Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-04-30T18:11:02.486Z Has data issue: false hasContentIssue false

Section 6 - Heart Failure, Mechanical Circulatory Support, and Transplantation

Published online by Cambridge University Press:  09 September 2021

Laura K. Berenstain
Affiliation:
Cincinnati Children's Hospital Medical Center
James P. Spaeth
Affiliation:
Cincinnati Children's Hospital Medical Center
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Congenital Cardiac Anesthesia
A Case-based Approach
, pp. 239 - 304
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suggested Reading

Allen, H. D., Thrush, P. T., Hoffman, T. M., et al. Cardiac management in neuromuscular diseases. Phys Med Rehabil Clin N Am 2012; 23: 855–68.Google Scholar
Birnkrant, D. J., Panitch, H. B., Benditt, J. O., et al. American College of Chest Physicians consensus statement on the respiratory and related management of patients with Duchenne muscular dystrophy undergoing anesthesia or sedation. Chest 2007; 132: 1977–86.CrossRefGoogle ScholarPubMed
Cripe, L. H. and Tobias, J. D. Cardiac considerations in the operative management of the patient with Duchenne or Becker muscular dystrophy. Paediatr Anaesth 2013; 23: 777–84.CrossRefGoogle ScholarPubMed
Hayes, J., Veyckemans, F., and Bissonnette, B. Duchenne muscular dystrophy: an old anesthesia problem revisited. Paediatr Anaesth 2008; 18: 100–6.CrossRefGoogle ScholarPubMed
Ing, R. J., Ames, W. A., and Chambers, N. A. Paediatric cardiomyopathy and anaesthesia. Br J Anaesth 2012; 108: 412.CrossRefGoogle ScholarPubMed
Kamdar, F. and Garry, D. J. Dystrophin-deficient cardiomyopathy. J Am Coll Cardiol 2016; 67: 2533–46.CrossRefGoogle ScholarPubMed
Kotsakou, M., Kioumis, I., Lazaridis, G., et al. Pacemaker insertion. Ann Transl Med 2015; 3: 42.Google ScholarPubMed

References

Lee, T. M., Hsu, D.T., Kantor, P., et al. Pediatric cardiomyopathies. Circ Res 2017; 121: 855–73.CrossRefGoogle ScholarPubMed
Hsu, D. T., Canter, C. E.. Dilated cardiomyopathy and heart failure in children. Heart Fail Clin 2010; 6: 415–32.CrossRefGoogle ScholarPubMed
Kirk, R., Naftel, D., Hoffman, T. M., et al. Outcome of pediatric patients with dilated cardiomyopathy listed for transplant: a multi-institutional study. J Heart Lung Transplant 2009; 28: 1322–8.CrossRefGoogle ScholarPubMed
Price, J. F., Thomas, A. K., Grenier, M., et al. B-type natriuretic peptide predicts adverse cardiovascular events in pediatric outpatients with chronic left ventricular systolic dysfunction. Circulation 2006; 114: 1063–9.CrossRefGoogle ScholarPubMed
Kipps, A. K., Ramamoorthy, C., Rosenthal, D. N., et al. Children with cardiomyopathy: complications after noncardiac procedures with general anesthesia. Paediatr Anaesth 2007; 17: 775–81.CrossRefGoogle ScholarPubMed
Ramamoorthy, C., Haberkern, C., Bhananker, S., et al. Anesthesia-related cardiac arrest in children with heart disease: data from the Pediatric Perioperative Cardiac Arrest (POCA) registry. Anesth Analg 2010; 110: 1376–82.CrossRefGoogle ScholarPubMed

Suggested Reading

Ing, R. J., Ames, W. A., and Chambers, N. A. Paediatric cardiomyopathy and anaesthesia. Br J Anaesth 2012; 108: 412.CrossRefGoogle ScholarPubMed
Williams, G. D. and Hammer, G. B. Cardiomyopathy in childhood. Curr Opin Anesthesiol 2011; 24: 289300.CrossRefGoogle ScholarPubMed

