
Dunik, J., Straka, O., Kost, O. & Havlik, J. (2017), ‘Noise covariance matrices in state-space models: A survey and comparison of estimation methods? Part I’. Int. J. Adapt. Control Signal Process 31 (11), 15051543.CrossRefGoogle Scholar
Evensen, G. (1994), ‘Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics’, J. Geophys. Research 99, 1014310162.CrossRefGoogle Scholar
Friedland, B. (1969), ‘Treatment of bias in recursive filtering’, IEEE Trans. Automatic Control 14, 359367.CrossRefGoogle Scholar
Friedland, B. (1982), ‘Estimating sudden changes of biases in linear dynamical systems’, IEEE Trans. Automatic Control 27, 237240.CrossRefGoogle Scholar
Gamerman, D. & Lopes, H. (2006), Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, second edition, Chapman & Hall/CRC Texts in Statistical Science, Taylor & Francis.CrossRefGoogle Scholar
Gaspari, G. & Cohn, S. E. (1999), ‘Construction of correlation functions in two and three dimensions’, Q. J. Roy. Meteorol. Soc. 125(554), 723757.CrossRefGoogle Scholar
Gershgorin, B., Harlim, J. & Majda, A. (2010), ‘Test models for improving filtering with model errors through stochastic parameter estimation’, J. Comput. Phys. 229(1), 131.CrossRefGoogle Scholar
Ghanem, R. & Spanos, P. (2003), Stochastic Finite Elements: A Spectral Approach, Courier Corporation.Google Scholar
Golub, G. H. & Welsch, J. W. (1969), ‘Calculation of Gauss quadrature rules’, Math. Comput. 23, 221230.CrossRefGoogle Scholar
González-Tokman, C. & Hunt, B. R. (2013), ‘Ensemble data assimilation for hyperbolic systems’, Physica D: Nonlinear Phenomena 243(1), 128142.CrossRefGoogle Scholar
Gottwald, G., Crommelin, D. & Franzke, C. (2017), ‘Stochastic climate theory’, in Nonlinear and Stochastic Climate Dynamics, Cambridge University Press, pp. 209240.Google Scholar
Haario, H., Laine, M., Mira, A. & Saksman, E. (2006), ‘DRAM: Efficient adaptive MCMC’, Statist. Comput. 16(4), 339354.CrossRefGoogle Scholar
Haken, H. (1975), ‘Analogy between higher instabilities in fluids and lasers’, Phys. Lett. A 53(1), 7778.CrossRefGoogle Scholar
Hamill, T. M., Whitaker, J. S. & Snyder, C. (2001), ‘Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter’, Monthly Weather Rev. 129(11), 27762790.2.0.CO;2>CrossRefGoogle Scholar
Härdle, W., Müller, M., Sperlich, S. & Werwatz, A. (2012), Nonparametric and Semiparametric Models, Springer.Google Scholar
Harlim, J. (2017), ‘Model error in data assimilation’, Nonlinear and Stochastic Climate Dynamics, Cambridge University Press, pp. 276317.Google Scholar
Harlim, J. & Li, X. (2015), ‘Parametric reduced models for the nonlinear Schrödinger equation’, Phys. Rev. E. 91, 053306.CrossRefGoogle ScholarPubMed
Harlim, J., Mahdi, A. & Majda, A. (2014), ‘An ensemble Kalman filter for statistical estimation of physics constrained nonlinear regression models’, J. Comput. Phys. 257A, 782812.CrossRefGoogle Scholar
Harlim, J. & Yang, H. (2017), ‘Diffusion forecasting model with basis functions from QR-decomposition’. J. Nonlinear Sci. (2017). doi:10.1007/s00332-017-9430-1.CrossRefGoogle Scholar
Hein, M. & Audibert, J.-Y. (2005), ‘Intrinsic dimensionality estimation of submanifolds in Rd’, in Proceedings of the 22nd International Conference on Machine Learning, ICML’05, ACM, pp. 289296. http://doi.acm.org/10.1145/1102351.1102388Google Scholar
Heiss, F. & Winschel, V. (2008), ‘Likelihood approximation by numerical integration on sparse grids’, J. Econometrics 144(1), 6280.CrossRefGoogle Scholar
