Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-17T22:36:48.709Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  13 July 2020

Michael G. Cottam
Affiliation:
University of Western Ontario
Zahra Haghshenasfard
Affiliation:
University of Western Ontario
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Many-Body Theory of Condensed Matter Systems
An Introductory Course
, pp. 265 - 270
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Griffiths, D. J., Introduction to Quantum Mechanics, 2nd edn. (Cambridge: Cambridge University Press, 2017).Google Scholar
[2] Bransden, B. H. and Joachain, C. J., Quantum Mechanics, 2nd edn. (New York: Pearson Education, 2000).Google Scholar
[3] Reichl, L. E., A Modern Course in Statistical Physics, 3rd edn. (New York: Wiley, 2009).Google Scholar
[4] Pathria, R. K. and Beale, P. D., Statistical Physics, 3rd edn. (Amsterdam: Academic Press, 2011).Google Scholar
[5] Dirac, P. A. M., The Principles of Quantum Mechanics, 4th edn. (Oxford: Clarendon Press, 1958).Google Scholar
[6] Dirac, P. A. M., The quantum theory of the emission and absorption of radiation. Proc. Royal Soc. London A, 114 (1927), 243–65.Google Scholar
[7] Jackson, J. D., Classical Electrodynamics, 3rd edn. (New York: Wiley, 2005).Google Scholar
[8] Griffiths, D. J., Introduction to Electrodynamics, 4th edn. (Cambridge: Cambridge University Press, 2017).Google Scholar
[9] Kittel, C., Quantum Theory of Solids, 2nd edn. (New York: Wiley, 1987).Google Scholar
[10] Glauber, R. J., Coherent and incoherent states of radiation field. Phys. Rev., 131 (1963), 2766–88.Google Scholar
[11] Glauber, R. J., The quantum theory of optical coherence. Phys. Rev., 130 (1963), 2529–39.Google Scholar
[12] Glauber, R. J., Photon correlations. Phys. Rev. Lett., 10 (1963), 84–6.Google Scholar
[13] Loudon, R., The Quantum Theory of Light (Oxford: Oxford University Press, 2000).Google Scholar
[14] Scully, M. O. and Zubairy, M. S., Quantum Optics (Cambridge: Cambridge University Press, 1997).Google Scholar
[15] Gerry, C. and Knight, P., Introductory Quantum Optics (Cambridge: Cambridge University Press, 2005).Google Scholar
[16] Mandel, L. and Wolf, E., Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press, 1995).Google Scholar
[17] Meystre, P. and Sargent, M., Elements of Quantum Optics, 3rd edn. (Berlin: Springer, 1999).Google Scholar
[18] Magnus, W., On the exponential solution of differential equations for a linear operator. Commun. Pure Appl. Math., 7 (1954), 649–73.Google Scholar
[19] Kittel, C., Introduction to Solid State Physics, 8th edn. (New York: Wiley, 2004).Google Scholar
[20] Ashcroft, N. W., Wei, D., and Mermin, N. D., Solid State Physics, 2nd edn. (Singapore: CENGAGE Learning Asia, 2016).Google Scholar
[21] Hubbard, J., Electron correlations in narrow energy bands. J. Proc. Roy. Soc. London A, 276 (1963), 238–57.Google Scholar
[22] Davis, K. B., Mewes, M. O., Andrews, M. R., van Druten, N. J., Durfee, D. S., Kurn, D. M., and Ketterle, W., Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett., 75 (1995), 3969–73.Google Scholar
[23] Tilley, D. R. and Tilley, J., Superfluidity and Superconductivity, 3rd edn. (Bristol: IoP Publishing, 1990).Google Scholar
[24] Landau, L. D., On the theory of superfluidity of helium II. J. Phys. USSR, 11 (1947), 91.Google Scholar
[25] Henshaw, D. G. and Woods, A. D. B., Modes of atomic motions in liquid helium by inelastic scattering of neutrons. Phys. Rev., 121 (1961), 1266–74.Google Scholar
[26] White, R. M., Quantum Theory of Magnetism: Magnetic Properties of Materials, 3rd edn. (Berlin: Springer, 2007).Google Scholar
[27] Mattis, D. C., The Theory of Magnetism I: Statics and Dynamics (Berlin: Springer, 1981).Google Scholar
