Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-13T03:01:18.175Z Has data issue: false hasContentIssue false

3 - The State of the World’s Biodiversity

Published online by Cambridge University Press:  19 August 2019

Partha Dasgupta
Affiliation:
University of Cambridge
Peter Raven
Affiliation:
Missouri Botanical Garden
Anna McIvor
Affiliation:
University of Cambridge
Get access

Summary

In this chapter, we ask several simple questions. How many species are there, both named and unnamed? How fast are species now going extinct? How fast do species go extinct normally? And how fast do they diversify and thus might be able to recover from the current massive losses? Finally, where are extinctions concentrated, and how can we use this information to prevent extinctions?

This deceptively simple question has a rich – and even theological – pedigree. Westwood (1833) speculated ‘On the probable number of species of insects in the Creation’.

Type
Chapter
Information
Biological Extinction
New Perspectives
, pp. 80 - 112
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alroy, J. 1996. Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals. Palaeogeography, Palaeoclimatology, Palaeoecology, 127(1): 285311.Google Scholar
Alroy, J. 2008. Dynamics of origination and extinction in the marine fossil record. Proceedings of the National Academy of Sciences, 105(Supplement 1): 1153611542.Google Scholar
Appeltans, W., Ahyong, S. T., Anderson, G., Angel, M. V., Artois, T., Bailly, N., Bamber, R., Barber, A., Bartsch, I. & Berta, A. 2012. The magnitude of global marine species diversity. Current Biology, 22(23): 21892202.Google Scholar
Bacher, S. 2012. Still not enough taxonomists: Reply to Joppa et al. Trends in Ecology and Evolution, 27(2): 6566.Google Scholar
Barnosky, A. D., Matzke, N., Tomiya, S., Wogan, G. O. U., Swartz, B., Quental, T. B., Marshall, C., McGuire, J. L., Lindsey, E. L. & Maguire, K. C. 2011. Has the Earth’s sixth mass extinction already arrived? Nature, 471(7336): 5157.Google Scholar
Bass, D. & Richards, T. A. 2011. Three reasons to re-evaluate fungal diversity ‘on Earth and in the ocean’. Fungal Biology Reviews, 25(4): 159164.CrossRefGoogle Scholar
Bebber, D. P., Marriott, F. H. C., Gaston, K. J., Harris, S. A. & Scotland, R. W. 2007. Predicting unknown species numbers using discovery curves. Proceedings of the Royal Society B: Biological Sciences, 274(1618): 16511658.Google Scholar
Blackwell, M. 2011. The Fungi: 1, 2, 3 … 5.1 million species? American Journal of Botany, 98(3): 426438.Google Scholar
Brooks, T. M., Pimm, S. L. & Oyugi, J. O. 1999. Time lag between deforestation and bird extinction in tropical forest fragments. Conservation Biology, 13(5): 11401150.Google Scholar
Brummitt, N. A., Bachman, S. P., Griffiths-Lee, J., Lutz, M., Moat, J. F., Farjon, A., Donaldson, J. S., Hilton-Taylor, C., Meagher, T. R. & Albuquerque, S. 2015. Green plants in the red: A baseline global assessment for the IUCN sampled Red List Index for plants. PLoS One, 10(8): e0135152.Google Scholar
Cannon, P. F. 1997. Diversity of the Phyllachoraceae with special reference to the tropics. In Hyde, K. D. (Ed.), Biodiversity of Tropical Microfungi: 255278. Hong Kong: Hong Kong University Press.Google Scholar
Carpenter, K. E. & et al. 2008. One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science, 321(5888): 560563.Google Scholar