Higdon, D., Lee, H. & Holloman, C. (2003), ‘Markov chain Monte Carlo-based approaches for inference in computationally intensive inverse problems’, in Bayesian Statistics 7: Proceedings of the Seventh Valencia International Meeting, Oxford University Press, pp. 181197.CrossRefGoogle Scholar
Houtekamer, P. & Mitchell, H. (1998), ‘Data assimilation using an ensemble Kalman filter technique’, Monthly Weather Rev. 126, 796811.2.0.CO;2>CrossRefGoogle Scholar
Hunt, B., Kostelich, E. & Szunyogh, I. (2007), ‘Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter’, Physica D 230, 112126.CrossRefGoogle Scholar
Hwang, M. & Seinfeld, J. H. (1972), ‘Observability of nonlinear systems’, J. Optimization Theory Appl. 10(2), 6777.CrossRefGoogle Scholar
Kaipio, J. & Somersalo, E. (2006), Statistical and Computational Inverse Problems, Springer.Google Scholar
Kalman, R. & Bucy, R. (1961), ‘New results in linear filtering and prediction theory’, Trans. AMSE J. Basic Eng. 83D, 95108.CrossRefGoogle Scholar
Karlin, S. (2014), A First Course in Stochastic Processes, Academic Press.Google Scholar
Kelly, D., Law, K. & Stuart, A. (2014), ‘Well-posedness and accuracy of the ensemble Kalman filter in discrete and continuous time’, Nonlinearity 27(10), 25792603.CrossRefGoogle Scholar
Kennedy, M. & O’Hagan, A. (2001), ‘Bayesian calibration of computer models’, J. Roy. Statist. Soc.: Series B (Statist. Methodol.) 63(3), 425464.CrossRefGoogle Scholar
Kwiatkowski, E. & Mandel, J. (2015), ‘Convergence of the square root ensemble Kalman filter in the large ensemble limit’, SIAM/ASA J. Uncertainty Quantification 3(1), 117. http://dx.doi.org/10.1137/140965363CrossRefGoogle Scholar
Lawler, G. (2006), Introduction to Stochastic Processes, CRC Press.Google Scholar
Lax, P. (2007), Linear Algebra and Its Applications, Wiley.Google Scholar
Le Maître, O. P. & Knio, O. M. (2010), Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics, Springer.CrossRefGoogle Scholar
Lee, Y. & Majda, A. (2016), ‘State estimation and prediction using clustered particle filters’, Proc. Nat. Acad. Sci. 201617398.Google Scholar
Little, A., Jung, Y.-M. & Maggioni, M. (2009), ‘Multiscale estimation of intrinsic dimensionality of data sets’, in Manifold Learning and Its Applications: Papers from the AAAI Fall Symposium, AAAI, pp. 2633.Google Scholar
Lorenz, E. (1963), ‘Deterministic nonperiodic flow’, J. Atmosph. Sci. 20, 130141.2.0.CO;2>CrossRefGoogle Scholar
Lorenz, E. (1969), ‘Atmospheric predictability as revealed by naturally occurring analogues’, J. Atmosph. Sci. 26(4), 636646.2.0.CO;2>CrossRefGoogle Scholar
Lorenz, E. (1996), ‘Predictability – a problem partly solved’, in Proceedings of Seminar on Predictability, held at ECMWF on 4–8 September 1995, pp. 118.Google Scholar
Lu, F., Lin, K. & Chorin, A. (2017), ‘Data-based stochastic model reduction for the Kuramoto–Sivashinsky equation’, Physica D: Nonlinear Phenomena 340, 4657.CrossRefGoogle Scholar
Majda, A. & Grooms, I. (2014), ‘New perspectives on superparameterization for geophysical turbulence’, J. Comput. Phys. 271, 6077.CrossRefGoogle Scholar
Majda, A. & Harlim, J. (2012), Filtering Complex Turbulent Systems, Cambridge University Press.CrossRefGoogle Scholar
Majda, A. & Harlim, J. (2013), ‘Physics constrained nonlinear regression models for time series’, Nonlinearity 26, 201217.CrossRefGoogle Scholar
Majda, A. & Qi, D. (2016 a), ‘Improving prediction skill of imperfect turbulent models through statistical response and information theory’, J. Nonlinear Sci. 26(1), 233285.CrossRefGoogle Scholar