Suggested Reading

Adler, A. C., Elattary, T., and Chandrakantan, A. Anesthesia in the form of audiovisual distraction for a child requiring surgery with end-stage cardiomyopathy: a case report. A A Pract 2019; 13: 346–9.Google ScholarPubMed
Adler, A. C., Schwartz, E. R., Waters, J. M., et al. Anesthetizing a child for a large compressive mediastinal mass with distraction techniques and music therapies as the sole agents. J Clin Anesth 2016; 35: 392–7.Google Scholar
Arghami, A., Dearani, J. A., Said, S. M., et al. Hypertrophic cardiomyopathy in children. Ann Cardiothorac Surg 2017; 6: 376–85.Google Scholar
Birnie, K. A., Noel, M., Chambers, C. T., et al. Psychological interventions for needle-related procedural pain and distress in children and adolescents. Cochrane Database Syst Rev 2018; 10: CD005179.Google ScholarPubMed
Hensley, N., Dietrich, J., Nyhan, D., et al. Hypertrophic cardiomyopathy: a review. Anesth Analg 2015; 120: 554–69.CrossRefGoogle ScholarPubMed
Webber, S. A., Lipshultz, S. E., Sleeper, L. A., et al. Outcomes of restrictive cardiomyopathy in childhood and the influence of phenotype: a report from the Pediatric Cardiomyopathy Registry. Circulation 2012; 126: 1237–44.CrossRefGoogle ScholarPubMed
Wilkinson, J. D., Landy, D. C., Colan, S. D., et al. The Pediatric Cardiomyopathy Registry and heart failure: key results from the first 15 years. Heart Fail Clin 2010; 6: 401–13.CrossRefGoogle ScholarPubMed

References

Hedrick, H. L., Danzer, E., Merchant, A. M., et al. Liver position and lung-to-head ratio for prediction of extracorporeal membrane oxygenation and survival in isolated left congenital diaphragmatic hernia. Am J Obstet Gynecol 2007; 197: 422.e1–4.CrossRefGoogle ScholarPubMed
Mullassery, D., Ba’ath, M. E., Jesudason, E. C., et al. Value of liver herniation in prediction of outcome in fetal congenital diaphragmatic hernia: a systematic review and meta-analysis. Ultrasound Obstet Gynecol 2010; 35: 609–14.CrossRefGoogle ScholarPubMed
Snoek, K. G., Reiss, I. K. M., Greenough, A., et al. Standardized postnatal management of infants with congenital diaphragmatic hernia in Europe: The CDH EURO Consortium Consensus – 2015 Update. Neonatology 2016; 110: 6674.CrossRefGoogle Scholar
Partridge, E. A., Peranteau, W. H., Rintoul, N. E., et al. Timing of repair of congenital diaphragmatic hernia in patients supported by extracorporeal membrane oxygenation (ECMO). J Pediatr Surg 2015; 50: 260–2.CrossRefGoogle ScholarPubMed
Dassinger, M. S., Copeland, D. R., Gossett, J., et al. Early repair of congenital diaphragmatic hernia on extracorporeal membrane oxygenation. J Pediatr Surg 2010: 45: 693–7.CrossRefGoogle ScholarPubMed
Fallon, S. C., Cass, D. L., Olutoye, O. O., et al. Repair of congenital diaphragmatic hernias on extracorporeal membrane oxygenation (ECMO): does early repair improve patient survival? J Pediatr Surg 2013; 48: 1172–6.CrossRefGoogle ScholarPubMed
Gray, B., Rintoul, N.. Extracorporeal life support organization (ELSO) guidelines for neonatal respiratory failure supplement to the ELSO General Guidelines, Version 1. December 4, 2017, Ann Arbor, MI.Google Scholar