Chapman, A. D. 2009. Numbers of Living Species in Australia and the World, 2nd ed. Canberra, Australia: Report for the Australian Biological Resources Study.Google Scholar
Cincotta, R. P., Wisnewski, J. & Engelman, R. 2000. Human population in the biodiversity hotspots. Nature, 404(6781): 990992.Google Scholar
Costello, M. J. & Wilson, S. P. 2011. Predicting the number of known and unknown species in European seas using rates of description. Global Ecology and Biogeography, 20(2): 319330.Google Scholar
De Vos, J. M., Joppa, L. N., Gittleman, J. L., Stephens, P. R. & Pimm, S. L. 2015. Estimating the normal background rate of species extinction. Conservation Biology, 29(2): 452462.Google Scholar
Dulvy, N. K. & et al. 2014. Extinction risk and conservation of the world’s sharks and rays. eLife, 3.Google Scholar
Erasmus, B. F., Van Jaarsveld, A. S., Chown, S. L., Kshatriya, M. & Wessels, K. J. 2002. Vulnerability of South African animal taxa to climate change. Global Change Biology, 8(7): 679693.Google Scholar
Erwin, T. L. 1982. Tropical forests: Their richness in Coleoptera and other arthropod species. The Coleopterists Bulletin, 36(1): 7475.Google Scholar
Etienne, R. S., Haegeman, B., Stadler, T., Aze, T., Pearson, P. N., Purvis, A. & Phillimore, A. B. 2012. Diversity-dependence brings molecular phylogenies closer to agreement with the fossil record. Proceedings of the Royal Society B: Biological Sciences, 279(1732): 13001309.Google Scholar
Ferraz, G., Russell, G. J., Stouffer, P. C., Bierregaard, R. O., Pimm, S. L. & Lovejoy, T. E. 2003. Rates of species loss from Amazonian forest fragments. Proceedings of the National Academy of Sciences, 100(24): 1406914073.Google Scholar
Ferrer, M. M. & Good, S. V. 2012. Self-sterility in flowering plants: Preventing self-fertilization increases family diversification rates. Annals of Botany, 110(3): 535553.Google Scholar
Flessa, K. W. & Jablonski, D. 1985. Declining Phanerozoic background extinction rates: Effect of taxonomic structure? Nature, 313(5999): 216218.Google Scholar
Foote, M. 2005. Pulsed origination and extinction in the marine realm. Paleobiology, 31(1): 620Google Scholar
Foote, M. & Raup, D. M. 1996. Fossil preservation and the stratigraphic ranges of taxa. Paleobiology, 22(2): 121140.Google Scholar
Gaston, K. J. 1991. The magnitude of global insect species richness. Conservation Biology, 5(3): 283296.Google Scholar
Gering, J. C., DeRennaux, K. A. & Crist, T. O. 2007. Scale dependence of effective specialization: Its analysis and implications for estimates of global insect species richness. Diversity and Distributions, 13(1): 115125.CrossRefGoogle Scholar
Gore, A. 2006. An Inconvenient Truth: The Planetary Emergency of Global Warming and What We Can Do about It. New York: Rodale Books.Google Scholar
Grassle, J. F. & Maciolek, N. J. 1992. Deep-sea species richness: Regional and local diversity estimates from quantitative bottom samples. The American Naturalist, 139(2): 313341.Google Scholar
Hamilton, Andrew J., Basset, Y., Benke, Kurt K., Grimbacher, Peter S., Miller, Scott E., Novotny, V., Samuelson, G. A., Stork, Nigel E., Weiblen, George D. & Yen, Jian D. L. 2010. Quantifying uncertainty in estimation of tropical arthropod species richness. The American Naturalist, 176(1): 9095.Google Scholar
Harnik, P. G., Lotze, H. K., Anderson, S. C., Finkel, Z. V., Finnegan, S., Lindberg, D. R., Liow, L. H., Lockwood, R., McClain, C. R., McGuire, J. L., O’Dea, A., Pandolfi, J. M., Simpson, C. & Tittensor, D. P. 2012. Extinctions in ancient and modern seas. Trends in Ecology & Evolution, 27(11): 608617.Google Scholar