Majda, A. & Qi, D. (2016 b), ‘Strategies for reduced-order models for predicting the statistical responses and uncertainty quantification in complex turbulent dynamical systems’, submitted to SIAM Review.Google Scholar
Majda, A. & Tong, X. (2016), ‘Robustness and accuracy of finite ensemble kalman filters in large dimensions’, Comm. Pure Appl. Math. (in press). doi:10.1002/cpa.21722.CrossRefGoogle Scholar
Mandel, J., Cobb, L. & Beezley, J. (2011), ‘On the convergence of the ensemble Kalman filter’, Applications of Mathematics 56(6), 533541. http://dx.doi.org/10.1007/s10492–011-0031–2CrossRefGoogle ScholarPubMed
Marzouk, Y., Najm, H. & Rahn, L. (2007), ‘Stochastic spectral methods for efficient Bayesian solution of inverse problems’, J. Comput. Phys. 224(2), 560586.CrossRefGoogle Scholar
Marzouk, Y. & Xiu, D. (2009), ‘A stochastic collocation approach to Bayesian inference in inverse problems’, Commun. Comput. Phys. 6, 826847.CrossRefGoogle Scholar
Mattingly, J., Stuart, A. & Higham, D. (2002), ‘Ergodicity for SDES and approximations: Locally Lipschitz vector fields and degenerate noise’, Stochastic Processes Appl. 101(2), 185232.CrossRefGoogle Scholar
Mehra, R. (1970), ‘On the identification of variances and adaptive Kalman filtering’, IEEE Trans. Automatic Control 15(2), 175184.CrossRefGoogle Scholar
Mehra, R. (1972), ‘Approaches to adaptive filtering’, IEEE Trans. Automatic Control 17(5), 693698.CrossRefGoogle Scholar
Ménard, R. (2010), ‘Bias estimation’, in Data Assimilation, Springer, pp. 113135.CrossRefGoogle Scholar
Mori, H. (1965), ‘Transport, collective motion, and Brownian motion’, Prog. Theor. Phys. 33, 423450.CrossRefGoogle Scholar
Morriss, G. & Evans, D. J. (1990), Statistical Mechanics of Nonequilbrium Liquids, Academic Press.Google Scholar
Novak, E. & Ritter, K. (1996), ‘High dimensional integration of smooth functions over cubes’, Numer. Math. 75(1), 7997.CrossRefGoogle Scholar
Nummelin, E. (1984), General Irreducible Markov Chains and Non-Negative Operators, Cambridge University Press.CrossRefGoogle Scholar
Nyström, E. J. (1930), ‘Über die praktische Auflösung von Integralgleichungen mit Anwendungen auf Randwertaufgaben’, Acta Math. 54(1), 185204.CrossRefGoogle Scholar
O’Kane, T. & Frederiksen, J. (2010), ‘Application of statistical dynamical turbulence closures to data assimilation’, Phys. Scr. T142, 014042.Google Scholar
Øksendal, B. (2003), Stochastic Differential Equations: An Introduction with Applications, Springer.CrossRefGoogle Scholar
Pavliotis, G. (2014), Stochastic Processes and Applications: Diffusion Processes, the Fokker–Planck and Langevin Equations, Springer.CrossRefGoogle Scholar
Poterjoy, J. (2016), ‘A localized particle filter for high-dimensional nonlinear systems’, Monthly Weather Rev. 144(1), 5976.CrossRefGoogle Scholar
Reich, S. & Cotter, C. (2015), Probabilistic Forecasting and Bayesian Data Assimilation, Cambridge University Press.CrossRefGoogle Scholar
Sain, S. & Scott, W. (1996), ‘On locally adaptive density estimation’, J. Am. Statist. Ass. 91(436), 15251534.CrossRefGoogle Scholar
Sapsis, T. & Majda, A. (2013), ‘Blending modified Gaussian closure and non-Gaussian reduced subspace methods for turbulent dynamical systems’, J. Nonlinear Sci. 23(6), 10391071.CrossRefGoogle Scholar
Smith, R. (2013), Uncertainty Quantification: Theory, Implementation, and Applications, Vol. 12, SIAM.CrossRefGoogle Scholar
Smolyak, S. (1969), ‘Quadrature and interpolation formulas for tensor products of certain classes of functions’, Dokl. Akad. Nauk SSSR 4, 240243.Google Scholar