Suggested Reading

Chatterjee, D., Ing, R. J., and Gien, J. Update on congenital diaphragmatic hernia. Anesth Analg 2020 Sep; 131(3): 808–821. doi: 10.1213/ANE.0000000000004324CrossRefGoogle Scholar
Jenks, C. L., Raman, L., and Dalton, H. J. Pediatric extracorporeal membrane oxygenation. Crit Care Clin 2017; 33: 825–41.CrossRefGoogle ScholarPubMed
Lequier, L. L., Horton, S. B., McMullan, D. M., et al. Extracorporeal membrane oxygenation circuitry. Pediatr Crit Care Med 2013; 14: S712.CrossRefGoogle ScholarPubMed

Suggested Reading

Cave, D. A., Fry, K. M., and Buchholz, H. Anesthesia for noncardiac procedures for children with a Berlin Heart EXCOR Pediatric Ventricular Assist Device: a case series. Paediatr Anaesth 2010; 20: 647–59.CrossRefGoogle Scholar
May, L. J., Lorts, A., VanderPluym, C., et al. Marked practice variation in antithrombotic care with the Berlin Heart EXCOR pediatric ventricular assist device. ASAIO J 2019; 65: 731–37.Google Scholar
Miera, O., Morales, D. L. S., Thul, J., et al. Improvement of survival in low-weight children on the Berlin Heart EXCOR ventricular assist device support. Eur J Cardiothorac Surg 2019; 55: 913–19.CrossRefGoogle ScholarPubMed

Suggested Reading

Adler, A., Grogan, K., and Berenstain, L. Mechanical circulatory support. In Coté, C., Lerman, J., and Anderson, B., eds. A Practice of Anesthesia for Infants and Children, 6th ed. Philadelphia, Elsevier, 2018; 500–19.Google Scholar
Argiriou, M., Kolokotron, S., Sakellaridis, T., et al. Right heart failure post left ventricular assist device implantation. J Thorac Dis 2014; 6: S5259.Google ScholarPubMed
Hehir, D. A., Niebler, R. A., Brabant, C. C., et al. Intensive care of the pediatric ventricular assist device patient. World J Pediatr Congenit Heart Surg 2012; 3: 5866.CrossRefGoogle ScholarPubMed
Karimov, J. H., Sunagawa, G., Horvath, D., et al. Limitations of chronic right ventricular assist device support. Ann Thorac Surg 2016; 102: 651–8.CrossRefGoogle ScholarPubMed
Karimova, A., Pockett, C. R., Lasuen, N., et al. Right ventricular dysfunction in children supported with pulsatile ventricular assist devices. J Thorac Cardiovasc Surg 2014; 147: 1691–7.Google Scholar
Miller, J. R., Epstein, D. J., Henn, M. C., et al. Early biventricular assist device use in children: a single-center review of 31 patients. ASAIO J 2015; 61: 688–94.CrossRefGoogle ScholarPubMed
Nelson McMillan, K., Hibino, N., Brown, E. E., et al. HeartWare ventricular assist device implantation for pediatric heart failure–a single center approach. Artif Organs 2019; 43: 21–9.CrossRefGoogle ScholarPubMed
Stein, M., Yeh, J., Reinhartz, O., et al. HeartWare HVAD for biventricular support in children and adolescents: the Stanford experience. ASAIO J 2016; 62: e46-51.CrossRefGoogle ScholarPubMed