Hawksworth, D. L. 1991. The fungal dimension of biodiversity: Magnitude, significance, and conservation. Mycological Research, 95(6): 641655.Google Scholar
Hebert, P. D. N., Penton, E. H., Burns, J. M., Janzen, D. H. & Hallwachs, W. 2004. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America, 101(41): 1481214817.Google Scholar
Hibbett, D. 2016. The invisible dimension of fungal diversity. Science, 351(6278): 11501151.CrossRefGoogle ScholarPubMed
IUCN. 2016. The IUCN Red List of Threatened Species. www.iucnredlist.org.Google Scholar
Jenkins, C. N., Pimm, S. L. & Joppa, L. N. 2013. Global patterns of terrestrial vertebrate diversity and conservation. Proceedings of the National Academy of Sciences, 110(28): E2602-E2610.Google Scholar
Jenkins, C. N. & Van Houtan, K. 2016. Global and regional priorities for marine biodiversity protection. Biological Conservation, doi:10.1016/j.biocon.2016.10.005.Google Scholar
Joppa, L. N., Roberts, D. L., Myers, N. & Pimm, S. L. 2011a. Biodiversity hotspots house most undiscovered plant species. Proceedings of the National Academy of Sciences, 108(32): 1317113176.Google Scholar
Joppa, L. N., Roberts, D. L. & Pimm, S. L. 2010. How many species of flowering plants are there? Proceedings of the Royal Society B: Biological Sciences, 278(1705): 554.CrossRefGoogle Scholar
Joppa, L. N., Roberts, D. L. & Pimm, S. L. 2011b. The population ecology and social behaviour of taxonomists. Trends in Ecology & Evolution, 26(11): 551553.Google Scholar
Kew, R. 2016. The State of the World’s Plants Report – 2016. Kew, UK: The Board of Trustees of the Royal Botanic Gardens.Google Scholar
Koenen, E. J. M., de Vos, J. M., Atchison, G. W., Simon, M. F., Schrire, B. D., de Souza, E. R., de Queiroz, L. P. & Hughes, C. E. 2013. Exploring the tempo of species diversification in legumes. South African Journal of Botany, 89: 1930.Google Scholar
Lambshead, P. J. D. & Boucher, G. 2003. Marine nematode deep-sea biodiversity: Hyperdiverse or hype? Journal of Biogeography, 30(4): 475485.Google Scholar
Lees, A. C. & Pimm, S. L. 2015. Species, extinct before we know them? Current Biology, 25(5): R177R180.Google Scholar
Locey, K. J. & Lennon, J. T. 2016. Scaling laws predict global microbial diversity. Proceedings of the National Academy of Sciences, 113(21): 5970-5975.Google Scholar
Manne, L. L. & Pimm, S. L. 2001. Beyond eight forms of rarity: Which species are threatened and which will be next? Animal Conservation, 4(3): 221229.CrossRefGoogle Scholar
May, R. M. 1991. A fondness for fungi. Nature, 352(6335): 475476.Google Scholar
May, R. M. & Beverton, R. J. H. 1990. How many species? [and Discussion]. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 330(1257): 293304.Google Scholar
McPeek, M. A. 2008. The ecological dynamics of clade diversification and community assembly. The American Naturalist, 172(6): E270-E284.Google Scholar
Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B. & Worm, B. 2011. How many species are there on Earth and in the ocean? PLoS Biology, 9(8): e1001127.Google Scholar
Mora, C., Tittensor, D. P. & Myers, R. A. 2008. The completeness of taxonomic inventories for describing the global diversity and distribution of marine fishes. Proceedings of the Royal Society B: Biological Sciences, 275(1631): 149155.Google Scholar