[28] Holstein, T. and Primakoff, H., Field dependence of the intrinsic domain magnetization of a ferromagnet. Phys. Rev., 58 (1940), 1098–113.CrossRefGoogle Scholar
[29] Merzbacher, E., Quantum Mechanics, 3rd edn. (New York: Wiley, 1998).Google Scholar
[30] Ferrell, R. A., Forced harmonic oscillator in the interaction picture. Am. J. Phys., 45 (1977), 468–9.Google Scholar
[31] Feynman, R. P., Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys., 20 (1948), 367–87.Google Scholar
[32] Husimi, K., Miscellanea in elementary quantum mechanics, II. Progr. Theor. Phys., 9 (1953), 381402.Google Scholar
[33] Kerner, E. H., Note on the forced and damped oscillator in quantum mechanics. Can. J. Phys., 36 (1957), 371–7.Google Scholar
[34] Carruthers, P. and Nieto, M. M., Coherent states and the forced quantum oscillator. Am. J. Phys., 33 (1965), 537–44.Google Scholar
[35] Blanes, S., Casasb, F., Oteoc, J. A., and Roscd, J., The Magnus expansion and some of its applications. Phys. Rep., 470 (2009), 151238.Google Scholar
[36] Bongaarts, P., Quantum Theory: A Mathematical Approach (Heidelberg: Springer, 2015).Google Scholar
[37] Rezende, S. M. and Zagury, N., Coherent magnon states. Phys. Lett. A, 29 (1969), 47–8.Google Scholar
[38] Zagury, N. and Rezende, S. M., Theory of macroscopic excitations of magnons. Phys. Rev. B, 4 (1971), 201–9.Google Scholar
[39] Cottam, M. G. and Tilley, D. R., Introduction to Surface and Superlattice Excitations, 2nd edn. (Bristol: IoP Publishing, 2005).Google Scholar
[40] Srivastava, G. P., The Physics of Phonons (New York: Taylor and Francis, 1990).Google Scholar
[41] Born, M. and Huang, K., Dynamical Theory of Crystal Lattices (Oxford: Clarendon Press, 1988).Google Scholar
[42] Cohen, M. H. and Keffer, F., Dipolar sums in the primitive cubic lattices. Phys. Rev., 99 (1955), 1128–34.Google Scholar
[43] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A., Electric field effect in atomically thin carbon films. Science, 306 (2004), 666–9.Google Scholar
[44] Castro Neto, A. H., Guinea, F., Peres, F. M. R., Novosolov, K. S., and Geim, A. K., The electronic properties of graphene. Rev. Mod. Phys., 81 (2009), 109–62.Google Scholar
[45] Power, S. R. and Ferreira, M. S., Indirect exchange and Ruderman–Kittel–Kasuya– Yosida (RKKY) interactions in magnetically-doped graphene. Crystals, 3 (2013), 4978.Google Scholar
[46] Roach, G. F., Green’s Functions, 2nd edn. (Cambridge: Cambridge University Press, 1982).Google Scholar
[47] Mahan, G. D., Many-Particle Physics, 3rd edn. (New York: Kluwer Academic/ Plenum, 2000).Google Scholar
[48] Economou, E. N., Green’s Functions in Quantum Physics, 3rd edn. (Berlin: Springer, 2006).Google Scholar
[49] Rickayzen, G., Green’s Functions and Condensed Matter (London: Academic Press, 1980).Google Scholar
[50] Coleman, P., Introduction to Many-Body Physics (Cambridge: Cambridge University Press, 2015).Google Scholar
[51] Abrikosov, A. A., Gorkov, L. P., and Dzyaloshinski, I. E., Methods of Quantum Field Theory in Statistical Physics (New York: Dover Publications, 1963).Google Scholar
[52] Mattuck, R. D., A Guide to Feynman Diagrams in the Many-Body Problem, 2nd edn. (New York: Dover Publications, 1976).Google Scholar
[53] Zubarev, D. N., Double-time Green functions in statistical physics. Sov. Phys. Uspekhi, 3 (1960), 320–45.CrossRefGoogle Scholar
[54] Mathews, J. and Walker, R. L., Mathematical Methods of Physics, 2nd edn. (San Francisco: Benjamin, 1973).Google Scholar
[55] Arfken, G. B., Weber, H. J., and Harris, F. E., Mathematical Methods for Physicists, 7th edn. (Amsterdam: Elsevier, 2012).Google Scholar
[56] Landau, L. D. and Lifschitz, E. M., Statistical Physics, 3rd edn. (Amsterdam: Elsevier, 1980).Google Scholar
[57] Mazenko, G. F., Nonequilibrium Statistical Mechanics (Weinheim: Wiley-VCH, 2006).Google Scholar