References

Goldfarb, S. B., Hayes, D. Jr., Levvey, B. J., et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: twenty-first Pediatric Lung and Heart-Lung Transplantation Report-2018; focus theme: Multiorgan Transplantation. J Heart Lung Transplant 2018; 37: 1196–206.CrossRefGoogle ScholarPubMed
Khan, M. S., Zhang, W., Taylor, R. A., et al. Survival in pediatric lung transplantation: the effect of center volume and expertise. J Heart Lung Transplant 2015; 34: 1073–81.CrossRefGoogle ScholarPubMed
Liou, T. G., Adler, F. R., Cox, D. R., et al. Lung transplantation and survival in children with cystic fibrosis. N Engl J Med 2007; 357: 2143–52.CrossRefGoogle ScholarPubMed
Christie, J.D., Carby, M., Bag, R., et al. Report of the ISHLT Working Group on Primary Lung Graft Dysfunction Part II: Definition. A Consensus Statement of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant 2005; 24: 1454–9.Google Scholar
Sweet, S. C.. Pediatric lung transplantation. Respir Care 2017; 62: 776–98.CrossRefGoogle ScholarPubMed
Goldfarb, S. B., Levvey, B. J., Edwards, L. B., et al. The Registry of the International Society for Heart and Lung Transplantation: nineteenth Pediatric Lung and Heart-Lung Transplantation Report-2016; focus theme: primary diagnostic indications for transplant. J Heart Lung Transplant 2016; 35: 1196–205.CrossRefGoogle ScholarPubMed
Benden, C.. Pediatric lung transplantation. J Thorac Dis 2017; 9: 2675–83.Google Scholar
Beer, A., Reed, R. M., Bölökbas, S., et al. Mechanical ventilation after lung transplantation. Ann Am Thorac Soc 2014; 11: 546–53.CrossRefGoogle ScholarPubMed
Wong, J. Y., Westall, G. P., Snell, G. I.. Bronchoscopic procedures and lung biopsies in pediatric lung transplant recipients. Pediatr Pulmonol 2015; 50: 1405–19.CrossRefGoogle ScholarPubMed

Suggested Reading

Bryant, R. III, Morales, D., Schecter, M. Pediatric lung transplantation. Semin Pediatr Surg 2017; 26: 213–16.CrossRefGoogle ScholarPubMed
Feltracco, P., Falasco, G., Barbieri, S., et al. Anesthetic considerations for nontransplant procedures in lung transplant patients. J Clin Anesth 2011; 23: 508–16.CrossRefGoogle ScholarPubMed
LaRosa, C., Glah, C., Baluarte, H. J., et al. Solid-organ transplantation in childhood: transitioning to adult health care. Pediatrics 2011; 127: 742–53.CrossRefGoogle ScholarPubMed

References

Ryan, T. D., Chin, C., Bryant, R. III. Heart and lung transplantation. In Ungerleider, R. M., Meliones, J. N., McMillan, K. N., et al., eds. Critical Heart Disease in Infants and Children, 3rd ed. Philadelphia, Mosby Elsevier, 2019; 868–84.Google Scholar
Schnoor, M., Schäfer, T., Lühmann, D., et al. Bicaval versus standard technique in orthotopic heart transplantation: a systematic review and meta-analysis. J Thorac Cardiovasc Surg 2007; 134: 1322–31. e7.CrossRefGoogle ScholarPubMed
Coskun, O., Parsa, A., Coskun, T., et al. Outcome of heart transplantation in pediatric recipients. ASAIO J 2007; 53: 107–10.CrossRefGoogle ScholarPubMed
Dipchand, A. I.. Current state of pediatric cardiac transplantation. Ann Cardiothorac Surg 2018; 7: 3155.CrossRefGoogle ScholarPubMed
Choudhury, M.. Post-cardiac transplant recipient: implications for anaesthesia. Indian J Anaesth 2017; 61: 768–74.CrossRefGoogle ScholarPubMed
Ramzy, D., Rao, V., Brahm, J., et al. Cardiac allograft vasculopathy: a review. Can J Surg 2005; 48: 319–27.Google ScholarPubMed
Conway, J., Dipchand, A.. Heart transplantation in children. Pediatr Clin North Am 2010; 57: 353–73.CrossRefGoogle ScholarPubMed
Dean, C. L., Sullivan, H. C., Stowell, S. R., et al. Current state of transfusion practices for ABO-incompatible pediatric heart transplant patients in the United States and Canada. Transfusion 2018; 58: 2243–49.CrossRefGoogle ScholarPubMed
Nasr, V. G., DiNardo, J. A.. Heart transplantation. In Nasr, V. G., DiNardo, J. A., eds., The Pediatric Cardiac Anesthesia Handbook. Hoboken, NJ: John Wiley & Sons, 2017; 199216.CrossRefGoogle Scholar
Jurgens, P., Aquilante, C., Page, R., et al. Perioperative management of cardiac transplant recipients undergoing noncardiac surgery: unique challenges created by advancements in care. Semin Cardiothorac Vasc Anesth 2017; 21: 235–44.CrossRefGoogle ScholarPubMed
Jurgens, P., Ambardekar, A.. Non-cardiac surgery is common in cardiac transplanted recipients and has a similar complication rate as the general population. J Card Fail 2017; 23: S126–7.CrossRefGoogle Scholar
Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease. Prevention of infective endocarditis: Guidelines from the American Heart Association. Circulation 2007; 116: 1736–54.Google Scholar
Williams, G. D., Ramamoorthy, C., Sarma, A.. Anesthesia for cardiac and pulmonary transplantation. In Andropoulos, D. B., Stayer, S., Mossad, E. B., et al., eds., Anesthesia for Congenital Heart Disease, 3rd ed. Hoboken, NJ: John Wiley & Sons, 2015; 636–60.Google Scholar
Manito, N., Delgado, J. F., Crespo-Leiro, M. G., et al. Clinical recommendations for the use of everolimus in heart transplantation. Transplant Rev (Orlando) 2010; 24: 129–42.CrossRefGoogle ScholarPubMed
Papalois, V. E., Hakim, N. S.. New immunosuppressive drugs in organ transplantation. In Hakim, N. S., ed., Introduction to Organ Transplantation. London: Imperial College Press, 1997; 225–36.Google Scholar