Morlon, H., Parsons, T. L. & Plotkin, J. B. 2011. Reconciling molecular phylogenies with the fossil record. Proceedings of the National Academy of Sciences, 108(39): 1632716332.Google Scholar
Myers, N. 1988. Threatened biotas: ‘Hot spots’ in tropical forests. Environmentalist, 8(3): 187208.Google Scholar
Myers, N. 1989. Extinction rates past and present. BioScience, 39(1): 3941.Google Scholar
Myers, N., Mittermeier, R., Mittermeier, C., da Fonseca, G. & Kent, J. 2000. Biodiversity hotspots for conservation priorities. Nature, 403: 853858.Google Scholar
Nee, S. 2006. Birth-death models in macroevolution. Annual Review of Ecology, Evolution, and Systematics, 37(1): 117.Google Scholar
Novotny, V., Miller, S. E., Hulcr, J., Drew, R. A. I., Basset, Y., Janda, M., Setliff, G. P., Darrow, K., Stewart, A. J. A., Auga, J., Isua, B., Molem, K., Manumbor, M., Tamtiai, E., Mogia, M. & Weiblen, G. D. 2007. Low beta diversity of herbivorous insects in tropical forests. Nature, 448(7154): 692695.Google Scholar
O’Brien, H. E., Parrent, J. L., Jackson, J. A., Moncalvo, J.-M. & Vilgalys, R. 2005. Fungal community analysis by large-scale sequencing of environmental samples. Applied and Environmental Microbiology, 71(9): 55445550.Google Scholar
Ocampo-Peñuela, N., Jenkins, C. N., Vijay, V., Li, B. V. & Pimm, S. L. 2016. Incorporating explicit geospatial data shows more species at risk of extinction than the current Red List. Science Advances, 2(11): e1601367.Google Scholar
ØDegaard, F. 2000. How many species of arthropods? Erwin’s estimate revised. Biological Journal of the Linnean Society, 71(4): 583597.Google Scholar
Pereira, H. M., Leadley, P. W., Proença, V., Alkemade, R., Scharlemann, J. P., Fernandez-Manjarrés, J. F., Araújo, M. B., Balvanera, P., Biggs, R. & Cheung, W. W. 2010. Scenarios for global biodiversity in the 21st century. Science, 330(6010): 14961501.Google Scholar
Peters, H., O’Leary, B. C., Hawkins, J. P., Carpenter, K. E. & Roberts, C. M. 2013. Conus: First comprehensive conservation red list assessment of a marine gastropod mollusc genus. PLoS One, 8(12): e83353.Google Scholar
Phillimore, A. B. & Price, T. D. 2008. Density-dependent cladogenesis in birds. PLoS Biology, 6(3): e71.Google Scholar
Pimm, S. L. 2008. Biodiversity: Climate change or habitat loss – which will kill more species. Current Biology, 18(3): R117-R119.Google Scholar
Pimm, S. L. 2009. Climate disruption and biodiversity. Current Biology, 19(14): R595R601.Google Scholar
Pimm, S. L. & Brooks, T. 2013. Conservation: Forest fragments, facts, and fallacies. Current Biology, 23(24): R1098R1101.Google Scholar
Pimm, S. L., Jenkins, C. N., Abell, R., Brooks, T. M., Gittleman, J. L., Joppa, L. N., Raven, P. H., Roberts, C. M. & Sexton, J. O. 2014. The biodiversity of species and their rates of extinction, distribution, and protection. Science, 344(6187): 1246752.Google Scholar
Pimm, S. L. & Raven, P. 2000. Biodiversity: Extinction by numbers. Nature, 403(6772): 843845.Google Scholar
Pimm, S. L. & Raven, P. 2017. The fate of the world’s plants. Trends in Ecology & Evolution, 32(5): 317320.Google Scholar
Pimm, S., Raven, P., Peterson, A., Şekercioğlu, Ç. H. & Ehrlich, P. R. 2006. Human impacts on the rates of recent, present, and future bird extinctions. Proceedings of the National Academy of Sciences, 103(29): 1094110946.Google Scholar
Pimm, S., Russell, G. J., Gittleman, J. & Brooks, T. M. 1995. The future of biodiversity. Science, 269: 347350.CrossRefGoogle ScholarPubMed