[58] Matsubara, T., A new approach to quantum-statistical mechanics. Prog. Theor. Phys., 14 (1955), 351–78.Google Scholar
[59] Lehmann, H., On the properties of propagation functions and renormalization constants of quantized fields. Nuovo Cimento, 11 (1954), 342–57.Google Scholar
[60] Jaynes, E. T. and Cummings, F. W., Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE., 51 (1963), 89109.Google Scholar
[61] Cummings, F. W., Reminiscing about thesis work with E. T. Jaynes at Stanford in the 1950s. J. Phys. B: At. Mol. Opt. Phys., 46 (2013), 220202 (3 pages).Google Scholar
[62] Crisp, M. D. and Jaynes, E. T., Radiative effects in semiclassical theory. Phys. Rev., 179 (1969), 1253–61.Google Scholar
[63] Stroud, C. R. Jr. and Jaynes, E. T., Long-term solutions in semiclassical radiation theory. Phys. Rev. A, 1 (1970), 106–21.Google Scholar
[64] Jaynes, E. T., Survey of the present status of neoclassical radiation theory in coherence and quantum optics. In Coherent and Quantum Optics, ed. Mandel, L. and Wolf, E. (New York: Plenum, 1973), pp. 35–81.Google Scholar
[65] Shore, B. W. and Knight, P. L., The Jaynes–Cummings model. J. Mod. Opt., 40 (1993), 1195–238.Google Scholar
[66] Orszag, M., Quantum Optics, 2nd edn. (Berlin: Springer, 2007).Google Scholar
[67] Mandel, L. and Wolf, E., Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press, 1995).Google Scholar
[68] Dicke, R. H., Coherence in spontaneous radiation processes. Phys. Rev., 93 (1954), 99110.Google Scholar
[69] Tavis, M. and Cummings, F. W., Exact solution for an N-molecule-radiation-field Hamiltonian. Phys. Rev., 170 (1968), 379–84.Google Scholar
[70] Garraway, B. M., The Dicke model in quantum optics: Dicke model revisited. Phil. Trans. Roy. Soc. A, 369 (2011), 1137–55.Google Scholar
[71] Jedrkiewicz, O. and Loudon, R., Atomic dynamics in microcavities: Absorption spectra by Green function method. J. Opt. B: Quantum Semiclass. Opt., 2 (2000), R47–60.Google Scholar
[72] Cottam, M. G. and Slavin, A. N., Fundamentals of linear and nonlinear spin-wave processes in bulk and finite magnetic samples. In Linear and Nonlinear Spin Waves in Magnetic Films and Superlattices, ed. Cottam, M. G. (Singapore: World Scientific, 1994), pp. 1–88.Google Scholar
[73] Coey, J. M. D., Magnetism and Magnetic Materials (Cambridge: Cambridge University Press, 2010).Google Scholar
[74] Stanley, H. E., Mean Field Theory of Magnetic Phase Transitions (Oxford: Oxford University Press, 1971).Google Scholar
[75] Tahir-Kheli, R. A. and ter Haar, D., Use of Green functions in the theory of ferromagnetism: I. General discussion of the spin-S case. Phys. Rev., 127 (1962), 8894.Google Scholar
[76] Cottam, M. G. and Lockwood, D. J., Light Scattering in Magnetic Solids (New York: Wiley, 1986).Google Scholar
[77] Madelung, O., Introduction to Solid-State Theory (Berlin: Springer, 1978).Google Scholar
[78] Mott, N. F., Metal-Insulator Transitions (Oxford: Taylor and Francis, 1990).Google Scholar
[79] Yosida, K., Theory of Magnetism (Berlin: Springer, 1996).Google Scholar
[80] Hubbard, J., Electron correlations in narrow energy bands II. The degenerate band case. J. Proc. Roy. Soc. London A, 277 (1964), 237–59.Google Scholar
[81] Hubbard, J., Electron correlations in narrow energy bands III. An improved solution. J. Proc. Roy. Soc. London A, 281 (1964), 401–19.Google Scholar
[82] Anderson, P. W., Localized magnetic states in metals. Phys. Rev., 115 (1961), 4153.Google Scholar
[83] Herring, C., Exchange interactions among itinerant electrons. In Magnetism, Volume IV, ed. Rado, G. T. and Suhl, H. (New York: Academic Press, 1966), pp. 1–407.Google Scholar
[84] Anderson, P. W., New approach to the theory of superexchange interactions. Phys. Rev., 124 (1959), 213.Google Scholar