Suggested Reading

Dipchand, A. I. Current state of pediatric cardiac transplantation. Ann Cardiothorac Surg 2018; 7: 3155.CrossRefGoogle ScholarPubMed
Jurgens, P. and Ambardekar, A. Non-cardiac surgery is common in cardiac transplanted recipients and has a similar complication rate as the general population. J Card Fail 2017; 23: S126–7.CrossRefGoogle Scholar
Jurgens, P., Aquilante, C., Page, R., et al. Perioperative management of cardiac transplant recipients undergoing noncardiac surgery: unique challenges created by advancements in care. Semin Cardiothorac Vasc Anesth 2017; 21: 235–44.CrossRefGoogle ScholarPubMed
Williams, G. D., Ramamoorthy, C., and Sarma, A. Anesthesia for cardiac and pulmonary transplantation. In Andropoulos, D. B., Stayer, S., Mossad, E. B., et al., eds. Anesthesia for Congenital Heart Disease, 3rd ed. Hoboken, NJ, John Wiley & Sons, 2015; 636–60.Google Scholar

References

Dipchand, A. I.. Current state of pediatric cardiac transplantation. Ann Cardiothorac Surg 2018; 7: 3155.CrossRefGoogle ScholarPubMed
Jooste, E. H., Muhly, W. T., Ibinson, J. W., et al. Acute hemodynamic changes after rapid intravenous bolus dosing of dexmedetomidine in pediatric heart transplant patients undergoing routine cardiac catheterization. Anesth Analg 2010; 111: 1490–6.Google Scholar
Schwartz, L. I., Miyamoto, S. D., Stenquist, S., et al. Cardiac arrest in a heart transplant patient receiving dexmedetomidine during cardiac catheterization. Semin Cardiothorac Vasc Anesth 2016; 20: 175–8.Google Scholar
Elhoff, J. J., Chowdhury, S. M., Taylor, C. L., et al. Decline in ventricular function as a result of general anesthesia in pediatric heart transplant recipients. Pediatr Transplant 2016; 20: 1106–10.CrossRefGoogle ScholarPubMed

Suggested Reading

Conway, J., Manlhiot, C., Kirk, R., et al. Mortality and morbidity after retransplantation after primary heart transplant in childhood: an analysis from the registry of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant 2014; 33: 241–51.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×