Solari, H., Natiello, M. & Mindlin, G. (1996), Nonlinear Dynamics, Institute of Physics.Google Scholar
Song, L., Fukumizu, K. & Gretton, A. (2013), ‘Kernel embeddings of conditional distributions: A unified kernel framework for nonparametric inference in graphical models’, IEEE Signal Processing Mag. 30(4), 98111.CrossRefGoogle Scholar
Song, L., Huang, J., Smola, A. & Fukumizu, K. (2009), ‘Hilbert space embeddings of conditional distributions with applications to dynamical systems’, in Proceedings of the 26th Annual International Conference on Machine Learning, ACM, pp. 961968.CrossRefGoogle Scholar
Terrell, D. & Scott, D. (1992), ‘Variable kernel density estimation’, Ann. Statist. 20, 12361265.CrossRefGoogle Scholar
Tierney, L. (1994), ‘Markov chains for exploring posterior distributions’, Ann. Statist. 22(4), 17011728.Google Scholar
Ting, D., Huang, L. & Jordan, M. (2010), ‘An analysis of the convergence of graph Laplacians’, in Fürnkranz, J. & Joachims, T., eds., Proceedings of the 27th International Conference on Machine Learning (ICML-10), Omnipress, pp. 10791086. www.icml2010.org/papers/554.pdfGoogle Scholar
Tippett, M., Anderson, J., Bishop, C., Hamill, T. & Whitaker, J. (2003), ‘Ensemble square-root filters’, Monthly Weather Rev. 131, 14851490.2.0.CO;2>CrossRefGoogle Scholar
Tong, X., Majda, A. & Kelly, D. (2016), ‘Nonlinear stability and ergodicity of ensemble based kalman filters’, Nonlinearity 29(2), 657691.CrossRefGoogle Scholar
Trefethen, L. (2008), ‘Is Gauss quadrature better than Clenshaw–Curtis?’, SIAM Rev. 50(1), 6787.CrossRefGoogle Scholar
van Leeuwen, P. (2015), ‘Aspects of particle filtering in high-dimensional spaces’, in Dynamic Data-Driven Environmental Systems Science, Springer, pp. 251262.CrossRefGoogle Scholar
Wiener, N. (1938), ‘The homogeneous chaos’, Am. J. Math. 60(4), 897936.CrossRefGoogle Scholar
Wilkinson, D. (2011), Stochastic Modelling for Systems Biology, second edition, Chapman & Hall/CRC Press.CrossRefGoogle Scholar
Xiu, D. (2010), Numerical Methods for Stochastic Computations: A Spectral Method Approach, Princeton University Press.Google Scholar
Zhao, Z. & Giannakis, D. (2016), ‘Analog forecasting with dynamics-adapted kernels’, Nonlinearity 29(9), 28882939.CrossRefGoogle Scholar
Zhen, Y. & Harlim, J. (2015), ‘Adaptive error covariance estimation methods for ensemble Kalman filtering’, J. Comput. Phys. 294, 619638.CrossRefGoogle Scholar
Zwanzig, R. W. (1961), ‘Statistical mechanics of irreversiblity’, in Britten, W. E., Downs, B. W. & Downs, J., Lectures in Theoretical Physics, Vol. 3, Interscience, pp. 106141.Google Scholar
Zwanzig, R. W. (1973), ‘Nonlinear generalized Langevin equations’, J. Statist. Phys. 9, 215220.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • John Harlim, Pennsylvania State University
  • Book: Data-Driven Computational Methods
  • Online publication: 06 July 2018
  • Chapter DOI: https://doi.org/10.1017/9781108562461.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • John Harlim, Pennsylvania State University
  • Book: Data-Driven Computational Methods
  • Online publication: 06 July 2018
  • Chapter DOI: https://doi.org/10.1017/9781108562461.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • John Harlim, Pennsylvania State University
  • Book: Data-Driven Computational Methods
  • Online publication: 06 July 2018
  • Chapter DOI: https://doi.org/10.1017/9781108562461.011
Available formats
×