[85] Heeger, A. J., Localized moments and nonmoments in metals. In Solid State Physics, Vol. 23, ed. Seitz, F. and Turnbull, D. (Amsterdam: Academic Press, 1969), pp. 283–411.Google Scholar
[86] Moriya, T., Spin Fluctuations in Itinerant Electron Magnetism (Berlin: Springer, 1985).Google Scholar
[87] Doniach, S. and Sondheimer, E. H., Green’s Function for Solid State Physics, 2nd edn. (London: Imperial College Press, 1998).Google Scholar
[88] Bardeen, J., Cooper, L. N., and Schrieffer, J. R., Theory of superconductivity. Phys. Rev., 108 (1957), 1175–204.Google Scholar
[89] Valatin, J. G., Comments on the theory of superconductivity. Il Nuovo Cimento, 7 (1958), 843–57.Google Scholar
[90] Anderson, P. W., Random-phase approximation in the theory of superconductivity. Phys. Rev., 112 (1958), 1900–16.Google Scholar
[91] Bogoljubov, N. N., On a new method in the theory of superconductivity. Il Nuovo Cimento, 7 (1958), 794805.Google Scholar
[92] Cooper, L. N., Bound electron pairs in a degenerate Fermi gas. Phys. Rev., 104 (1956), 1189–90.Google Scholar
[93] Bednorz, J. G. and Müller, K. A., Possible high Tc superconductivity in the Ba-La-Cu-O system. Zeitschrift für Physik B: Condensed Matter, 64 (1986), 189–93.Google Scholar
[94] von Neumann, J., Probabilistic foundation theory of quantum mechanics. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1 (1927), 245–72.Google Scholar
[95] ter Haar, D., Theory and applications of the density matrix. Rep. Prog. Phys., 24 (1961), 304–62.Google Scholar
[96] Schwabl, F., Statistical Mechanics, 2nd edn. (Berlin: Springer, 2006).Google Scholar
[97] Mandl, F., Statistical Physics, 2nd edn. (New York: Wiley, 1988).Google Scholar
[98] Landau, L. D. and Lifschitz, E. M., Theory of Elasticity, 3rd edn. (Amsterdam: Elsevier, 1986).Google Scholar
[99] Kubo, R., The fluctuation-dissipation theorem. Rep. Prog. Phys., 29 (1966), 255–84.Google Scholar
[100] Nolting, W., Fundamentals of Many-Body Physics: Principles and Methods (Berlin: Springer, 2009).Google Scholar
[101] Hayes, W. and Loudon, R., Scattering of Light by Crystals (New York: Wiley, 1978).Google Scholar
[102] Lovesey, S. W., Condensed Matter Physics: Dynamic Correlations, 2nd edn. (San Francisco: Benjamin, 1986).Google Scholar
[103] Cowley, R. A. and Buyers, W. J. L., The properties of defects in magnetic insulators. Rev. Mod. Phys., 44 (1972), 406–50.Google Scholar
[104] Boardman, A. D. (Ed.), Electromagnetic Surface Modes (New York: Wiley, 1982).Google Scholar
[105] Agranovich, V. M. and Mills, D. L. (Eds.), Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces (Amsterdam: North-Holland, 1982).Google Scholar
[106] Agranovich, V. M. and Loudon, R. (Eds.), Surface Excitations (Amsterdam: North-Holland, 1984).Google Scholar
[107] Wallis, R. F. and Stegeman, G. I. (Eds.), Electromagnetic Surface Excitations (Heidelberg: Springer, 1986).Google Scholar
[108] Joannopoulos, J. D., Johnson, S. G., Winn, J. N., and Meade, R. D., Photonic Crystals: Molding the Flow of Light (Princeton: Princeton University Press, 2008).Google Scholar
[109] Loudon, R., Theory of line shapes for normal-incidence Brillouin scattering by acoustic phonons. J. Phys. C: Solid State Phys., 11 (1978), 403–17.Google Scholar
[110] Wallis, R. F., Effect of free ends on the vibration frequencies of one-dimensional lattices. Phys. Rev., 105 (1957), 540–5.Google Scholar
[111] de Wames, R. E. and Wolfram, T., Theory of surface spin waves in the Heisenberg ferromagnet. Phys. Rev., 185 (1969), 720–7.Google Scholar
[112] Wax, N., Selected Papers on Noise and Stochastic Processes (New York: Dover Publications, 1954).Google Scholar
[113] Akbari-Sharbaf, A. and Cottam, M. G., Finite-width effects for the localized edge modes in zigzag graphene nanoribbons. Phys. Rev. B, 93 (2016), 235136, (12 pages).Google Scholar
