Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-13T18:57:54.442Z Has data issue: false hasContentIssue false

10 - Networks with Fiber Surface Interactions

Networks of Fiber Bundles

Published online by Cambridge University Press:  15 September 2022

Catalin R. Picu
Affiliation:
Rensselaer Polytechnic Institute, New York
Get access

Summary

In many networks, fibers interact though surface interactions such as cohesion and capillarity, which cause fiber bundling. In adequate conditions, the same process leads to the formation of percolated networks of fiber bundles. These have a specific structure and their mechanical properties are quite different from those of regular networks of fibers and molecular filaments. Separate sections are dedicated to crosslinked and non-crosslinked networks with surface interactions. Surface interactions perturb weakly the structure of crosslinked networks, but have a significant effect on their mechanics. If the network is not crosslinked, surface interactions reorganize the network and define the resulting structure. The properties of networks of fiber bundles embedded in solvents (colloidal suspensions) and in the dry state (buckypaper) are discussed in separate sections.

Type
Chapter
Information
Network Materials
Structure and Properties
, pp. 370 - 392
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bennington, C. P. J., Kerekes, R. J. & Grace, J. R. (1990). The yield stress of fiber suspensions. Canad. J. Chem. Eng. 68, 748757.Google Scholar
Bolhuis, P. & Frenkel, D. (1997). Tracing the phase boundaries of hard spherocylinders. J. Chem. Phys. 106, 666687.Google Scholar
Bolhuis, P. G., Stroobants, A., Frenkel, D. & Lekkerkerker, H. N. W. (1997). Numerical study of the phase behavior of rodlike colloids with attractive interactions. J. Chem. Phys. 107, 15511564.CrossRefGoogle Scholar
Bounoua, S., Lemaire, E., Ferec, J., Ausias, G. & Kuzhir, P. (2016a). Shear thinning in concentrated rigid fiber suspensions: Aggregation induced by adhesive interactions. J. Rheol. 60, 12791300.CrossRefGoogle Scholar
Bounoua, S., Lemaire, E., Ferec, J., et al. (2016b). Apparent yield stress in rigid fibre suspensions: The role of attractive colloidal interactions. J. Fluid Mech. 802, 611633.Google Scholar
Chaouche, M. & Koch, D. L. (2001). Rheology of non-Brownian rigid fiber suspensions with adhesive contacts. J. Rheol. 45, 369382.Google Scholar
Cui, H. & Grace, J. R. (2007). Flow of pulp fibre suspension and slurries: A review. Int. J. Multiphase Flow 33, 921934.Google Scholar
DeBenedictis, E. P., Zhang, Y. & Keten, S. (2020). Structure and mechanics of bundled semiflexible polymer networks. Macromolecules 53, 61236134.Google Scholar
Fan, Z. & Advani, S. G. (2007). Rheology of multiwall carbon nanotube suspensions. J. Rheol. 51, 585604.CrossRefGoogle Scholar
Gibson, L. J. & Ashby, M. F. (1988). Cellular solids: Structure and properties. Cambridge University Press, Cambridge.Google Scholar
Groot, R. D. (2013). Mesoscale simulation of semiflexible chains. II. Evolution dynamics and stability of fiber bundle networks. J. Chem. Phys. 138, 224904.Google Scholar
Groot, R. D. & Agterof, W. G. A. (1994). Monte Carol study of associative polymer networks. I. Equation of state. J. Chem. Phys. 100, 16491656.Google Scholar
Hobbie, E. K. (2010). Shear rheology of carbon nanotube suspensions. Rheol. Acta 49, 323334.Google Scholar
Hobbie, E. K. & Fry, D. J. (2006). Nonequilibrium phase diagram of sticky nanotube suspensions. Phys. Rev. Lett. 97, 036101.Google Scholar
Larson, R. G. (1999). The structure and rheology of complex fluids. Oxford University Press, Oxford.Google Scholar
Li, Y. & Kroger, M. (2012). Computational study of entanglement length and pore size of carbon nanotube buckypaper. J. Appl. Phys. 100, 021907.Google Scholar
Lieleg, O., Claessens, M. M. A. E., Heussinger, C., Frey, E. & Bausch, A. R. (2007). Mechanics of bundled semiflexible polymer networks. Phys. Rev. Lett. 99, 088102.Google Scholar
Lindstrom, S. B. & Uesaka, T. A. (2009). Numerical investigation of the rheology of sheared fiber suspensions. Phys. Fluids 21, 083301.Google Scholar
Martoia, F., Dumont, P. J. J., Orgeas, L., Belgacem, M. N. & Putaux, J. L. (2016). Micromechanics of electrostatically stabilized suspensions of cellulose nanofibrils under steady state shear flow. Soft Matter 12, 17211735.Google Scholar
Mori, Y., Ookubo, N., Hayakawa, R. & Wada, Y. (1982). Low-frequency and high-frequency relaxations in dynamic electric birefringence of poly(g-benzyl-L-glutamate) in m-cresol. J. Poly. Sci. Poly. Phys. Ed. 20, 21112124.Google Scholar