Pitman, N. C. & Jørgensen, P. M. 2002. Estimating the size of the world’s threatened flora. Science, 298(5595): 989–989.Google Scholar
Purvis, A. 2008. Phylogenetic approaches to the study of extinction. Annual Review of Ecology, Evolution, and Systematics, 39: 301319.Google Scholar
Pyron, R. A. & Burbrink, F. T. 2013. Phylogenetic estimates of speciation and extinction rates for testing ecological and evolutionary hypotheses. Trends in Ecology & Evolution, 28(12): 729736.Google Scholar
Quental, T. B. & Marshall, C. R. 2011. The molecular phylogenetic signature of clades in decline. PLoS One, 6(10): e25780.Google Scholar
Ricotta, C., Ferrari, M. & Avena, G. 2002. Using the scaling behaviour of higher taxa for the assessment of species richness. Biological Conservation, 107(1): 131133.Google Scholar
Rosenzweig, M. L. 1995. Species Diversity in Space and Time. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Russell, G. J., Brooks, T. M., McKinney, M. M. & Anderson, C. G. 1998. Present and future taxonomic selectivity in bird and mammal extinctions. Conservation Biology, 12(6): 13651376.Google Scholar
Savidge, J. A. 1987. Extinction of an island forest avifauna by an introduced snake. Ecology, 68(3): 660668.Google Scholar
Scheffers, B. R., Joppa, L. N., Pimm, S. L. & Laurance, W. F. 2012. What we know and don’t know about Earth’s missing biodiversity. Trends in Ecology & Evolution, 27(9): 501510.Google Scholar
Solow, A. R. & Smith, W. K. 2005. On estimating the number of species from the discovery record. Proceedings: Biological Sciences, 272(1560): 285287.Google Scholar
Stork, N. E. 1993. How many species are there? Biodiversity and Conservation, 2(3): 215232.Google Scholar
Stork, N. E. 2010. Re-assessing current extinction rates. Biodiversity and Conservation, 19(2): 357371.Google Scholar
Taylor, D. L., Hollingsworth, T. N., McFarland, J. W., Lennon, N. J., Nusbaum, C. & Ruess, R. W. 2014. A first comprehensive census of fungi in soil reveals both hyperdiversity and fine‐scale niche partitioning. Ecological Monographs, 84(1): 320.Google Scholar
Turgeon, J., Stoks, R., Thum, R. A., Brown, J. M. & McPeek, M. A. 2005. Simultaneous Quaternary radiations of three damselfly clades across the Holarctic. The American Naturalist, 165(4): E78E107.Google Scholar
Valente, L. M., Savolainen, V. & Vargas, P. 2010. Unparalleled rates of species diversification in Europe. Proceedings of the Royal Society B: Biological Sciences, 277(1687): 14891496.Google Scholar
Wallace, A. R. 1855. XVIII. – On the law which has regulated the introduction of new species. Journal of Natural History, 16(93): 184196.CrossRefGoogle Scholar
Weir, J. T. & Schluter, D. 2007. The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science, 315(5818): 15741576.Google Scholar
Westwood, J. 1833. On the probable number of species of insects in the creation; together with descriptions of several minute Hymenoptera. The Magazine of Natural History and Journal of Zoology, Botany, Mineralogy, Geology and Meterology, 6: 116123.Google Scholar
Williams, J. W., Jackson, S. T. & Kutzbach, J. E. 2007. Projected distributions of novel and disappearing climates by 2100 AD. Proceedings of the National Academy of Sciences, 104(14): 57385742.Google Scholar
Zhou, Z. & Zheng, S. 2003. Palaeobiology: The missing link in Ginkgo evolution. Nature, 423(6942): 821822.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×