[114] Fujita, M., Yoshida, M., and Nakada, K., Polymorphism of extended fullerene networks: Geometrical parameters and electronic structures. Fullerene Sci. Technol., 4 (1996), 565–82.Google Scholar
[115] Gubbiotti, G. (Ed.), Three-Dimensional Magnonics (Singapore: Jenny Stanford Pub., 2019).Google Scholar
[116] Rytov, S. M., Acoustical properties of a thinly laminated medium. Akust. Zh., 2 (1956), 71 [Sov. Phys. Acoustics, 2 (1956), 68–80].Google Scholar
[117] Wolfram, T. and Callaway, J., Spin-wave impurity states in ferromagnets. Phys. Rev., 130 (1963), 2207–17.Google Scholar
[118] Negele, J. W. and Orland, H., Quantum Many-Particle Systems (Redwood City: Addison Wesley, 1988).Google Scholar
[119] Parry, W. E., The Many-Body Problem (Oxford: Clarendon Press, 1973).Google Scholar
[120] Bjorken, J. D. and Drell, S. D., Relativistic Quantum Fields (New York: McGraw-Hill, 1965).Google Scholar
[121] Ryder, L. H., Quantum Field Theory, 2nd edn. (Cambridge: Cambridge University Press, 1996).CrossRefGoogle Scholar
[122] Padmanabhan, T., Quantum Field Theory: The Why, What and How (Berlin: Springer, 2016).Google Scholar
[123] Wick, G. C., The evaluation of the collision matrix. Phys. Rev., 80 (1950), 268–72.Google Scholar
[124] Fetter, L. A. and Walecka, J. D., Quantum Theory of Many-Particle Systems, (New York: Dover Publications, 2003).Google Scholar
[125] Feynman, R. P., The theory of positrons. Phys. Rev., 76 (1949), 749–59.Google Scholar
[126] Feynman, R. P., Space-time approach to quantum electrodynamics. Phys. Rev., 76 (1949), 769–89.Google Scholar
[127] Feynman, R. P., Photon-Hadron Interactions (Boca Raton: CRC Press, 1973).Google Scholar
[128] Snoke, D. W., Solid State Physics: Essential Concepts (San Francisco: Addison-Wesley, 2009).Google Scholar
[129] Fröhlich, H., Interaction of electrons with lattice vibrations. Proc. Roy. Soc. A, 215 (1952), 291–8.Google Scholar
[130] Bardeen, J. and Pines, D., Electron-phonon interaction in metals. Phys. Rev., 99 (1955), 1140–50.Google Scholar
[131] Devreese, J. T. and Peeters, F. (Eds.), Polarons and Excitons in Polar Semiconductors and Ionic Crystals (New York: Plenum, 1984).Google Scholar
[132] Dyson, F. J., General theory of spin-wave interactions. Phys. Rev., 102 (1956), 1217–30.Google Scholar
[133] Spencer, H. J., Quantum-field-theory approach to the Heisenberg ferromagnet. Phys. Rev., 167 (1968), 434–44.Google Scholar
[134] Cottam, M. G., Theory of dipole-dipole interactions in ferromagnets. I. The thermodynamic properties. J. Phys. C: Solid St. Phys., 4 (1971), 2658–72.Google Scholar
[135] Edwards, S. F., A new method for the evaluation of electric conductivity in metals. Phil. Mag., 3 (1958), 1020–31.CrossRefGoogle Scholar
[136] Soven, P., Contribution to the theory of disordered alloys. Phys. Rev., 178 (1969), 1136–44.Google Scholar
[137] Cottam, M. G., Theory of dipole-dipole interactions in ferromagnets. II. The correlation functions. J. Phys. C: Solid St. Phys., 4 (1971), 2673–83.Google Scholar
[138] Brout, R., Statistical mechanical theory of ferromagnetism: High density behavior. Phys. Rev., 118 (1960), 1009–19.Google Scholar
[139] Brooks Harris, A., 1/z expansion for the Heisenberg antiferromagnet at low temperatures. Phys. Rev. Lett., 21 (1968), 602–4.Google Scholar
[140] Psaltakis, G. C. and Cottam, M. G., A generalisation of the drone-fermion representation and its application to Heisenberg ferromagnets. J. Phys. C: Solid St. Phys., 13 (1980), 6009–23.Google Scholar
[141] Vaks, V. G., Larkin, A. I., and Pikin, S. A., Thermodynamics of an ideal ferromagnetic substance. Sov. Phys. JETP, 26 (1968), 188–99.Google Scholar
[142] Vaks, V. G., Larkin, A. I., and Pikin, S. A., Spin waves and correlation functions in a ferromagnetic. Sov. Phys. JETP, 26 (1968), 647–55.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×