Negi, V. & Picu, R. C. (2019a). Mechanical behavior of cross-linked random fiber networks with inter-fiber adhesion, J. Mech. Phys. Sol. 122, 418434.Google Scholar
Negi, V. & Picu, R. C. (2019b). Mechanical behavior of nonwoven non-crosslinked fibrous mats with adhesion and friction. Soft Matt. 15, 59515964.Google Scholar
Negi, V. & Picu, R. C. (2020). Mechanical behavior of cellular networks of fiber bundles stabilized by adhesion. Int. J. Sol. Struct. 190, 119128.Google Scholar
Onsager, L. (1949). The effects of shape on the interaction of colloidal particles. Ann. N. Y. Acad. Sci. 51, 627659.Google Scholar
Petrie, C. J. (1999). The rheology of fibre suspensions. J. Non-Newt. Fluid Mech. 87, 369402.Google Scholar
Picu, R. C. & Negi, V. (2019). Mechanics of random networks of nanofibers with inter-fiber adhesion. In Mechanics and physics of solids at micro and nano-scales, Ionescu, I. R.. Queyreau, S., Picu, R. C., & Salman, O. U., eds. Wiley, Hoboken, NJ, pp. 157184.Google Scholar
Picu, R. C. & Sengab, A. (2018). Structural evolution and stability of non-crosslinked fiber networks with inter-fiber adhesion. Soft. Matter 14, 22542266.Google Scholar
Piechocka, I. K., Jansen, K. A., Broedersz, C. P., et al. (2016). Multiscale strain stiffening of semiflexible bundle networks. Soft Matter, 12, 21452156.Google Scholar
Rahatekar, S. S., Koziol, K. K. K., Butler, S. A., et al. (2006). Optical microstructure and viscosity enhancement for an epoxy resin matrix containing multiwall carbon nanotubes. J. Rheol. 50, 599610.Google Scholar
Rahatekar, S. S., Koziol, K. K., Kline, S. R., et al. (2009). Length-dependent mechanics of carbon nanotube networks. Adv. Mater. 21, 874878.CrossRefGoogle Scholar
Roman, B. & Bico, J. (2010). Elasto-capillarity: Deforming an elastic structure with a liquid droplet. J. Phys.: Condens. Matter 22, 493101.Google Scholar
Sengab, A. & Picu, R. C. (2018). Filamentary structures that self-organize due to adhesion. Phys. Rev. E 97, 032506.Google Scholar
Servais, C., Manson, J. A. E. & Toll, S. (1999). Fiber–fiber interaction in concentrated suspensions: Disperse fibers. J. Rheol. 43, 9911004.Google Scholar
Shaqfeh, E. R. G. & Fredrickson, G. H. (1990). The hydrodynamic stress in a suspension of rods. Phys. Fluid A 2, 724.Google Scholar
Shih, W. H., Shih, W. Y., Kim, S. I., Liu, J. & Aksay, I. A. (1990). Scaling behavior of the elastic properties of colloidal gels. Phys. Rev. A 42, 47724779.Google Scholar
Speranza, A. & Sollich, P. (2003). Isotropic-nematic phase equilibria in the Onsager theory of hard rods with length polydispersity. Phys. Rev. E 67, 061702.Google Scholar
Stallard, J. C., Tan, W., Smail, F. R., et al. (2018). The mechanical and electrical properties of direct-spun carbon nanotube mats. Extreme Mech. Lett. 21, 6575.Google Scholar
Style, R. W., Jagota, A., Hui, C. Y. & Dufresne, E. R. (2017). Elastocapillarity: Surface tension and the mechanics of soft solids. Annu. Rev. Condens. Matter Phys. 8, 99118.Google Scholar
Sundararajakumar, R. R. & Koch, D. L. (1997). Structure and properties of sheared fiber suspensions with mechanical contacts. J. Non-Newt. Fluid Mech. 73, 205239.CrossRefGoogle Scholar
Wang, Y., Xu, H., Drozdov, G. & Dumitrica, T. (2018). Mesoscopic friction and network morphology control the mechanics and processing of carbon nanotube yarns. Carbon 139, 94104.Google Scholar
Wierenga, A., Philipse, A. P., Lekkerkerker, H. N. & Boger, D. V. (1998). Aqueous dispersions of colloidal boehmite: Structure, dynamics, and yield stress of rod gels. Langmuir 14, 5565.Google Scholar
Wolf, B., White, D., Melrose, J. R. & Frith, W. J. (2007). On the behaviour of gelled fibre suspensions in steady shear. Rheol. Acta 46, 531537.CrossRefGoogle Scholar
Xie, B., Liu, Y., Ding, Y., Zheng, Q. & Xu, Z. (2011). Mechanics of carbon nanotube networks: Microstructural evolution and optimal design. Soft Matter 7, 1003910047.CrossRefGoogle Scholar
Yearsley, K. M., Mackley, M. R., Chinesta, F. & Leygue, A. (2012). The rheology of multiwall carbon nanotube and carbon black suspensions. J. Rheol. 56, 14651490.Google Scholar
Zilman, A. G. & Safran, S. A. (2003). Role of crosslinks in bundle formation, phase separation and gelation of long filaments. Europhys. Lett. 63, 139145.Google Scholar
Zirnsak, M. A., Hur, D. U. & Boger, D. V. (1994). Normal stresses in fiber suspensions. J. Non-Newt. Fluid Mech. 54, 153193.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×